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On Two-faced Families of
Non-commutative Random Variables

Ian Charlesworth, Brent Nelson, and Paul Skoufranis

Abstract. We demonstrate that the notions of bi-free independence and combinatorial-bi-free inde-
pendence of two-faced families are equivalent using a diagrammatic view of bi-non-crossing parti-
tions. These diagrams produce an operator model on a Fock space suitable for representing any two-
faced family of non-commutative random variables. Furthermore, using a Kreweras complement
on bi-non-crossing partitions we establish the expected formulas for the multiplicative convolution
of a bi-free pair of two-faced families.

1 Introduction

Free probability for pairs of faces, or simply bi-free probability, was introduced by
Voiculescu in [5] as a generalization of the notion of free probability to allow the si-
multaneous study of “left-handed” and “right-handed” variables. Prior to this work,
the left and right actions were only considered separately. Voiculescu demonstrated
that many results in free probability, such as the existence of the free cumulants and
the free central limit theorem, have direct analogues in the bi-free setting. However,
free independence is equivalent to a variety of computational conditions, such as van-
ishing alternating moments of centered variables or vanishing mixed cumulants. It
was shown in [5, Proposition 5.6] that such computational conditions for bi-freeness
exist as a collection of universal polynomials on the mixed moments of a bi-free pair
of two-faced families, but their explicit formulas were unknown.

Seeking an alternate approach to bi-free probability, Mastnak and Nica [1] defined
the (¢, r)-cumulant functions, which they predicted to be the universal polynomials
of Voiculescu. Such cumulant functions were defined by considering permutations
applied to non-crossing diagrams. Taking inspiration from the free case, they defined
a pair of two-faced families z’ and z” to be combinatorially-bi-free if all mixed cu-
mulants are zero, and posed the question of whether their definition was equivalent
to Voiculescu’s definition of bi-free independence.

In this paper, we will provide an affirmative answer to their question, demonstrat-
ing the equivalence of bi-free independence and combinatorial-bi-free independence.
Analyzing [1], one can take a diagrammatic view of the desired partitions that is more
natural to the study of two-faced families of non-commutatitve random variables. In
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Section 2, after some preliminaries, we introduce this view via the notion of bi-non-
crossing partitions. Such partitions are designed to encapsulate information about
whether a variable should be considered on the left or on the right. One main goal
of this paper is to demonstrate that bi-non-crossing partitions play the same role in
bi-free probability as non-crossing partitions play in free probability.

Following Speicher [4], we introduce the incidence algebra on bi-non-crossing
partitions in Section 3. The algebra enables an analysis of left and right variables si-
multaneously and provides a method of Mobius inversion. This allows us to obtain
the bi-free cumulant functions directly.

In Section 4 we will prove our main theorem, Theorem 4.3.1, which demonstrates
that the two notions of bi-free independence are equivalent. To do so, we analyze the
action of operators on free product spaces as in [5] to obtain explicit descriptions of
Voiculescu’s universal polynomials. We given equivalent formulae for these polyno-
mials using the bi-non-crossing Mobius function.

Using the combinatorially-bi-free approach, we will develop further results. In
Section 5 we will describe a multiplicative free convolution of two-faced families. By
extending the Kreweras complement approach of [3] to bi-non-crossing diagrams, we
show that the bi-free cumulants of a product of two-faced families can be written as
a convolution of the individual bi-free cumulants.

Finally, in Section 6 we construct an operator model in the linear operators on
a Fock space for a two-faced family of non-commutative random variables. This
generalizes the model from [2] and provides a bi-free analogue of Voiculescu’s non-
commutative R-series.

2 Preliminaries
2.1 Free Probability for Pairs of Faces

Throughout, z = ((zi)ier> (2;) jey) Will denote a two-faced family in a non-commuta-
tive probability space (A, ¢) with the left face indexed by I, the right face indexed
by J, and I and ] disjoint. We will also let z’ and z” be two-faced families, similarly
indexed.

