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On Two-faced Families of
Non-commutative Random Variables

Ian Charlesworth, Brent Nelson, and Paul Skoufranis

Abstract. Wedemonstrate that the notions of bi-free independence and combinatorial-bi-free inde-
pendence of two-faced families are equivalent using a diagrammatic view of bi-non-crossing parti-
tions. _ese diagrams produce an operator model on a Fock space suitable for representing any two-
faced family of non-commutative random variables. Furthermore, using a Kreweras complement
on bi-non-crossing partitions we establish the expected formulas for the multiplicative convolution
of a bi-free pair of two-faced families.

1 Introduction

Free probability for pairs of faces, or simply bi-free probability, was introduced by
Voiculescu in [5] as a generalization of the notion of free probability to allow the si-
multaneous study of “le�-handed” and “right-handed” variables. Prior to this work,
the le� and right actions were only considered separately. Voiculescu demonstrated
that many results in free probability, such as the existence of the free cumulants and
the free central limit theorem, have direct analogues in the bi-free setting. However,
free independence is equivalent to a variety of computational conditions, such as van-
ishing alternating moments of centered variables or vanishing mixed cumulants. It
was shown in [5, Proposition 5.6] that such computational conditions for bi-freeness
exist as a collection of universal polynomials on the mixed moments of a bi-free pair
of two-faced families, but their explicit formulas were unknown.

Seeking an alternate approach to bi-free probability, Mastnak and Nica [1] deûned
the (ℓ, r)-cumulant functions, which they predicted to be the universal polynomials
of Voiculescu. Such cumulant functions were deûned by considering permutations
applied to non-crossing diagrams. Taking inspiration from the free case, they deûned
a pair of two-faced families z′ and z′′ to be combinatorially-bi-free if all mixed cu-
mulants are zero, and posed the question of whether their deûnition was equivalent
to Voiculescu’s deûnition of bi-free independence.

In this paper, we will provide an aõrmative answer to their question, demonstrat-
ing the equivalence of bi-free independence and combinatorial-bi-free independence.
Analyzing [1], one can take a diagrammatic view of the desired partitions that is more
natural to the study of two-faced families of non-commutatitve random variables. In

Received by the editors April 30, 2014; revised November 23, 2014.
Published electronically September 15, 2015.
_is research was supported in part by NSF grants DMS-1161411, DMS-0838680 and by NSERC

PGS-6799-438440-2013.
AMS subject classiûcation: 46L54.
Keywords: free probability, operator algebras, bi-free.

1290

https://doi.org/10.4153/CJM-2015-002-6 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2015-002-6


On Two-faced Families of Non-commutative Random Variables 1291

Section 2, a�er some preliminaries, we introduce this view via the notion of bi-non-
crossing partitions. Such partitions are designed to encapsulate information about
whether a variable should be considered on the le� or on the right. One main goal
of this paper is to demonstrate that bi-non-crossing partitions play the same role in
bi-free probability as non-crossing partitions play in free probability.
Following Speicher [4], we introduce the incidence algebra on bi-non-crossing

partitions in Section 3. _e algebra enables an analysis of le� and right variables si-
multaneously and provides a method of Möbius inversion. _is allows us to obtain
the bi-free cumulant functions directly.

In Section 4 we will prove our main theorem, _eorem 4.3.1, which demonstrates
that the two notions of bi-free independence are equivalent. To do so, we analyze the
action of operators on free product spaces as in [5] to obtain explicit descriptions of
Voiculescu’s universal polynomials. We given equivalent formulae for these polyno-
mials using the bi-non-crossing Möbius function.

Using the combinatorially-bi-free approach, we will develop further results. In
Section 5 we will describe a multiplicative free convolution of two-faced families. By
extending the Kreweras complement approach of [3] to bi-non-crossing diagrams, we
show that the bi-free cumulants of a product of two-faced families can be written as
a convolution of the individual bi-free cumulants.
Finally, in Section 6 we construct an operator model in the linear operators on

a Fock space for a two-faced family of non-commutative random variables. _is
generalizes the model from [2] and provides a bi-free analogue of Voiculescu’s non-
commutative R-series.

2 Preliminaries

2.1 Free Probability for Pairs of Faces

_roughout, z = ((z i)i∈I , (z j) j∈J) will denote a two-faced family in a non-commuta-
tive probability space (A, ϕ) with the le� face indexed by I, the right face indexed
by J, and I and J disjoint. We will also let z′ and z′′ be two-faced families, similarly
indexed.

Recall that in [5], z′ and z′′ are said to be bi-freely independent (or simply bi-free) if
there exists a free product (X, p, ξ) = (X′ , p′ , ξ′)∗(X′′ , p′′ , ξ′′) of vector spaces with
speciûed state-vectors and unital homomorphisms

l є ∶C ⟨zєi ∶ i ∈ I⟩ → L(Xє), rє ∶C ⟨zєj ∶ j ∈ J⟩ → L(Xє), є ∈ {′ ,′′ },

such that the two-faced families Tє = ((λє ○ l є(zєi ))i∈I , (ρє ○rє(zєj)) j∈J)with є ∈ {′ ,′′ }
have the same joint distribution in (L(X), ϕ) as z′ and z′′. Here, λє and ρє are the
le� and right representations of L(Xє) in L(X) (cf. [5, Section 1.9]). For T ∈ L(Xє),
we will o�en suppress the є notation on λє , ρє , and ϕє (the state onL(Xє) induced by
pє), as it will be clear which is meant by noting which vector space T is deûned on.

Given α∶ {1, . . . , n} → I⊔J, wewill refer to the “α-moment” of a two-faced family z:

ϕα(z) ∶= ϕ( zα(1) ⋅ ⋅ ⋅ zα(n)) .

https://doi.org/10.4153/CJM-2015-002-6 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2015-002-6


1292 I. Charlesworth, B. Nelson, and P. Skoufranis

It was shown in [5,_eorem 5.7] that for each α there exists a universal polynomial
Rα on indeterminates XK indexed by non-empty subsets K ⊂ {1, . . . , n} satisfying:
(i) Rα = X{1,. . . ,n} + R̃α , where R̃α is a polynomial on indeterminates XK indexed

by non-empty strict subsets K ⊊ {1, . . . , n};
(ii) Rα and R̃α are homogeneous of degree n when XK is given degree ∣K∣;
(iii) if Rα(z) is Rα evaluated at XK = ϕ(zα(k1) ⋅ ⋅ ⋅ zα(kr)) and K = {k1 < ⋅ ⋅ ⋅ < kr},

then

Rα(z′ + z′′) = Rα(z′) + Rα(z′′),

whenever z′ and z′′ are bi-free two-faced families.
_e number Rα(z) is called the α-cumulant of z. Property (iii) above is referred to as
the cumulant property.

2.2 Partitions, Ordering, and Non-crossing Partitions

A partition π is a set π = {V1 , . . . ,Vk}, where V1 , . . . ,Vk (called the blocks of π) are
non-empty sets satisfying Vi ∩ Vj = ∅ for i ≠ j and ⋃k

i=1 Vi = {1, . . . , n}. We tradi-
tionally order the blocks of π so that min(V1) < ⋅ ⋅ ⋅ < min(Vk). Let P(n) denote the
set of partitions of {1, . . . , n}.
For π, σ ∈ P(n), we say π is a reûnement of σ and write π ≤ σ if every block of π

is contained in a block of σ . _is deûnes a partial ordering on P(n) with minimum
and maximum elements

0n ∶= {{1}, . . . , {n}} and 1n ∶= {{1, . . . , n}} ,

respectively. We will also consider the following action of the symmetric group Sn on
P(n): if π = {V1 , . . . ,Vk} ∈ P(n) and s ∈ Sn , then

s ⋅ π = { s(V1), . . . , s(Vk)} ∈ P(n).

Observe that this action is order-preserving.
A partition π ∈ P(n) is said to be non-crossing if for any two distinct blocks V =

{v1 < ⋅ ⋅ ⋅ < vr}, W = {w1 < ⋅ ⋅ ⋅ < ws} ∈ π we have v l < w1 < v l+1 if and only if
v l < ws < v l+1 (l ∈ {1, . . . , r − 1}). _e term “non-crossing” refers to the fact that
any such partition can be represented as a non-crossing diagram. For example, the
non-crossing partition {{1, 5, 6}, {2, 3, 4}, {7}} ∈ P(7) corresponds to the diagram

1 2 3 4 5 6 7

We denote the set of non-crossing partitions in P(n) by NC(n).
_e horizontal segments connecting the nodes of a block V ∈ π will be referred

to as the spine of V , and the segments connecting the nodes to the spine of V will be
referred to as the ribs of V . In the following representation of {{1, 4}, {2, 3}} ∈ NC(4),
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the dashed line is the spine of {1, 4}, and the dotted lines are its ribs:

1 2 3 4

For a singleton block V ∈ π, ∣V ∣ = 1, the spine of V will simply refer to the corre-
sponding node itself.

2.3 Combinatorial-bi-free Independence

For consistency, we note the following deûnitions of Mastnak and Nica. Given

χ∶ {1, . . . , n} Ð→ {ℓ, r}
let {i1 < ⋅ ⋅ ⋅ < ip} = χ−1(ℓ) and { j1 < ⋅ ⋅ ⋅ < jn−p} = χ−1(r) and consider σχ ∈ Sn
deûned by

σχ(k) =
⎧⎪⎪⎨⎪⎪⎩

ik if k ≤ p,
jn+1−k if k > p.

_e class of partitions P(χ)(n) ⊂ P(n) is deûned as

P(χ)(n) ∶= {σχ ⋅ π ∣ π ∈ NC(n)}.

Deûnition 2.3.1 ([1, Deûnition 5.2]) Let (A, ϕ) be a non-commutative probability
space. _ere exists a family of multilinear functionals

(κχ ∶An → C)n≥1, χ∶{1,. . . ,n}→{ℓ ,r}

that are uniquely determined by the requirement

ϕ(z1 ⋅ ⋅ ⋅ zn) = ∑
π∈P(χ)(n)

(∏
V∈π

κχ∣V ((z1 , . . . , zn)∣V))

for every n ≥ 1, χ ∈ {ℓ, r}n , and z1 , . . . , zn ∈ A. _ese κχ ’s will be called the (ℓ, r)-
cumulant functionals of (A, ϕ).

Deûnition 2.3.2 ([1]) Let z′ and z′′ each be two-faced families in (A, ϕ). We say
that z′ and z′′ are combinatorially-bi-free if

κχ(zє1α(1) , . . . , z
єn
α(n)) = 0

whenever α∶ {1, . . . , n} → I ⊔ J, χ∶ {1, . . . , n} → {ℓ, r} is such that α−1(I) = χ−1({ℓ})
and є ∈ {′ ,′′ }n is non-constant.

Remark 2.3.3 Note that the condition α−1(I) = χ−1({ℓ}) completely determines
χ, and so we can set

κα(z) ∶= κχ(zα(1) , . . . , zα(n)).
_en if z′ and z′′ are combinatorially-bi-free, it is easy to see that

κα(z′ + z′′) = κα(z′) + κα(z′′);
that is, κα has the cumulant property.
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2.4 Bi-non-crossing Partitions

For α∶ {1, . . . , n} → I⊔ J, we let {i1 < ⋅ ⋅ ⋅ < ip} = α−1(I) and { j1 < ⋅ ⋅ ⋅ < jn−p} = α−1(J)
and consider sα ∈ Sn deûned by

sα(k) =
⎧⎪⎪⎨⎪⎪⎩

ik if k ≤ p,
jn+1−k if k > p.