Recall that in [5], 2’ and 2" are said to be bi-freely independent (or simply bi-free) if
there exists a free product (X, p, &) = (X', p’, &) = (X", p”, &) of vector spaces with
specified state-vectors and unital homomorphisms

19C(zfieI) » L(XF), r:C(zfje]) > L(X), ee{ )},

such that the two-faced families T¢ = ((A°01°(2{))ier, (p*01°(25)) jey) withe € {"," }
have the same joint distribution in (£(X), ¢) as z’ and z”. Here, A° and p° are the
left and right representations of £(X¢) in £(X) (cf. [5, Section 1.9]). For T € £(X¢),
we will often suppress the € notation on A¢, p¢, and ¢¢ (the state on £(X¢) induced by
), as it will be clear which is meant by noting which vector space T is defined on.
Givena:{1,...,n} - IuJ, we will refer to the “a-moment” of a two-faced family z:

$a(2) = ¢(2aq1) " Za(n)) -
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It was shown in [5, Theorem 5.7] that for each « there exists a universal polynomial
R, on indeterminates Xk indexed by non-empty subsets K c {1, ..., n} satisfying:

(i) Ru=Xq.. 0+ R,, where R, is a polynomial on indeterminates Xk indexed
by non-empty strict subsets K ¢ {1,...,n};

(i) R4 andR, are homogeneous of degree n when X is given degree |K]|;

(iii) if Ra(z) is Ry evaluated at Xx = ¢(Za(x)) " Za(k,)) and K = {k; <--- < k,},
then

Ro(Z' +2") = Ry(2') + Ry (2"),

whenever z’ and z” are bi-free two-faced families.

The number R, (z) is called the a-cumulant of z. Property (iii) above is referred to as
the cumulant property.

2.2 Partitions, Ordering, and Non-crossing Partitions

A partition misa set w = {V4,..., Vi }, where Vi, ..., Vi (called the blocks of m) are
non-empty sets satisfying V; n V; = @ for i # jand UY, V; = {1,...,n}. We tradi-
tionally order the blocks of 7 so that min(V;) < --- < min( V). Let P(n) denote the
set of partitions of {1,...,n}.

For 7,0 € P(n), we say m is a refinement of o and write 7 < ¢ if every block of 7
is contained in a block of ¢. This defines a partial ordering on P(#n) with minimum
and maximum elements

0, ::{{1},...,{11}} and 1, ::{{1,...,n}},

respectively. We will also consider the following action of the symmetric group S, on
P(n):ifr={V;,..., Vx} € P(n) ands € S, then

s-m= {s(Vl),...,s(Vk)} € P(n).

Observe that this action is order-preserving.

A partition 7 € P(n) is said to be non-crossing if for any two distinct blocks V' =
{v <+ <y}, W={w <+ < w} € mwehave v; < w; < vy if and only if
vy < ws < vy (I € {1,...,7 = 1}). The term “non-crossing” refers to the fact that
any such partition can be represented as a non-crossing diagram. For example, the
non-crossing partition {{1,5,6},{2,3,4},{7}} € P(7) corresponds to the diagram

We denote the set of non-crossing partitions in P(n) by NC(n).

The horizontal segments connecting the nodes of a block V € 7 will be referred
to as the spine of V, and the segments connecting the nodes to the spine of V will be
referred to as the ribs of V. In the following representation of {{1,4}, {2,3}} € NC(4),
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the dashed line is the spine of {1, 4}, and the dotted lines are its ribs:

—
[\S)
w
S

For a singleton block V' € 7, |V| = 1, the spine of V will simply refer to the corre-
sponding node itself.

2.3 Combinatorial-bi-free Independence
For consistency, we note the following definitions of Mastnak and Nica. Given
ri{lL....,n} —{&r}

let {iy < -~ <ip} = x'(€)and {ji < -+ < ju—p} = x”"(r) and consider g, € S,
defined by

. itk < p,
k=4 P
Jns—k  ifk>p.
The class of partitions PO (1) c P(n) is defined as
PO (1) := {oy-m| meNC(n)}.

Definition 2.3.1 ([1, Definition 5.2]) Let (A, ¢) be a non-commutative probability
space. There exists a family of multilinear functionals

(KX:An g (C)nzl,)(:{l,...,n}ﬁ{(.’,r}

that are uniquely determined by the requirement

$(z1--zn) = ). (H KX|V((Zl,...,Z,,)|V))

neﬂ)(x)(n) Ven
forevery n > 1, y € {¢,7}", and z,...,2, € A. These «,’s will be called the (¢, 7)-

cumulant functionals of (A, ¢).

Definition 2.3.2 ([1]) Let z’ and 2" each be two-faced families in (A, ¢). We say
that 2’ and 2"’ are combinatorially-bi-free if

KX(ZZ‘(I), . ,zfx”(n)) =0
whenever a: {1,...,n} > Iu], x:{1,...,n} > {€,r} issuch that a7(I) = y ' ({€})

and € € {",” }" is non-constant.

Remark 2.3.3 Note that the condition a™*(I) = y"'({¢}) completely determines
x> and so we can set

Ka(2) = K3 (Za(1)s - - - Za(n))-
Then if 2’ and 2" are combinatorially-bi-free, it is easy to see that

ke (2 +2") = ko (2') + k0 (2");

that is, x, has the cumulant property.
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2.4 Bi-non-crossing Partitions

Fora:{l,...,n} > Iu],welet{iy <---<i,} =a”'(I)and {ji <+ < ju_p} = a*(J)
and consider s, € S, defined by

(k) i ifk < p»
Sa =3. .
Jnsi-k  ifk>p.

We say a partition 7z € P(n) is bi-non-crossing (with respect to a) if s;'-7w € NC(n). We
denote the set of such partitions by BNC(«). The minimum and maximum elements
of BNC(a) are given by 0 := s4 - 0, and 1, := s4 - 1,,, respectively.

With each partition 7 € BNC(«) we can associate a “bi-non-crossing diagram” as
follows. For each k = 1,...,n place, a node labeled k at the position (-1, #n — k) if
a(k) € I and at the position (1, n— k) if a(k) € J. Connect nodes whose labels form a
block of 7 similar to how one would for the diagrams associated with NC(#), except
now the spines of blocks are vertically oriented and the ribs extend horizontally from
the spine to the left or right, emphasizing the left-right nature of a two-faced family.

Example 2.4.1 If

a (D) ={1,2,4}, o« '(J)={3,5}, and
m={{L3},{2,4,5}} = s« {{1.5},{2.3,4}},

then the bi-non-crossing diagram associated with 7 is

That the diagram can always be drawn to be non-crossing is easily seen through its
relationship to the diagram of s;' - 7 € NC(n). Indeed, rotate the line x = —1 counter-
clockwise a quarter turn about the point (-1, 0), rotate the line x = 1 clockwise a
quarter turn about the point (1, 0), and adjust the spines and ribs so that they remain
connected. Then after relabeling node k as s,,' (k) the resulting diagram is precisely
the one associated with s;! - 77 as an element of NC(#n) (modulo some extra space
between the nodes). Performing this operation to the above diagram yields

SR

Conversely, given the diagram corresponding to ¢ € NC(#), we obtain the diagram
for 7 = s4 - 0 as follows. Initially, the nodes occupy positions (1,0), ..., (#,0), so we
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first widen the space between nodes so that node k now occupies position (sq(k),0)
if k < |&'(I)| and position (n + 1 - s,(k),0) if k > |a”(I)|. Given the definition
of s, it is clear that this does not change the order of the nodes. Next, we rotate
the segment from (1, 0) to (n,0) clockwise a quarter turn about (7, 0); we rotate the
segment from (n +1,0) to (21, 0) counter-clockwise a quarter turn about (n +1,0),
and homotopically vary the spines and ribs so that they remain connected. Relabeling
node k as node s, (k) then yields the diagram corresponding to 7.

Remark 2.4.2 Given a:{1,...,n} > Iu], define y € {€,r}" by xx = €ifa(k) € I
and y; = rif a(k) € J. Then BNC(«) is precisely the class of partitions P (1) de-
fined in [1], since s, defined above is exactly the permutation o, used to define the
class P (n). Moreover, the notation BNC(«) suggests that the lattice of partitions
depends on « more than it actually does. In fact, if B:{1,...,n} — I'U ] is such that
B(j) and () are in the same face for each j = 1,..., N, then BNC(a) = BNC(p).
Because of this we can write BNC( y) for BNC(«). In order to emphasize the diagram-
matic viewpoint pervading this paper, we will continue to use the alternate notation
of BNC(«) for this class of partitions.