We say a partition π ∈ P(n) is bi-non-crossing (with respect to α) if s−1
α ⋅π ∈ NC(n). We

denote the set of such partitions by BNC(α). _e minimum and maximum elements
of BNC(α) are given by 0α ∶= sα ⋅ 0n and 1α ∶= sα ⋅ 1n , respectively.

With each partition π ∈ BNC(α) we can associate a “bi-non-crossing diagram” as
follows. For each k = 1, . . . , n place, a node labeled k at the position (−1, n − k) if
α(k) ∈ I and at the position (1, n− k) if α(k) ∈ J. Connect nodes whose labels form a
block of π similar to how one would for the diagrams associated with NC(n), except
now the spines of blocks are vertically oriented and the ribs extend horizontally from
the spine to the le� or right, emphasizing the le�-right nature of a two-faced family.

Example 2.4.1 If

α−1(I) = {1, 2, 4}, α−1(J) = {3, 5}, and

π = {{1, 3}, {2, 4, 5}} = sα ⋅ {{1, 5}, {2, 3, 4}} ,

then the bi-non-crossing diagram associated with π is

1
2

3
4

5

_at the diagram can always be drawn to be non-crossing is easily seen through its
relationship to the diagram of s−1

α ⋅ π ∈ NC(n). Indeed, rotate the line x = −1 counter-
clockwise a quarter turn about the point (−1, 0), rotate the line x = 1 clockwise a
quarter turn about the point (1, 0), and adjust the spines and ribs so that they remain
connected. _en a�er relabeling node k as s−1

α (k) the resulting diagram is precisely
the one associated with s−1

α ⋅ π as an element of NC(n) (modulo some extra space
between the nodes). Performing this operation to the above diagram yields

1 2 3 4 5

Conversely, given the diagram corresponding to σ ∈ NC(n), we obtain the diagram
for π = sα ⋅ σ as follows. Initially, the nodes occupy positions (1, 0), . . . , (n, 0), so we
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ûrst widen the space between nodes so that node k now occupies position (sα(k), 0)
if k ≤ ∣α−1(I)∣ and position (n + 1 − sα(k), 0) if k > ∣α−1(I)∣. Given the deûnition
of sα , it is clear that this does not change the order of the nodes. Next, we rotate
the segment from (1, 0) to (n, 0) clockwise a quarter turn about (n, 0); we rotate the
segment from (n + 1, 0) to (2n, 0) counter-clockwise a quarter turn about (n + 1, 0),
and homotopically vary the spines and ribs so that they remain connected. Relabeling
node k as node sα(k) then yields the diagram corresponding to π.

Remark 2.4.2 Given α∶ {1, . . . , n} → I ⊔ J, deûne χ ∈ {ℓ, r}n by χk = ℓ if α(k) ∈ I
and χk = r if α(k) ∈ J. _en BNC(α) is precisely the class of partitions P(χ)(n) de-
ûned in [1], since sα deûned above is exactly the permutation σχ used to deûne the
class P(χ)(n). Moreover, the notation BNC(α) suggests that the lattice of partitions
depends on α more than it actually does. In fact, if β∶ {1, . . . , n} → I ⊔ J is such that
β( j) and α( j) are in the same face for each j = 1, . . . ,N , then BNC(α) = BNC(β).
Because of thiswe canwrite BNC(χ) for BNC(α). In order to emphasize the diagram-
matic viewpoint pervading this paper, we will continue to use the alternate notation
of BNC(α) for this class of partitions.

2.5 Shaded Bi-non-crossing Diagrams and Partitions

Let z′ and z′′ be a bi-free pair of two-faced families. Let χ∶ {1, . . . , n} → {ℓ, r} and є ∈
{′ ,′′ }n . We recursively deûne a collection of diagrams LR(χ, є). For n = 1, LR(χ, є)
consists of two parallel, vertical, transparent segments with a single node on the le�
segment if χ(1) = ℓ or a single node on the right segment if χ(1) = r. We assign a
shade to ′ and ′′ and shade this node the shade associated with є1. _en either this
node remains isolated, or a rib and spine of the node’s shade are drawn connecting
to the top of the diagram, between the two segments. For convenience, we will refer
to the space between the two vertical segments at the top of a diagram as its top gap,
through which strings may exit.
For n > 1 we deûne LR(χ, є) as follows. Let χ0 = χ ∣{2,.. . ,n} and є0 = (є2 , . . . , єn).

_en a diagram of LR(χ, є) is an extension of a diagram D ∈ LR(χ0 , є0): place an
additional є1-shaded node p aboveD, on the le� if χ(1) = ℓ and on the right otherwise.
Extend any spines fromD to the new top gap. If at least one spinewas extended and the
one nearest p shares its shade, then connect it to pwith a rib and optionally terminate
the spine at p. Otherwise, either connect p with a rib to a new spine extending to the
top gap or leave p isolated.

Given its impact on the diagrams, we refer to є ∈ {′ ,′′ }n as a choice of shading or
simply a shading.

Note that each diagram in LR(χ, є) is created from a unique diagram in LR(χ0 , є0)
that we can recover by simply erasing the top portion of the diagram. Also, these rules
imply that among the chords extending to the top gap, adjacent chords will always be
of diòering shades. We use the convention where the nodes are labeled numerically
from top to bottom.
For 0 ≤ k ≤ n, let LRk(χ, є) ⊆ LR(χ, є) consist of those diagrams with precisely k

chords extending to the top gap. _en LR(χ, є) = ⋃k LRk(χ, є).
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We consider a few examples. In each example, we assign the shade black to ′ and
the shade grey to ′′ and have a dashed line in place of the normally transparent le�
and right segments.

Example 2.5.1 Consider χ = (ℓ, r) and є = (′ ,′′ ). _en LR(χ, є) consists of the
following diagrams:

D1 =
1

2
D2 =

1
2

D3 =
1

2
D4 =

1
2

Also LR0(χ, є) = {D1}, LR1(χ, є) = {D2 ,D3}, and LR2(χ, є) = {D4}.

Example 2.5.2 For a slightly more robust example we consider χ = (r, ℓ, r) and
є = (′ ,′ ,′′ ). _en LR(χ, є) consists of the following diagrams:

E1 =
1

2
3

E2 =
1

2
3

E3 =
1

2
3

E4 =
1

2
3

E5 =
1

2
3

E6 =
1

2
3

E7 =
1

2
3

E8 =
1

2
3

Observe in terms of the recursive construction of LR(χ, є), the diagram Dk , k =
1, 2, 3, 4 from Example 2.5.1 creates diagrams E2k−1 and E2k in the present example.

For ûxed χ and єwe note that eachD ∈ LR0(χ, є) can be associated with a partition
π ∈ P(n) by forming blocks according to which nodes are connected via chords in the
diagram. Since D ∈ LR0(χ, є) is completely determined by the connections between
nodes, distinct diagrams yield distinct partitions. Moreover, if α∶ {1, . . . , n} → I ⊔ J
and we deûne χα by χα(k) = ℓ if α(k) ∈ I and χα(k) = r if α(k) ∈ J, then the parti-
tions we obtain from LR0(χα , є) are elements of BNC(α). We denote by BNC(α, є)
the partitions obtained from the diagrams in LR0(χα , є). It is not hard to see that
given the diagram associated with some π ∈ BNC(α), there exists some shading є
such that π ∈ BNC(α, є). It then follows that

BNC(α) = ⋃
є∈{′ ,′′}n

BNC(α, є).

As with BNC(α), we may denote BNC(α, є) by BNC(χ, є) when χ = χα .

Deûnition 2.5.3 Suppose that V and W are blocks of some π ∈ BNC(χ). _en
V andW are said to be piled if max(min(V), min(W)) ≤ min(max(V), max(W)).
In terms of the diagram corresponding to π, the spines of V andW are not entirely
above or below each other; there is some horizontal level at which both are present.

Given blocks V andW , a third blockU separates V fromW if it is piled with both,
and its spine lies between the spines of V and W . Note that V and W need not be
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piled with each other to have a separator. Equivalently, U is piled with both V and
W , and there are j, k ∈ U such that

s−1
α (V) ⊆ [s−1

α ( j), s−1
α (k)] and s−1

α (W) ∩ [s−1
α ( j), s−1

α (k)] = ∅,

or vice versa. Given any three piled blocks, one always separates the other two.
Finally, piled blocks V andW are said to be tangled if there is no block that sepa-

rates them.

Example 2.5.4 Consider the following diagrams.

1
2
3

4
5
6
7

8
9

V1

V2

V3

V4

1
2

3
4

5
6
7

8
9

U1

U2

U3

U4

1
2

3
4

5
6
7

8
9

W1

W2

W3

W4

In the ûrst diagram, V2 separates V1 from V3, and all three are piled with one another.
In the second diagram, U2 still separates U1 andU3, but U1 andU3 are not piled with
each other. In the third diagram, there are no separators.

Deûnition 2.5.5 Suppose π, σ ∈ BNC(χ) are such that π ≤ σ . We say π is a lateral
reûnement of σ and write π ≤lat σ if no two piled blocks in π are contained in the
same block of σ .

Lateral reûnements correspond to making horizontal “cuts” along the spines of
blocks of π, between their ribs.

In the notation of Example 2.5.2, E1 is a lateral reûnement of E3 made by cutting
the block {1, 2} in between node 1 and node 2.

Lemma 2.5.6 If π ∈ BNC(χ, є), then piled blocks of the same shade in π must be
separated. Consequently, if σ ∈ BNC(α, є) and π ≤ σ, then π ≤lat σ.

Proof Suppose V1 and V2 are piled blocks in π ∈ BNC(χ, є) that have the same
shade. Without loss of generality, k ∶= max(V2) < max(V1). In the construction
of the diagram generating π, when node k is placed the nearest spine must be of a
diòerent shade, as k begins a new spine. In particular, this spine sits between the
spines of V1 and V2, and so its block is a separator.

If two blocks of the same shade in π are piled, the above argument demonstrates
that they are separated by a block of a diòerent shade and so cannot be joined in σ .
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3 The Incident Algebra on Bi-Non-Crossing Partitions

Deûnition 3.0.1 _e lattice of bi-non-crossing partitions is

BNC ∶= ⋃
n≥1

⋃
χ∶{1,. . . ,n}→{ℓ ,r}

BNC(χ),

where the lattice structure on BNC(χ) is as above.

Given any lattice, there is an algebra of functions associated with the lattice.

Deûnition 3.0.2 _e incident algebra on BNC, denoted IA(BNC), consists of all
functions of the form

f ∶ ⋃
n≥1

( ⋃
χ∶{1,. . . ,n}→{ℓ ,r}

BNC(χ) × BNC(χ)) → C

such that f (π, σ) = 0 if π ≰ σ , equipped with pointwise addition and a convolution
product deûned by

( f ∗ g)(π, σ) = ∑
π≤ρ≤σ

f (π, ρ)g(ρ, σ)

for all π, σ ∈ BNC(χ) and f , g ∈ IA(BNC).

It is elementary to show that IA(BNC) is an algebra, and thus ( f ∗ g) ∗ h = f ∗
(g ∗ h).

3.1 Multiplicative Functions on the Incident Algebra

In order to construct the notion of multiplicative function on BNC, it is necessary to
identify the lattice structure of an interval as a product of full intervals.

Proposition 3.1.1 Let π, σ ∈ BNC(χ) be such that π ≤ σ. _e interval
[π, σ] = { ρ ∈ BNC(χ) ∣ π ≤ ρ ≤ σ}

can be associated with a product of full lattices
k

∏
j=1
BNC(βk)

for some βk ∶ {1, . . . ,mk} → {ℓ, r} so that the lattice structure is preserved.

Proof _e idea behind the decomposition is to take π and σ , view π and σ as ele-
ments of NC(n) by applying s−1

χ , and using the decomposition of intervals in NC(n)
given in [4, Proposition 1] while maintaining the notion of le� and right nodes.
First write σ = {W1 , . . . ,Wk}. Let π j and σ j be the restrictions of π and σ to Wj .

_en we decompose [π, σ] into ∏k
j=1[π j , σ j]. Note each σ j is a full bi-non-crossing

partition corresponding to some γ j ∶ {1, . . . , n j} → {ℓ, r}, so one can reduce to inter-
vals of the form [π, 1χ].
For a ûxed χ∶ {1, . . . , n} → {ℓ, r}, a modiûcation to the recursive argument of

[4, Proposition 1] under the identiûcation of BNC(χ) with NC(n) will be described.
First, viewing π ∈ NC(n), examine whether π has a block V = {k1 < k2 < ⋅ ⋅ ⋅ < km}
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containing non-consecutive elements; that is, there exists an index t such that kt + 1 ≠
kt+1. If so, the recursive argument of [4, Proposition 1] would decompose [π, 1χ] into
the product of two intervals (removing any trivial intervals that occur): one corre-
sponding to taking [π, 1χ] and removing all nodes strictly between kt and kt+1; and
the other corresponding to taking only the nodes strictly between kt and kt+1 and
adding an isolated node on the le�. _e only change made to accommodate BNC is
that the isolated node for the second interval should be added to the top le� of the
bi-non-crossing diagram if the lower of the two nodes of the original diagram corre-
sponding to kt and kt+1 is on the le� and otherwise on the top right. For example:

1
2

3
4

5
6

1
2

3

5

×
4

6

Note that the ûrst term in the product will be ignored as it is a full partition.
_is recursive process eventually terminates, leaving only partitions π such that

the blocks of σ−1
χ ⋅ π are intervals. For such a bi-non-crossing partition, we associate

the zero bi-non-crossing partition corresponding to keeping only the lowest node of
each block. For example:

1
2

3
4
5

6
7

4

6
7

_us, we have reduced [π, σ] to products of full lattices in BNC.

Note that as in [4, Proposition 1] we make no claim that this association is unique.
However, this ambiguity does not aòect the following computations.

Deûnition 3.1.2 A function f ∈ IA(BNC) is said to be multiplicative if whenever
π, σ ∈ BNC(χ) are such that

[π, σ] ↔
k

∏
j=1
BNC(βk)

for some βk ∶ {1, . . . ,mk} → {ℓ, r}, then

f (π, σ) =
k

∏
j=1
f (0βk , 1βk).
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For a multiplicative function f ∈ IA(BNC), we will call the collection

{ f ([0χ , 1χ]) ∣ n ≥ 1, χ∶ {1, . . . , n} → {ℓ, r}} ⊆ C

themultiplicative net associated with f . Note that for any net

Λ = { aχ ∣ n ≥ 1, χ∶ {1, . . . , n} → {ℓ, r}} ⊆ C

there is precisely one multiplicative function f with multiplicative sequence Λ.

Lemma 3.1.3 If f , g ∈ IA(BNC) are multiplicative, then f ∗ g is multiplicative.

See [4, Proposition 2] for a proof of the above.

Remark 3.1.4 _ere are three special multiplicative functions to consider; namely,

δBNC(π, σ) =
⎧⎪⎪⎨⎪⎪⎩

1 if π = σ ,
0 otherwise,

which is called the delta function on BNC and is the identity element in IA(BNC),

ζBNC(π, σ) =
⎧⎪⎪⎨⎪⎪⎩

1 if π ≤ σ ,
0 otherwise,

which is called the zeta function on BNC, and µBNC, which is called theMöbius func-
tion on BNC and which is deûned such that

µBNC ∗ ζBNC = ζBNC ∗ µBNC = δBNC
(as it is clear that ζBNC a le� and right (and thereby a two-sided) inverse can be re-
cursively deûned). It is clear that δBNC is multiplicative with δBNC(0χ , 1χ) being one
if n = 1 and zero otherwise, and ζBNC is multiplicative with ζBNC(0χ , 1χ) = 1 for all χ.
In addition, one can verify that µBNC is multiplicative and for any π, σ ∈ BNC(χ),

µBNC(π, σ) = µ(s−1
χ ⋅ π, s−1

χ ⋅ σ),

where µ is the Möbius function in [4].

Remark 3.1.5 To consolidate the above with Subsection 2.3, for T1 , . . . , Tn in a non-
commutative probability space (A, ϕ) and π ∈ BNC(χ) where χ∶ {1, . . . , n} → {ℓ, r}
and Vt = {kt ,1 < ⋅ ⋅ ⋅ < kt ,m t} for t ∈ {1, . . . , k} being the blocks of π, we deûne

ϕπ(T1 , . . . , Tn) ∶=
k

∏
t=1

ϕ(Tk t ,1 ⋅ ⋅ ⋅Tk t ,mt
)

and
κπ(T1 , . . . , Tn) ∶= ∑

σ∈BNC(χ),σ≤π
ϕσ(T1 , . . . , Tn)µBNC(σ , π).

_en, as in [4], one can show that

κπ(T1 , . . . , Tn) =
k

∏
t=1

κπ∣Vt
(Tk t ,1 ⋅ ⋅ ⋅Tk t ,mt

),
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where κπ∣Vt
should be thought of as the (single block) partition induced by the block

Vt of π, and
ϕ(T1 . . . Tn) = ∑

π∈BNC(χ)
κπ(T1 , . . . , Tn).

In particular, κ1χ = κχ are the bi-free cumulant functions of [1, Deûnition 5.2].
For a two-faced family z = ((z i)i∈I , (z j) j∈J), α∶ {1, . . . , n} → I⊔J, and π ∈ BNC(α)

we denote

ϕπ(z) ∶= ϕπ(zα(1) , . . . , zα(n)) and κπ(z) ∶= κπ(zα(1) , . . . , zα(n)).
In particular, ϕ1α(z) = ϕα(z) and κ1α(z) = κα(z). When the faces consist of a single
element each, say zℓ and zr , we deûne the above quantities for χ∶ {1, . . . , n} → {ℓ, r}
replacing α. In this case we let mz , κz ∈ IA(BNC) be the multiplicative functions
with multiplicative nets (ϕχ(z))χ and (κχ(z))χ , respectively. We call mz themoment
function and κz the bi-free cumulant function. _us, the formulaemz ∗ µBNC = κz and
κz ∗ ζBNC = mz are obtained.

4 Unifying Bi-free Independence

4.1 Computing Bi-free Moments

We will demonstrate how the partitions of BNC(χ, є) may be used to compute joint
moments of a bi-free pair of two-faced families.
Fix χ∶ {1, . . . , n} → {ℓ, r} and a shading є ∈ {′ ,′′ }n , and let Tk ∈ L(Xєk). Given

D ∈ LR(χ, є), we will assign a vector weight ψ(D;T1 , . . . , Tn) ∈ X to D. Deûne µ ∈
{λ, ρ}n by µ j = λ if χ( j) = ℓ and µ j = ρ if χ( j) = r. Let V = {k1 < ⋅ ⋅ ⋅ < kr} be a block
in D and let є(V) ∶= єk1 = ⋅ ⋅ ⋅ = єkr . If the spine of V is not connected to the top gap,
then V contributes a scalar factor of

ψ(V ;T1 , . . . , Tn) ∶= ψє(V)(Tk1(1 − pє(V))Tk2 ⋅ ⋅ ⋅ (1 − pє(V))Tkr ξ
є(V))

to ψ(D;T1 , . . . , Tn). If the spine does reach the top gap, then it contributes a vector
factor of

ψ(V ;T1 , . . . , Tn) ∶= (1 − pє(V))Tk1(1 − pє(V))Tk2 ⋅ ⋅ ⋅ (1 − pє(V))Tkr ξ
є(V) .

_en ψ(D;T1 , . . . , Tn) is the product of the scalar factors and the tensor product of
the vector factors where the order in the tensor product is determined by the le� to
right order of the spines reaching the top gap. If all contributions are scalar factors
then wemultiply this with the state-vector ξ, thinking of it as the “empty tensor word.”

Recalling Example 2.5.2, we see that

ψ(E3;T1 , T2 , T3) = ψ′(T1(1 − p′)T2ξ′)ψ′′(T3ξ′′)ξ,
while

ψ(E8;T1 , T2 , T3) = (1 − p′)T2ξ′ ⊗ (1 − p′′)T3ξ′′ ⊗ (1 − p′)T1ξ′ .

Proposition 4.1.1 Fix χ∶ {1, . . . , n} → {ℓ, r} and a shading є ∈ {′ ,′′ }n . Let µ ∈
{λ, ρ}n be as above. If Tj ∈ L(Xє j) for j = 1, . . . , n, then

µ1(T1) ⋅ ⋅ ⋅ µn(Tn)ξ = ∑
D∈LR(χ,є)

ψ(D;T1 , . . . , Tn).(4.1)
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Moreover,

ϕ( µ1(T1) ⋅ ⋅ ⋅ µn(Tn)) = ∑
π∈BNC(χ)

[ ∑
σ∈BNC(χ,є)

σ≥latπ

(−1)∣π∣−∣σ ∣]ϕπ(T1 , . . . , Tn).(4.2)

Proof We establish (4.1) via induction on n. _e base case is clear, so we assume the
formula holds for n − 1 operators and apply it as

µ2(T2) ⋅ ⋅ ⋅ µn(Tn)ξ = ∑
D∈LR(χ0 ,є0)

ψ(D;T2 , . . . , Tn),

where χ0 = χ ∣{2,.. . ,n} and є0 = (є2 , . . . , єn). Fix a D ∈ LR(χ0 , є0) and assume µ1 = λ.
Either there is a le�most spine inD of the shade є1 reaching the top gap, or there is not
(meaning either the nearest spine is the wrong shade or that D has no spines reaching
the top gap). In the former case, writing ψ(D;T2 , . . . , Tn) as x1⊗⋅ ⋅ ⋅⊗xm , this implies
x1 ∈ Xє1 . Hence,

λ(T1)x1 ⊗ ⋅ ⋅ ⋅ ⊗ xm

= ψ(T1(1 − pє1)x1)x2 ⊗ ⋅ ⋅ ⋅ ⊗ xm + (1 − pє1)T1(1 − pє1)x1 ⊗ x2 ⊗ ⋅ ⋅ ⋅ ⊗ xm

= ψ(D1;T1 , . . . , Tn) + ψ(D2;T1 , . . . , Tn),

where D1 ,D2 ∈ LR(χ, є) are the diagrams constructed from D by adding a rib and,
respectively, terminating the le�most spine in D at the new top node or extending the
le�most spine in D.

If there is no le�most spine of the same shade as є1, then ψ(D;T2 , . . . , Tn) can be
written in the same way as before except x1 /∈ Xє1 (if D has no spines reaching the top
gap then this is simply a scalar multiple of ξ). Hence

λ(T1)x1 ⊗ ⋅ ⋅ ⋅ ⊗ xm = ψє1(T1ξє1)x1 ⊗ ⋅ ⋅ ⋅ ⊗ xm + (1 − pє1)T1ξє1 ⊗ x1 ⊗ ⋅ ⋅ ⋅ ⊗ xm

= ψ(E1;T1 , . . . , Tn) + ψ(E2;T1 , . . . , Tn),

where E1 , E2 ∈ LR(χ, є) are the diagrams constructed from D by, respectively, leaving
the new top node isolated or adding a new rib and spine.

Since every D ∈ LR(χ, є) is constructed from exactly one diagram in LR(χ0 , є0),
we have

λ(T1)µ2(T2) ⋅ ⋅ ⋅ µn(Tn)ξ = ∑
D∈LR(χ,є)

ψ(D;T1 , . . . Tn).

_e case µ1 = ρ is exactly the same upon replacing “le�most” with “rightmost” and
the considerations about x1 with ones about xm .

Now, ϕ(µ1(T1) ⋅ ⋅ ⋅ µn(Tn)) is given by applying ψ to the le� side of (4.1). So only
the terms on the right whose vector parts are ξ will survive, that is, the terms corre-
sponding to E ∈ LR0(χ, є). Fix such a diagram and let σ ∈ BNC(χ, є) be the corre-
sponding partition. We examine

ψ(E;T1 , . . . , Tn) = ∏
W∈σ

ψ(W ;T1 , . . . , Tn).
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For W = {l1 < ⋅ ⋅ ⋅ < ls} ∈ σ , we have

ψ(W ;T1 , . . . , Tn) = ψє(W)(Tl1(1 − pє(W))Tl2 ⋅ ⋅ ⋅ (1 − pє(V))Tls ξ
є(V)) ξ

= ∑
1≤q1<⋅⋅⋅<qm≤s−1

(−1)mϕє(W)(Tl1 ⋅ ⋅ ⋅Tlq1 ) ⋅ ⋅ ⋅ ϕ
є(V)(Tlqm+1 ⋅ ⋅ ⋅Tls)ξ.

Each term in the last sum corresponds to a lateral reûnement πW = {V1 , . . . ,Vm+1}
ofW , weighted by (−1)∣πW ∣−∣W ∣. As any lateral reûnement of σ is simply a collection
of lateral reûnements of its individual blocks, we see that π = ⋃W∈σ πW is a lateral
reûnement of σ . _e overall weight associated to π is∏W∈σ(−1)∣πW ∣−∣W ∣ = (−1)∣π∣−∣σ ∣.
_us we obtain

ψ(E;T1 , . . . , Tn) = ∑
π∈BNC(χ)

π≤latσ

(−1)∣π∣−∣σ ∣ϕπ(T1 , . . . , Tn).

Summing over E ∈ LR0(χ, є) (or equivalently σ ∈ BNC(χ, є)) and reversing the order
of the two summations yields (4.2).

Corollary 4.1.2 Let z′ and z′′ be a pair of two-faced families in (A, ϕ). _en z′ and
z′′ are bi-free if and only if for every map α∶ {1, . . . , n} → I ⊔ J and є ∈ {′ ,′′ }n we have

ϕα(zє) = ∑
π∈BNC(α)

[ ∑
σ∈BNC(α ,є)

σ≥latπ

(−1)∣π∣−∣σ ∣]ϕπ(zє),(4.3)

where zє = (zє1α(1) , . . . , z
єn
α(n)).

Proof If z′ and z′′ are bi-free then this immediately follows by applying the previous
proposition to the representation guaranteed by the deûnition of bi-freeness.
Conversely, suppose z′ and z′′ satisfy (4.3) for each α and є. As in the proof of

[5, Proposition 2.9], we consider the universal representations of z′ and z′′. _at the
joint representation in their free product is the same as the joint representation of z′
and z′′ follows precisely from (4.3).

4.2 Summation Considerations

For χ∶ {1, . . . , n} → {ℓ, r}, є ∈ {′ ,′′ }n , and π ∈ BNC(χ), we will write π ≤ є where we
think of є as the induced partition in P(n).

Proposition 4.2.1 Let χ∶ {1, . . . , n} → {ℓ, r} and є ∈ {′ ,′′ }n . _en for every π ∈
BNC(χ) such that π ≤ є,

∑
σ∈BNC(χ,є)

σ≥latπ

(−1)∣π∣−∣σ ∣ = ∑
σ∈BNC(χ)

π≤σ≤є

µBNC(π, σ).

To prove Proposition 4.2.1 wewill appeal to free probability to handle the following
case and reduce all others to it.
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Lemma 4.2.2 Let χ∶ {1, . . . , n} → {ℓ, r} with χ ≡ ℓ and є ∈ {′ ,′′ }n . _en for every
π ∈ BNC(χ) such that π ≤ є,

∑
σ∈BNC(χ,є)

σ≥latπ

(−1)∣π∣−∣σ ∣ = ∑
σ∈BNC(χ)

π≤σ≤є

µBNC(π, σ).

Proof Let {X′
1 , . . . , X′

n} and {X′′
1 , . . . , X′′

n } be freely independent sets. Note by [5,
Proposition 2.15b] these sets can be viewed as a bi-free pair of two faced families X′

and X′′ with trivial right faces. Hence, by Corollary 4.1.2,

ϕ(Xє1
1 ⋅ ⋅ ⋅Xєn

n ) = ∑
π∈BNC(χ)

( ∑
σ∈BNC(χ,є)

σ≥latπ

(−1)∣π∣−∣σ ∣)ϕπ(Xє1
1 , . . . , X

єn
n ) .

Since χ ≡ ℓ, BNC(χ) = NC(n). _us, since {X′
1 , . . . , X′

n} and {X′′
1 , . . . , X′′

n } are free,

ϕ(Xє1
1 ⋅ ⋅ ⋅Xєn

n ) = ∑
σ∈BNC(χ)

κσ(Xє1
1 , . . . , X

єn
n )

= ∑
σ∈BNC(χ)

σ≤є

κσ(Xє1
1 , . . . , X

єn
n )

= ∑
σ∈BNC(χ)

σ≤є

∑
π∈BNC(χ)

π≤σ

µ(π, σ)ϕπ(Xє1
1 , . . . , X

єn
n )

= ∑
π∈BNC(χ)

π≤є

( ∑
σ∈BNC(χ)

π≤σ≤є

µ(π, σ))ϕπ(Xє1
1 , . . . , X

єn
n ).

Since these expressions agree for any selection of {X′
1 , . . . , X′

n} and {X′′
1 , . . . , X′′

n }
that are freely independent, by selecting {X′

1 , . . . , X′
n} and {X′′

1 , . . . , X′′
n } that are free

and such that ϕπ(Xє1
1 , . . . , Xєn

n ) is non-zero for precisely one π, the desired sums are
obtained to be equal (as µ = µBNC in this setting).

We will use Lemma 4.2.2 to show that the desired equations in Proposition 4.2.1
hold. To do so, we will show that an arbitrary bi-non-crossing partition can be ob-
tained by a sequence of steps, preserving the summations in Proposition 4.2.1, applied
to a partition with all le� nodes.

Lemma 4.2.3 Let χ∶ {1, . . . , n} → {ℓ, r}with χ(n) = ℓ, є ∈ {′ ,′′ }n , and π ∈ BNC(χ)
be such that π ≤ є. Let χ̂∶ {1, . . . , n} → {ℓ, r} be such that

χ̂(t) =
⎧⎪⎪⎨⎪⎪⎩

χ(t) if t ≠ n,
r if t = n,

and let π̂ ∈ BNC( χ̂) be the unique shaded bi-non-crossing partitionwith the same blocks
as π (note π̂ ≤ є by construction). _en

∑
σ∈BNC(χ,є)

σ≥latπ

(−1)∣π∣−∣σ ∣ = ∑
σ̂∈BNC( χ̂,є)

σ̂≥lat π̂

(−1)∣π̂∣−∣σ̂ ∣
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and

∑
σ∈BNC(χ)

π≤σ≤є

µBNC(π, σ) = ∑
σ̂∈BNC( χ̂)

π̂≤σ̂≤є

µBNC(π̂, σ̂).

Proof It is clear that the operator that takes an element σ ∈ BNC(χ, є) and con-
structs an element σ̂ ∈ BNC( χ̂, є) with the same blocks as σ corresponds to taking
the bottom node of σ that is on the le� and placing this node on the right (keeping all
strings connected). For example, consider the following diagrams.

1
2
3
4
5
6

1
2
3
4
5

6

Such an operation is clearly a bijection, maps BNC(χ, є) to BNC( χ̂, є), (−1)∣π∣−∣σ ∣ =
(−1)∣π̂∣−∣σ̂ ∣, and σ ≥lat π if and only if σ̂ ≥lat π̂. Hence, the ûrst equation holds. Simi-
larly, by Remarks 3.1.4, it is clear that the second equation holds.

Lemma 4.2.4 Let χ∶ {1, . . . , n} → {ℓ, r} be such that there exists a k ∈ {1, . . . , n− 1}
such that χ(k) = ℓ and χ(k+ 1) = r, є ∈ {′ ,′′ }n , and let π ∈ BNC(χ) be such that π ≤ є.
Fix k ∈ {1, . . . , n − 1}. Let є̂ ∈ {′ ,′′ }n be such that

є̂t =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

єt if t ∉ {k, k + 1},
єk if t = k + 1,
єk+1 if t = k,

let χ̂∶ {1, . . . , n} → {ℓ, r} be such that

χ̂(t) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

χ(t) if t ∉ {k, k + 1},
χ(k) if t = k + 1,
χ(k + 1) if t = k,

and let π̂ ∈ BNC( χ̂) be the unique shaded bi-non-crossing partition obtained by inter-
changing k and k + 1 in π (note π̂ ≤ є̂ by construction). _en

∑
σ∈BNC(χ,є)

σ≥latπ

(−1)∣π∣−∣σ ∣ = ∑
σ̂∈BNC( χ̂,є̂)

σ̂≥lat π̂

(−1)∣π̂∣−∣σ̂ ∣

and
∑

σ∈BNC(χ)
π≤σ≤є

µBNC(π, σ) = ∑
σ̂∈BNC( χ̂)

π̂≤σ̂≤є̂

µBNC(π̂, σ̂).

Proof Since the operation that takes an element σ ∈ BNC(χ) with σ ≤ є and pro-
duces an element σ̂ ∈ BNC( χ̂) with σ̂ ≤ є̂ by interchanging k and k + 1 in σ is a
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bijection, and since µBNC(π, σ) = µBNC(π̂, σ̂) by Remarks 3.1.4, the second equation
clearly holds.

To prove the ûrst equation holds, we break the discussion into several cases. For
the ûrst case, suppose єk ≠ єk+1; that is, the nodes we desire to change the orders of
are of diòerent shades. For example, see the following diagrams where k = 4.

1
2
3
4

5
6

1
2
3

5
4

6

In this case, it is clear that the operation described above that takes σ ∈ BNC(χ) to
σ̂ ∈ BNC( χ̂) is a bijection thatmaps BNC(χ, є) to BNC( χ̂, є̂), is such that (−1)∣π∣−∣σ ∣ =
(−1)∣π̂∣−∣σ̂ ∣, and is such that σ ≥lat π if and only if σ̂ ≥lat π̂. Hence, the ûrst equation
holds in this case.

Otherwise, єk = єk+1. Suppose k and k + 1 are in the same block of π. For example,
consider the following diagrams where k = 3.

1
2
3

5
4

6

1
2

4
5

3

6

It is again clear that the same identiûcations hold as the previous case, and thus the
ûrst equation holds in this case. Hence, we have reduced to the case that k and k + 1
are in diòerent blocks of the same shade.

Let V1 and V2 be the blocks in π of k and k + 1 respectively. Note that V1 contains
a le� node and V2 contains a right node and the sum on the le�-hand side of the ûrst
equation is

∑
σ∈BNC(χ,є)

σ≥latπ
k ,k+1 in separated blocks of σ

(−1)∣π∣−∣σ ∣ + ∑
σ∈BNC(χ,є)

σ≥latπ
k ,k+1 not in separated blocks of σ

(−1)∣π∣−∣σ ∣ .

We claim that

∑
σ∈BNC(χ,є)

σ≥latπ
k ,k+1 not in separated blocks of σ

(−1)∣π∣−∣σ ∣ = 0.

Indeed, we will split the discussion into two cases: when V1 and V2 are piled and
when they are not. For an example where V1 and V2 are piled, consider the following
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diagram.
1
2

4
5

3

6

V1

V2

If V1 and V2 are piled, it is easy to see that any σ ∈ BNC(χ, є) such that π ≤ σ and k
and k + 1 are not in separated blocks of σ must be such that V1 and V2 are contained
in the same block of σ . However, this implies that π is not a lateral reûnement of σ ,
as joining piled blocks cannot be undone by a lateral reûnement. Hence the sum is
zero in this case. Otherwise, suppose V1 and V2 are not piled. For an example where
V1 and V2 are not piled, consider the following diagram.

1
2
3

5
4

6

V1

V2

_is implies that k is the lowest element of V1 in the bi-non-crossing diagram of π
and k + 1 is the highest element of V2. If σ ∈ BNC(χ, є) is such that k and k + 1 are
not in separated blocks of σ and σ ≥ π, then if k and k + 1 are in the same block of σ ,
let σ ′ ≤lat σ splitting the block containing k and k + 1 in between these nodes (note
σ ′ ∈ BNC(χ, є)). Otherwise, k and k + 1 are not in the same block of σ , so letting
σ ′ ≥lat σ be the partition made by joining the blocks containing k and k + 1 together
also forms a partition in BNC(χ, є). In either case (−1)∣π∣−∣σ ∣ + (−1)∣π∣−∣σ ′∣ = 0. Note
that the correspondance between σ and σ ′ in each case is one-to-one, and thus the
sum is zero.

Similar arguments show that

∑
σ̂∈BNC( χ̂,є̂)

σ̂≥lat π̂

(−1)∣π̂∣−∣σ̂ ∣ = ∑
σ̂∈BNC( χ̂,є̂)

σ̂≥lat π̂
k ,k+1 in separated blocks of σ̂

(−1)∣π̂∣−∣σ̂ ∣ .

However, the map taking σ ∈ BNC(χ) to σ̂ ∈ BNC( χ̂) is such that k and k + 1 are
in separated blocks of σ if and only if k and k + 1 are in separated blocks of σ̂ , and
under these conditions σ ∈ BNC(χ, є) if and only if σ̂ ∈ BNC( χ̂, є̂), σ ≥lat π if and
only if σ̂ ≥lat π̂, and (−1)∣π∣−∣σ ∣ = (−1)∣π̂∣−∣σ̂ ∣. Hence the ûrst equation holds in this
ûnal case.

Proof of Proposition 4.2.1 Given π, a π̂ in BNC( χ̂) where χ̂∶ {1, . . . , n} → {ℓ} can
be constructed such that π̂ can be modiûed to make π via the operations in used in
Lemmas 4.2.3 and 4.2.4. Since the sums are equal for π̂ by Lemma 4.2.2, and since
Lemmas 4.2.3 and 4.2.4 preserve the equality of the sums, the result hold for π.
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We apply Proposition 4.2.1 to Corollary 4.1.2 to immediately obtain the following
corollary.

Corollary 4.2.5 Let z′ and z′′ be a pair of two-faced families in (A, ϕ). _en z′ and
z′′ are bi-free if and only if for every map α∶ {1, . . . , n} → I ⊔ J and є ∈ {′ ,′′ }n we have

ϕα(zє) = ∑
π∈BNC(α)

[ ∑
σ∈BNC(α)

π≤σ≤є

µBNC(π, σ)]ϕπ(zє),

where zє = (zє1α(1) , . . . , z
єn
α(n)).

4.3 Bi-free is Equivalent to Combinatorially-bi-free

_eorem 4.3.1 Let z′ = ((z′i)i∈I , (z′j) j∈J) and z′′ = ((z′′i )i∈I , (z′′j ) j∈J) be a pair of
two-faced families in a non-commutative probability space (A, ϕ). _en z′ and z′′ are
bi-free if and only if they are combinatorially-bi-free.

Proof Suppose z′ and z′′ are bi-free, and ûx a shading є ∈ {′ ,′′ }n . By Corollary 4.2.5,
for α∶ {1, . . . , n} → I ⊔ J we have

ϕα(zє) = ∑
π∈BNC(α)

( ∑
σ∈BNC(α)

π≤σ≤є

µBNC(π, σ))ϕπ(zє).

_erefore

ϕα(zє) = ∑
σ∈BNC(α)

σ≤є

κσ(zє)

by Remark 3.1.5. Using the above formula, we will proceed inductively to show that
κσ(zє) = 0 if σ ∈ BNC(α) and σ ≰ є. _e base case is where n = 1 is immediate.
For the inductive case, suppose the result holds for any β∶ {1, . . . , k} → I ⊔ J with

k < n. Let α∶ {1, . . . , n} → I ⊔ J. Suppose є is not constant (so, in particular, 1α ≰ є).
_en

∑
σ∈BNC(α)

κσ(zє) = ϕα(zє) = ∑
σ∈BNC(α)

σ≤є

κσ(zє).

By induction, κσ(zє) = 0 if σ ∈ BNC(α) ∖ {1α} and σ ≰ є. Consequently,

∑
σ∈BNC(α)

κσ(zє) = κ1α(zє) + ∑
σ∈BNC(α)

σ≤є

κσ(zє).

Combining these two equations gives κ1α(zє) = 0, completing the inductive step.
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Now suppose that z′ and z′′ are combinatorially-bi-free. _en, for any є ∈ {′ ,′′ }n

and α∶ {1, . . . , n} → I ⊔ J,

ϕα(zє) = ∑
σ∈BNC(α)

κσ(zє) = ∑
σ∈BNC(α)

σ≤є

κσ(zє)

= ∑
σ∈BNC(α)

σ≤є

∑
π∈BNC(α)

π≤σ

ϕπ(zє)µBNC(π, σ)

= ∑
π∈BNC(α)

( ∑
σ∈BNC(α)

π≤σ≤є

µBNC(π, σ))ϕπ(zє).

Hence, Corollary 4.2.5 implies that z′ and z′′ are bi-free.

4.4 Voiculescu’s Universal Bi-free Polynomials

Using the equivalence of bi-free independence and combinatorial-bi-free indepen-
dence, we obtain explicit formulas for several universal polynomials appearing in [5].

Proposition 4.4.1 Let α∶ {1, . . . , n} → I ⊔ J. For each shading є ∈ {′ ,′′ }n we deûne
a polynomial Pα ,є on indeterminates X′

K and X′′
K indexed by non-empty subsets K ⊂

{1, . . . , n} by the formula

Pα ,є ∶= ∑
π∈BNC(α ,є)

[ ∑
σ∈BNC(α)

π≤σ≤є

µBNC(π, σ)] ∏
V∈π

Xє(V)

V .

_en for z′ and z′′ a bi-free pair of two-faced families in (A, ϕ) we have

ϕα(zє) = Pα ,є(z′ , z′′),

where Pα ,є(z′ , z′′) is given by evaluating Pα ,є at Xδ{k1<⋅⋅⋅<kr}
= ϕ(zδα(k1)

⋅ ⋅ ⋅ zδα(kr)
), δ ∈

{′ ,′′ }.
Furthermore, if we deûne Qα as the sum of the Pα ,є over all possible shadings then

Qα = X′
{1,. . . ,n} + X′′

{1,. . . ,n} +∑ Pα ,є ,

where the summation is over non-constant shadings є, and

ϕα(z′ + z′′) = Qα(z′ , z′′),

where Qα(z′ , z′′) is Qα evaluated at the same point as the Pα ,є above.

Proof _e ûrst part of this corollary is immediate from Corollary 4.2.5. _e as-
sertion regarding Qα(z′ , z′′) is also immediate when expanding the product in the
le�-hand side. All that remains to show is

Qα = X′
{1,. . . ,n} + X′′

{1,. . . ,n} +∑ Pα ,є ,
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which is equivalent to saying Pα ,є = Xδ
{1,. . . ,n} when є is the constant shading є =

(δ, . . . , δ), δ ∈ {′ ,′′ }. Such a shading induces the full partition 1α , and hence

∑
σ∈BNC(α)

π≤σ≤є

µBNC(π, σ) = ∑
σ∈BNC(α)
π≤σ≤1α

µBNC(π, σ) = δBNC(π, 1α).

_en the only term in Pα ,є with a non-zero coeõcient is the one corresponding to
π = 1α .

Proposition 4.4.2 For any α∶ {1, . . . , n} → I ⊔ J, recursively deûne polynomials Rα
on indeterminates XK indexed by non-empty subsets K ⊆ {1, . . . , n} by the formula

Rα = ∑
π∈BNC(α)

µBNC(π, 1α) ∏
V∈π

XV .

If XK is given degree ∣K∣, then Rα is homogeneous with degree n.
For z a two-faced family in (A, ϕ), if Rα(z) denotes Rα evaluated at the point

X{k1<⋅⋅⋅<kr} = ϕ( zα(k1) ⋅ ⋅ ⋅ zα(kr))

then Rα(z) = κα(z). Moreover, if z′ and z′′ are bi-free in (A, ϕ), then Rα(z′ + z′′) =
Rα(z′) + Rα(z′′); that is, Rα has the cumulant property.

Proof We see that Rα(z) and κα(z) are equal by Remark 3.1.5. _en Rα has the
cumulant property simply because κα does.

Remark 4.4.3 _e polynomials Pα ,є , Qα , and Rα are precisely the universal poly-
nomials from [5], Propositions 2.18, 5.6, and_eorem 5.7, respectively.

5 A Multiplicative Bi-free Convolution

5.1 Kreweras Complement on Bi-non-crossing Partitions

In [3], theKreweras complementKNC on the non-crossing partitionswas used to sim-
plify the convolution of multiplicative functions. In particular, we have the following
extension to BNC.

Deûnition 5.1.1 For any χ∶ {1, . . . , n} → I ⊔ J and π ∈ BNC(χ), the Kreweras com-
plement of π, denoted KBNC(π), is the element of BNC(χ) obtained by applying sχ to
the Kreweras complement in NC(n) of s−1

χ ⋅ π; explicitly,

KBNC(π) = sχ ⋅ KNC(s−1
χ ⋅ π).

Remark 5.1.2 Note that KBNC(π) can be obtained by taking the diagram corre-
sponding to π, placing a node beneath each le� node and above each right node of π,
and drawing the largest bi-non-crossing diagram on the new nodes.
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Example 5.1.3 In the following diagram, if π is the bi-non-crossing partition drawn
in black, KBNC(π) is the bi-non-crossing partition in grey.

1

2

3

4

5

6

7

8

1

2

3

4

5

6

7

8

Remark 5.1.4 Since KNC is an order reversing and sχ is order preserving, KBNC is
an order reversing bijection. _us [π, 1α] ≃ [KBNC(1α),KBNC(π)] = [0α ,KBNC(π)]
for all π ∈ BNC(α). Hence, if f , g ∈ IA(BNC) are multiplicative functions, then

( f ∗ g)(0α , 1α) = ∑
π∈BNC(α)

f (0α , π)g(0α ,KBNC(π)) = (g ∗ f )(0α , 1α),

and thus f ∗ g = g ∗ f .

5.2 Computing Cumulants of a Multiplicative Bi-free Convolution

Taking inspiration from [3], we use the Kreweras complement to examine the bi-free
cumulants of a two-faced family generated by products of a bi-free pair of two-faced
families.

_eorem 5.2.1 Let z′ = ({z′ℓ}, {z′r}) and z′′ = ({z′′ℓ }, {z′′r }) be a bi-free family of
pairs of faces and let z = ({z′ℓz′′ℓ }, {z′′r z′r}). _en

κχ(z) = ∑
π∈BNC(χ)

κπ(z′)κKBNC(π)(z′′)

for all χ∶ {1, . . . , n} → {ℓ, r}.

Proof Recall from Remark 3.1.5 the deûnition of the moment and bi-free cumu-
lant functions mx and κx , and, moreover, that these are uniquely determined by the
moments and cumulants of the family (x), respectively. Since the bi-free cumulant
functions are multiplicative and by the structure of the convolution of multiplicative
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functions given in Remark 5.1.4, it suõces to show κz = κz′ ∗ κz′′ . Using the relations
mz ∗ µBNC = κz and κz ∗ ζBNC = mz , it suõces to show mz = κz′ ∗mz′′ .

Suppose χ∶ {1, . . . , n} → {ℓ, r}. Let β∶ {1, . . . , 2n} → {ℓ, r} be given by β(2k − 1) =
β(2k) = χ(k). Take є ∈ {′ ,′′ }2n so that є2k−1 = ′ and є2k = ′′ if k ∈ χ−1(ℓ), and the
opposite if k ∈ χ−1(r). _en

mz(0χ , 1χ) = ϕχ(z) = ϕ(zє1χ(1)z
є2
χ(1) ⋅ ⋅ ⋅ z

є2n−1
χ(n)z

є2n
χ(n))

= ϕ(zє1β(1)z
є2
β(2) ⋅ ⋅ ⋅ z

є2n−1
β(2n−1)z

є2n
β(2n))

= ∑
π∈BNC(β ,є)

κπ(zє)

= ∑
π1∈BNC(χ)

κπ1(z′) ∑
π2∈BNC(χ)
π2≤KBNC(π1)

κπ2(z′′)

= ∑
π1∈BNC(χ)

κπ1(z′)ϕKBNC(π1)(z′′)

= (κz′ ∗mz′′)(0χ , 1χ)

Hence, as mz and κz′ ∗ mz′′ are multiplicative functions that agree on full lattices in
BNC, and consequently on all intervals by bi-multiplicitivity.

Remark 5.2.2 Note that the above generalizes the formula for the free cumulants
of the multiplicative convolution of freely independent random variables in terms of
their individual cumulants (cf. [3, Section 3.5]). _is seems to suggest that when
deûning the multiplicative convolution of a bi-free pair of two-faced families, one
should multiply the right faces as if in the opposite algebra.

Remark 5.2.3 Since convolution is abelian on multiplicative functions, we obtain
that ({z′ℓz′′ℓ }, {z′′r z′r}) and ({z′′ℓ z′ℓ}, {z′rz′′r }) have the same joint distributions.

6 An Operator Model for Pairs of Faces

In this section we will construct an operator model for a two-faced family in a non-
commutative probability space. _ismodel will generalize the operatormodel usually
considered in free probability introduced by Nica in [2].

In [2, Deûnition 3.2.1], Nica’s operator model is constructed via unbounded op-
erators on a Fock space making use of the le� creation and annihilation operators
where each product of creation operators is weighted by a free cumulant of the ran-
dom variables. _e operator model for a pair of faces in a non-commutative probabil-
ity space will be constructed in _eorem 6.4.1, with terms similarly weighted by the
corresponding bi-free cumulants. We use le� annihilation operators in the same way
as Nica’s model, though we must use more complex operators than simply le� and
right creation, essentially to account for the fact that the order in which variables are
annihilated does not correspond to the order in which they were added as strongly
as in the free case. Our model reduces to Nica’s model when all variables are le� (or
right) variables. Moreover, amodel using only le� and right creation and annihilation
operators is unlikely, by discussions in [1].
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Nica’s operator model also gives a direct analogue to the R-series of a collection
of random variables in a non-commutative probability space. We introduce an anal-
ogous operator Θz in _eorem 6.4.1, which serves as the R-series of the two-faced
family z = ({z i}i∈I , {z j} j∈J). In particular, if

z′ = ({z′i}i∈I , {z′j} j∈J) and z′′ = ({z′′i }i∈I , {z′′j } j∈J)

is a bi-free pair of two-faced families, we can consider the single family

z = ({z′i + z′′i }i∈I , {z′j + z′′j } j∈J)

and construct the corresponding operator Θz . It will follow that

Θz − I = (Θz′ − I) + (Θz′′ − I).

Hence, the operator Θz from _eorem 6.4.1 behaves like an R-series.

6.1 Nica’s Operator Model

We will take a moment to recall Nica’s operator model from [1] to demystify our con-
struction. Given an index set I, let F(CI) be the Fock space generated by I; that is,

F(CI) ∶= CΩ ⊕ ( ⊕
k≥1

i1 , . . . , ik∈I

C(e i1 ⊗ ⋅ ⋅ ⋅ ⊗ e ik)) ,

where {e i}i∈I is an orthonormal basis ofCI . Recall that Ω is called the vacuum vector
ofF(CI), and is thought of as a “length zero tensor”; that is, for example, ξ1⊗⋅ ⋅ ⋅⊗ξk =
Ω if k = 0. To simplify notation, we will sometimes join impure tensors of varying
lengths together with a tensor product symbol, which should be distributed across
sums. For example, (ξ1+ ξ2⊗ ξ3)⊗ ξ4 = ξ1⊗ ξ4+ ξ2⊗ ξ3⊗ ξ4, while ξ⊗Ω = ξ = Ω⊗ ξ.

Recall next that the le� creation operator corresponding to e i , denoted L i , is de-
ûned by L i(ξ1 ⊗ ⋅ ⋅ ⋅ ⊗ ξk) = e i ⊗ ξ1 ⊗ ⋅ ⋅ ⋅ ⊗ ξk , while its adjoint L∗i is called the le�
annihilation operator corresponding to e i . We take ω∶L(F(CI)) → C to be the vec-
tor state corresponding to Ω, so ω(T) ∶= ⟨TΩ, Ω⟩.

Suppose that X = (X i)i∈I is a collection of randomvariables in a non-commutative
probability space (A, ϕ), and consider the (unbounded) operator

ΘX ∶= IF(CI) +∑
k≥1

∑
i1 , . . . , ik∈I

κ(X i1 , . . . , X ik)L ik ⋅ ⋅ ⋅ L i1 ,

where κ is the free cumulant functional. Next, set

Z i ∶= L∗i ΘX = L∗i + ∑
k≥0

∑
i1 , . . . , ik∈I

κ(X i1 , . . . , X ik , X i)L ik ⋅ ⋅ ⋅ L i1 .

_en the joint distribution of (Z i)i∈I with respect to ω is the same as that of (X i)i∈I
with respect to ϕ. Observe that given i1 , . . . , in , there is a bijection between the non-
crossing partitions NC(n) and the terms in Z i1 ⋅ ⋅ ⋅ Z in of non-zero trace: one takes the
ûnest partition such that if the annihilation operator of Z i t cancels a creation operator
added by a term from the variable Z is , then t and s lie in the same block.
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Example 6.1.1 Consider the product T1T2T3T4T5 = Z1Z2Z3Z3Z1, which contains
the term of non-zero trace

κ(X2 , X3)κ(X1 , X3 , X1)L∗1 L∗2(L∗3 L3L2)L∗3 (L∗1 L1L3L1).
_is corresponds to the non-crossing partition {{1, 4, 5}{2, 3}}, since the term
κ(X2 , X3)L∗3 L3L2 was selected from T3, while the surviving L2 was annihilated by
T2; this accounts for the block {2, 3}. Similarly, κ(X1 , X3 , X1)L∗1 L1L3L1 was added by
T5, and its remaining pieces were annihilated by T4 and T1, which gives us the block
{1, 4, 5}.

On the other hand, to ûnd the term corresponding to the non-crossing partition
{{1, 5}, {2, 4}, {3}}, we note that T5 must introduce an operator annihilated by T1,
T4 must for T2, and T3 annihilate any term it adds. _at is, we have the term

L∗1 L∗2(κ(X3)L∗3 L3)(κ(X2 , X3)L∗3 L3L2)(κ(X1 , X1)L∗1 L1L1) .

6.2 Skeletons Corresponding to Bi-non-crossing Partitions

_e operator model from [2] can be thought of as a systematic way of constructing
all non-crossing partitions weighted by products of free cumulants. Recall that non-
crossing partitions can be viewed as bi-non-crossing partitions where all nodes are
on the le�-hand side.

Deûnition 6.2.1 Let α∶ {1, . . . , n} → I ⊔ J. For a bi-non-crossing partition π ∈
BNC(α), a skeleton on π is a bi-non-crossing diagram of π (as in Subsection 2.4),
labelled by α, with a choice of each node being either closed or open subject to the
constraint that any node below a closed node is also closed.

Example 6.2.2 If α and π are as in Example 2.4.1, the skeletons corresponding to π
are the following diagrams.

α(1)
α(2)

α(3)
α(4)

α(5)

α(1)
α(2)

α(3)
α(4)

α(5)

α(1)
α(2)

α(3)
α(4)

α(5)

α(1)
α(2)

α(3)
α(4)

α(5)

α(1)
α(2)

α(3)
α(4)

α(5)

α(1)
α(2)

α(3)
α(4)

α(5)

Deûnition 6.2.3 We will refer to a skeleton where all nodes are closed circles as
the completed skeleton. For a skeleton on 1α ∈ BNC(α), the skeleton where all nodes
are open will be referred to as the empty skeleton corresponding to α, while the skele-
ton where all but the bottom node is open will be referred to as the starter skeleton
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corresponding to α. Any skeleton that is not empty will be referred to as a partially
completed skeleton.

Remark 6.2.4 We will examine Nica’s model in the language of skeletons, which
we will think of as a bi-free situation where all variables come from the le� face. Let
{X i}i∈I be a family of non-commutative randomvariables, {Z i}i∈I the corresponding
operator model, and ûx some i1 , . . . , in ∈ I and consider a product (L∗i1T1) ⋅ ⋅ ⋅ (L∗inTn)
where

Tk ∈ {I} ∪ {κ(X i′1 , . . . , X i′m)L i′m ⋅ ⋅ ⋅ L i′1 ∣m ≥ 1, i′1 , . . . , i′m ∈ I}.

Note that L∗ikTk = 0 unless the Tk chosen is either I or begins with L ik . For t ≤ n, we
think of (L∗i tTt) ⋅ ⋅ ⋅ (L∗inTn)Ω as a partially completed skeleton weighted by a scalar
which is a product of free cumulants. _ere is no bijection between partially com-
pleted skeletons and basis vectors of our Fock space as the partially completed skeleton
will retain the information of how the vector was created. Each annihilation operator
acts on the skeleton by ûlling in the lowest open node if it is labelled appropriately
(to make the node closed in the new skeleton), and otherwise weights the skeleton
by zero (which removes the skeleton from consideration). Note, then, that the closed
nodes correspond to variables in the block which have been encountered, and the re-
quirement that they be ûlled from bottom to top ensures that the ordering of variables
matches the cumulant. For example,

2
1
3
2
1

L∗2
0 whereas

2
1
3
2
1

L∗3

2
1
3
2
1

.

Each product of creation operators κ(X i′1 , . . . , X i′m)L i′m ⋅ ⋅ ⋅ L i′1 adds an empty skele-
ton (corresponding to the creation operators chosen) to the skeleton under consid-
eration directly above the highest closed node, and is weighted by the appropriate
cumulant. _e lowest node of the new block is immediately ûlled by the following
L∗ik . For example,

2
1
3

2
1

L1L2L1L3

2
1
3
3
1
2
1
2
1

L∗1

2
1
3
3
1
2
1
2
1
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For a product (L∗i1T1) ⋅ ⋅ ⋅ (L∗inTn)Ω, we will get precisely one partially completed
skeleton. For example,

1
1
3
2
2
1
3
1
2
1

corresponds to the product

(κ(X2 , X2)L2)L∗1 L∗3 (κ(X3 , X1)L∗1 L1L3)
(κ(X3 , X1 , X2)L∗2L2L1L3)(κ(X1 , X1 , X1)L∗1 L1L1L1)Ω.

Notice that when the above operators are applied to Ω in the order listed, we obtain
the vector λe2 ⊗ e3 ⊗ e1 ⊗ e1 , where λ is a product of cumulants. _e indices of the
tensor can be seen in the partially completed skeleton by reading the open nodes from
bottom to top. In this manner, vectors (L∗i1T1) ⋅ ⋅ ⋅ (L∗inTn)Ω correspond to partially
completed skeletons and the only products such that

⟨(L∗i1T1) ⋅ ⋅ ⋅ (L∗inTn)Ω, Ω⟩ ≠ 0

arise from completed skeletons. It is easy to see that a completed skeleton corresponds
to an element of π ∈ NC(n). _ese completed skeletons are weighted by the correct
product of cumulants so that when we sum over all completed skeletons, we get

⟨Z i1 ⋅ ⋅ ⋅ Z inΩ, Ω⟩ = ∑
π∈NC(n)

κπ(X i1 , . . . , X in) = ϕ(X i1 ⋅ ⋅ ⋅X in),

as desired.

6.3 A Construction

We will now construct our operator model for pairs of faces, motivated by our re-
alization of Nica’s operator model. Above, the model constructed all weighted non-
crossing partitions by using creation operators to glue in full non-crossing blocks and
annihilation operators to approve or reject non-crossing diagrams. As the combina-
torics of pairs of faces is dictated by bi-non-crossing partitions, we must construct
the appropriate creation operators to glue together bi-non-crossing partitions. How-
ever, unlike with non-crossing partitions where there is only one way to glue in a full
block at any given point, theremay bemultiple or noways to glue one bi-non-crossing
skeleton into another. As such, the description of the appropriate creation operators
is more complicated.
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Let z = ((z i)i∈I , (z j) j∈J) be a two-faced family in (A, ϕ). As before, consider the
Fock spaceH ∶= F(CI⊔J) with {ek}k∈I⊔J an orthonormal basis.
For α∶ {1, . . . , n} → I ⊔ J, we will deûne operators Tα ∈ L(H) that should be

thought of as playing the same roll as the operators Tk in our discussion of Nica’s
model; that is, each adds an appropriate empty skeleton. _ough we will o�en speak
of actions of these operators in terms of their actions on skeletons, one can return to
the context of H by letting a partially completed skeleton correspond to the vector
formed by taking the tensor product of the basis elements matching the labels of its
open nodes, from bottom to top, and weighting it based on which cumulants have
been chosen. For example, the skeleton

i1
i2

j1
j2

i3

corresponds to the vector e j1 ⊗ e i2 ⊗ e i1 and will be weighted by

κ(z i2 , z i3)κ(z i1 , z j2)κ(z j1).

_e key point here is that the only choices of future Zk that yield a non-zero Ω compo-
nent when applied to such a vector have annihilation operators in the correct order.
In the above example, in order for this skeleton to make a contribution to the ûnal
term, we must act on it by Z j1 , Z i2 , and Z i1 in that order (though other variables may
occur between them). Since the closed nodes of the skeleton only eòect the resulting
quantity in terms of its weight and cannot aòect the action of future operators (as in-
deed they must not, for the vector has forgotten them), we will sometimes truncate
diagrams of skeletons to show only the open nodes. It is implied that there may be
signiûcantlymore nodes and blocks below the bottom of the diagrams that follow, but
their representation is eschewed. Likewise, in order to ensure that Tα is well deûned,
we cannot have behaviour depending on which partial skeletons have been chosen,
but only the choice of side and of labels of the open nodes.
For n = 1, we deûne Tα ∶= Lα(1). In this setting, one may think of Tα as adding an

empty skeleton in the lowest possible position with a single open node on the le� or
on the right depending on whether α(1) is in I or J. For example,

i1
i2

j1
i3

Tα
α(1) ∈ I

i1
i2

α(1)
j1

i3
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and
i1
i2

j1
i3

Tα
α(1) ∈ J

i1
i2

α(1)
j1

i3 .

Observe that Tα adds an open node in the lowest valid location (i.e., immediately
above all closed nodes); this behaviour will be mimicked by the other Tα as well. _at
is, the lowest open node added will always be added directly above the highest closed
node.

Let Σ∶H ⊕H →H be deûned by

Σ( f1 ⊗ ⋅ ⋅ ⋅ ⊗ fn , fn+1 ⊗ ⋅ ⋅ ⋅ ⊗ fn+m) ∶= ∑
σ
fσ(1) ⊗ ⋅ ⋅ ⋅ ⊗ fσ(n+m) ,

where the sum is over all permutations σ ∈ Sn+m so that σ ∣[1,n] and σ ∣[n+1,n+m] are
increasing; that is, σ interleaves the sets {1, . . . , n} and {n + 1, . . . , n +m}. Note that
Σ(ξ, Ω) = ξ = Σ(Ω, ξ). As an example,

Σ(e1 ⊗ e2 , e3 ⊗ e4) = e1 ⊗ e2 ⊗ e3 ⊗ e4 + e1 ⊗ e3 ⊗ e2 ⊗ e4 + e3 ⊗ e1 ⊗ e2 ⊗ e4
+ e1 ⊗ e3 ⊗ e4 ⊗ e2 + e3 ⊗ e1 ⊗ e4 ⊗ e2 + e3 ⊗ e4 ⊗ e1 ⊗ e2 .

We will use Σ to account for the fact that nodes on the right may be added with any
order to nodes on the le� to obtain a valid skeleton.
For α∶ {1, . . . , n} → I ⊔ J, we deûne

Tα(Ω) ∶= Lα(n)Lα(n−1) ⋅ ⋅ ⋅ Lα(1)(Ω) = eα(1) ⊗ ⋅ ⋅ ⋅ ⊗ eα(n) .

Note that this corresponds to taking a completed skeleton (possibly with no nodes),
and adding the empty skeleton corresponding to α above it.

We will now deûne Tα for n ≥ 2 on tensor products of basis elements, and extend
it by linearity to their span (which is denseH). We consider only the case α(n) ∈ I,
as the case when α(n) ∈ J will be similar. Let η = eβ(m) ⊗ ⋅ ⋅ ⋅ ⊗ eβ(1) ∈ H, where
β∶ {1, . . . ,m} → I ⊔ J.

If β−1(I) = ∅, we deûne Tα(η) as follows. Let k = max ({0} ∪ α−1(J)), so that k
is the lowest of the nodes to be added by which falls on the right. We deûne Tα(η) as
follows:

Tα(η) ∶= eα(n) ⊗ Σ (eα(n−1) ⊗ ⋅ ⋅ ⋅ ⊗ eα(k+1) , eβ(m) ⊗ ⋅ ⋅ ⋅ ⊗ eβ(1)) ⊗ eα(k) ⊗ ⋅ ⋅ ⋅ ⊗ eα(1) .

_is is mimicking the action of adding a new skeleton to the existing skeleton. In
order to ensure that no crossings are introduced, all new nodes on the right must be
placed above all existing nodes on the right. Before any new right nodes are added,
though, nodes on the le� can be added freely. One should think of this as the sum of
all valid partially completed skeletons where the old skeleton is below and to the right
of starter skeleton corresponding to α, with the node corresponding to α(n) in the
lowest possible position.
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Example 6.3.1 If α∶ {1, 2, 3, 4} → I ⊔ J satisûes α−1(I) = {1, 3, 4} and α−1(J) = {2},
and j ∈ J, then

Tα(e j) = eα(4) ⊗ eα(3) ⊗ e j ⊗ eα(2) ⊗ eα(1) + eα(4) ⊗ e j ⊗ eα(3) ⊗ eα(2) ⊗ eα(1) .
_is action corresponds to the following diagram:

j
Tα

α(1)
α(2)
j

α(3)
α(4)

+

α(1)
α(2)

α(3)
j

α(4)

_e purpose of allowing multiple diagrams is that the cumulant corresponding to a
bi-non-crossing diagram for a sequence of operators is equal to the same cumulant for
the sequence of operators obtained by interchanging the k-th and (k+1)-th operators
and the k-th and (k+1)-th nodes in the bi-non-crossing diagram, provided k and k+1
are in diòerent blocks and on diòerent sides of the diagram. In the end, a sequence of
annihilation operators can complete atmost one skeleton andwill produce the correct
completed skeleton for a given sequence of operators.
As a further example, suppose α∶ {1, 2, 3} → I and j1 , j2 ∈ J. _en

Tα(e j2 ⊗ e j1) = eα(3) ⊗ eα(2) ⊗ eα(1) ⊗ e j2 ⊗ e j1 + eα(3) ⊗ eα(2) ⊗ e j2 ⊗ eα(1) ⊗ e j1
+ eα(3) ⊗ eα(2) ⊗ e j2 ⊗ e j1 ⊗ eα(1) + eα(3) ⊗ e j2 ⊗ eα(2) ⊗ eα(1) ⊗ e j1
+ eα(3) ⊗ e j2 ⊗ eα(2) ⊗ e j1 ⊗ eα(1) + eα(3) ⊗ e j2 ⊗ e j1 ⊗ eα(2) ⊗ eα(1) .

_is action corresponds to the following diagram:

j2
j1 Tα

α(3)
α(2)
α(1)

j2
j1

+
α(3)
α(2)

α(1)
j2

j1

+
α(3)
α(2)

α(1)

j2
j1

α(3)

α(2)
α(1)

j2

j1

++
α(3)

α(2)

α(1)

j2

j1

+
α(3)

α(2)
α(1)

j2
j1

.

Now, suppose that β−1(I) ≠ ∅, and let k = max(β−1(I)). _is corresponds to a
partially completed skeleton with open nodes on both the le� and right, where the
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lowest open node on the le� is the k-th from the top. We set Tα(η) = 0 if α(t) ∈ J for
some t, since the partially completed skeleton has open nodes on the le� and right, we
cannot add the empty skeleton of α without introducing a crossing, since the lowest
node of α is on the le�. Otherwise, α(t) ∈ I for all t ∈ {1, . . . , n}, and we set

Tα(η) ∶= eα(n) ⊗ Σ(eα(n−1) ⊗ ⋅ ⋅ ⋅ ⊗ eα(1) , eβ(m) ⊗ ⋅ ⋅ ⋅ ⊗ eβ(k+1)) ⊗ eβ(k) ⊗ ⋅ ⋅ ⋅ ⊗ eβ(1) .

One can think of this as the sum of all valid partially completed skeletons where the
empty skeleton of α sits below the lowest open node on the le� of the old skeleton.

Example 6.3.2 If α∶ {1, 2} → I ⊔ J has α(2) ∈ I, α(1) ∈ J and i ∈ I, then Tα(e i) = 0.
_is is because there is no way to glue the empty skeleton corresponding to α into the
partially completed skeleton without introducing a crossing while placing the lowest
node of α at the bottom of the diagram (directly above the highest closed node):

α(2)

i
α(1)

.

If α∶ {1, 2} → I and i ∈ I, j, j′ ∈ J, then

Tα(e j ⊗ e i ⊗ e j′) = eα(2) ⊗ eα(1) ⊗ e j ⊗ e i ⊗ e j′ + eα(2) ⊗ e j ⊗ eα(1) ⊗ e i ⊗ e j′ .

_is action corresponds to the following diagram:

j′

i
j

Tα

j′

i
j

α(1)
α(2) +

j′

i
α(1)

j
α(2)

.

As Tα has been deûned on an orthonormal basis, we may extend it by linearity to
obtain a densely deûned operator onH; note that Tα may not be bounded due to the
action of Σ. On the other hand, if α∶ {1, . . . , n} → I, then Tα acts on the Fock subspace
generated by {e i}i∈I as Lα(n) ⋅ ⋅ ⋅ Lα(1). _us, if one considers only le� variables, the
resulting operators are precisely those of Nica’s model.

We deûne Tα in a similar manner when α(n) ∈ J.

6.4 The Operator Model for Pairs of Faces

With the above construction, the operator model for a pair of faces is at hand.
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_eorem 6.4.1 Let z = ({z i}i∈I , {z j} j∈J) be a pair of faces in a non-commutative
probability space (A, ϕ). With notation as in Construction 6.3, consider the (unboun-
ded) operator

Θz ∶= I +∑
n≥1

∑
α∶{1,. . . ,n}→I⊔J

κα(z)Tα ,

and for k ∈ I ⊔ J, set Zk ∶= L∗kΘz . If T ∈ alg({Zk}k∈I⊔J), then ⟨TΩ, Ω⟩ is well deûned.
Moreover, if ω(T) = ⟨TΩ, Ω⟩, the joint distribution of {Zk}k∈I⊔J with respect to ω is
the same as the joint distribution of z with respect to ϕ.

Before we begin the proof, we give the following example.

Example 6.4.2 In this example, let I = {1} and J = {2}. We will examine how the
completed skeleton below is constructed for Z1Z2Z1Z1Z2Z2Z1Z2Z1Z1.

1
2

1
1

2
2

1
2

1
1

First κ(21)(z)L∗1 T(21) is applied to get the partially completed skeleton

2
1 .

_en κ(1211)(z)L∗1 T(1211) is applied to obtain the following collection of partially com-
pleted skeletons

1
2
2

1
1
1

1
2

1
2

1
1 .

Applying κ(22)L∗2T(22) then gives the following collection of partially completed skele-
tons (where the ûrst two below are from the ûrst above and the third below is from
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the second above)

1
2
2
2

1
2

1
1

1
2
2

1
2
2

1
1

1
2

1
2
2
2

1
1

and applying κ(11)L∗1 T(11) then gives the following collection of partially completed
skeletons (where the ûrst below is from the ûrst above, the second and third are from
the second above, and the last three are from the third above).

1
2
2
2

1
1
1

2
1
1

1
2
2

1
2

1
1

2
1
1

1
2
2

1
1

2
1

2
1
1

1
2

1
2
2

1
1

2
1
1

1
2

1
2

1
2

1
2

1
1

1
2

1
1

2
2

1
2

1
1
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Applying L∗2 then gives the following collection of partially completed skeletons
(where the ûrst, second, and fourth diagrams above were destroyed)

1
2
2

1
1

2
1

2
1
1

1
2

1
2

1
2

1
2

1
1

1
2

1
1

2
2

1
2

1
1

and applying L∗2 removes all but the last diagram to give

1
2

1
1

2
2

1
2

1
1 .

Applying L∗1 L∗2L∗1 L∗1 then gives us the desired diagram. We also see the diagram was
weighted by

κ(21)(z)κ(1211)(z)κ(22)κ(11)(z)
which is the correct product of bi-free cumulants for this bi-non-crossing partition.

Proof of_eorem 6.4.1 Let α∶ {1, . . . , n} → I ⊔ J. To see that

ω(Zα(1) ⋅ ⋅ ⋅ Zα(n)) = ϕ(zα(1) ⋅ ⋅ ⋅ zα(n)),
we must demonstrate that the sum of over all

Ak ∈ {L∗α(k)} ∪ {κβ(z)L∗α(k)Tβ ∣ β∶ {1, . . . ,m} → I ⊔ J}
of ⟨A1 ⋅ ⋅ ⋅AnΩ, Ω⟩ is precisely ϕ(zα(1) ⋅ ⋅ ⋅ zα(n)). (Note that L∗α(k)Tβ = 0 unless
β(m) = α(k).) _is suõces, as these are precisely the terms that appear in expand-
ing the product Zα(1) ⋅ ⋅ ⋅ Zα(n). By construction, A1 ⋅ ⋅ ⋅An acting on Ω corresponds
to creating a (sequence of) partially completed skeletons and ⟨A1 ⋅ ⋅ ⋅AnΩ, Ω⟩ will be
the weight of the skeleton if the skeleton is complete and otherwise will be zero. Since

ϕ(zα(1) ⋅ ⋅ ⋅ zα(n)) = ∑
π∈BNC(α)

κπ(z),
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it suõces to show that there is a bijection between completed skeletons and elements
π of BNC(α), and that the weight of the skeleton is the corresponding cumulant.

Observe that a�er Ak is applied, the bottom n − k + 1 nodes of the partially com-
pleted skeleton will be closed, as Ak itself either closed an open node that was already
present or added a new block containing one closed node and zero or more open
nodes. In particular, the (n− k+ 1)-th node from the bottommust be on the side cor-
responding to α(k), since it was closed by L∗α(k). _uswhenwe have appliedA1 ⋅ ⋅ ⋅An ,
any skeleton surviving has precisely n nodes and structure arising from α.
From a bi-non-crossing partition π ∈ BNC(α), we can recover the choice of

A1 , . . . ,An that produces it. To do so, for each block V = {k1 < ⋅ ⋅ ⋅ < kt}, we let
Ak i = L∗k i

for i ≠ t, and if β(i) = α(k i), we set Ak t = κβ(z)L∗k t
Tβ . Indeed, the par-

tially created skeletons created by Ak ⋅ ⋅ ⋅An agree with π on the bottom n−k+1 nodes.
Moreover, given any other product A′1 ⋅ ⋅ ⋅A′n that diòers from A1 ⋅ ⋅ ⋅An , consider the
greatest index k so that A′k ≠ Ak . _en all partially completed skeletons in A′k ⋅ ⋅ ⋅A′n
and Ak ⋅ ⋅ ⋅An agree in structure for their bottom n − k nodes, while the next either
starts a new block in one case but not the other or starts new blocks of diòerent shapes.
Finally, note that if β corresponds to the block V ∈ π as above, then κβ(z) = κπ∣V (z)
and so the total weight on the skeleton is precisely κπ(z).

Remark 6.4.3 In [5, _eorem 7.4], an operator model for the bi-free central limit
distributions was given as sums of creation and annihilation operators on a Fock
space. It is interesting that the operator model from _eorem 6.4.1 uses diòerent op-
erators. Indeed, for i , i′ ∈ I and j ∈ J, one can check that

T(i , i′) = ∑
n≥0

∑
α∶{1,. . . ,n}→J

L i′Lα(1) ⋅ ⋅ ⋅ Lα(n)L iL∗α(n) ⋅ ⋅ ⋅ L∗α(1) and T( j, i′) = L i′R jP,

where P is the projection onto the Fock subspace of H generated by {e j} j∈J and R j
is the right creation operator corresponding to e j . _erefore, if ck1 ,k2 = ϕ(zk1zk2) for
k1 , k2 ∈ I ⊔ J with z a bi-free central limit distribution, _eorem 6.4.1 produces the
operators

Zk = L∗k + ∑
k′∈I⊔J

ck′ ,kL∗kT(k′ ,k) ,

which are very diòerent from Lk + L∗k (if k ∈ I) and Rk + R∗k (if k ∈ J) proposed in
[5]. _e main issues with the model involving {L i , L∗i , R j , R∗j ∣ i ∈ I, j ∈ J} is that
the vectors obtained by applying the algebra generated by these operators to Ω do not
generate the full Fock space; indeed, they only generate vectors of the form

e i1 ⊗ ⋅ ⋅ ⋅ ⊗ e in ⊗ e jm ⊗ ⋅ ⋅ ⋅ ⊗ e j1

where n,m ≥ 0, i1 , . . . , in ∈ I, and j1 , . . . , jm ∈ J. It is not diõcult to see that the
vectors obtained by the algebra generated {L∗i , L∗j , T(i , i) , T( j, j) ∣ i ∈ I, j ∈ J} applied
to Ω generate the full Fock space.
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