2.5 Shaded Bi-non-crossing Diagrams and Partitions

Let z’ and 2"’ be a bi-free pair of two-faced families. Let y: {1,...,n} — {f,r} and e €
{",)’" }". We recursively define a collection of diagrams LR(y,¢€). For n = 1, LR(y,¢€)
consists of two parallel, vertical, transparent segments with a single node on the left
segment if y(1) = € or a single node on the right segment if y(1) = r. We assign a
shade to ' and " and shade this node the shade associated with ¢;. Then either this
node remains isolated, or a rib and spine of the node’s shade are drawn connecting
to the top of the diagram, between the two segments. For convenience, we will refer
to the space between the two vertical segments at the top of a diagram as its top gap,
through which strings may exit.

For n > 1 we define LR(x, €) as follows. Let xo = x |(2,...,n} and €g = (€2,...,€n).
Then a diagram of LR(,€) is an extension of a diagram D € LR(yo,€0): place an
additional ¢;-shaded node p above D, on the left if y(1) = £ and on the right otherwise.
Extend any spines from D to the new top gap. If atleast one spine was extended and the
one nearest p shares its shade, then connect it to p with a rib and optionally terminate
the spine at p. Otherwise, either connect p with a rib to a new spine extending to the
top gap or leave p isolated.

Given its impact on the diagrams, we refer to € € {’,” }" as a choice of shading or
simply a shading.

Note that each diagram in LR(y, €) is created from a unique diagram in LR( xo, €o)
that we can recover by simply erasing the top portion of the diagram. Also, these rules
imply that among the chords extending to the top gap, adjacent chords will always be
of differing shades. We use the convention where the nodes are labeled numerically
from top to bottom.

For 0 < k < n,let LRi(,€) € LR(y,€) consist of those diagrams with precisely k
chords extending to the top gap. Then LR(x,€) = Ux LR (. €).
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We consider a few examples. In each example, we assign the shade black to " and
the shade grey to "’ and have a dashed line in place of the normally transparent left
and right segments.

Example 2.5.1 Consider y = (¢,r) and e = (', ). Then LR(y,¢) consists of the
following diagrams:

1 1 1 1 1 1 1 1

p- L pt L gt gl
1 *) 1 ) 1 2 1 2
1 1 1 1 1 1

Also LRo(y,€) ={D1}, LRi(x,€) = {D2, D3}, and LRy (. €) = {Da4}.

Example 2.5.2  For a slightly more robust example we consider y = (r,¢,7) and
e=("),”). Then LR(y,€) consists of the following diagrams:

L4l L ! |—+1 e

Ei =29 I Ey=2¢ I E;=2¢ I Eys=2¢ I
I 03 I .3 I 03 I .3
1 1 1 1 1 1 1 1
Y | L ] e J L1

E5:2$ \ E6:2+ \ E7:2I \ E8=2| \
I 3 I '3 I '3 I '3
1 1

Observe in terms of the recursive construction of LR(y,€), the diagram Dy, k =
1,2,3, 4 from Example 2.5.1 creates diagrams E,;_; and Ey in the present example.

For fixed y and € we note that each D € LR, (¥, €) can be associated with a partition
7 € P(n) by forming blocks according to which nodes are connected via chords in the
diagram. Since D € LRy(x,€) is completely determined by the connections between
nodes, distinct diagrams yield distinct partitions. Moreover, if a: {1,...,n} - ITuJ
and we define y* by y*(k) = €if a(k) € I and x*(k) = r if a(k) € J, then the parti-
tions we obtain from LRy (x%, €) are elements of BNC(«). We denote by BNC(a, ¢€)
the partitions obtained from the diagrams in LRy (x*,€). It is not hard to see that
given the diagram associated with some 7 € BNC(«), there exists some shading e
such that 7 € BNC(a, €). It then follows that

BNC(a) = |J BNC(a,e€).
66{’,"}"
As with BNC(«), we may denote BNC(«, ¢) by BNC(y,¢) when y = y*.

Definition 2.5.3 Suppose that V and W are blocks of some 7 € BNC(y). Then
V and W are said to be piled if max(min(V'), min(W)) < min(max(V'), max(W)).
In terms of the diagram corresponding to 7, the spines of V and W are not entirely
above or below each other; there is some horizontal level at which both are present.
Given blocks V and W, a third block U separates V from W if it is piled with both,
and its spine lies between the spines of V and W. Note that V and W need not be
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piled with each other to have a separator. Equivalently, U is piled with both V and
W, and there are j, k € U such that

s (V) S s (j)ssy ()] and s/ (W)n [s7'(j),s5 (k)] = @,

or vice versa. Given any three piled blocks, one always separates the other two.
Finally, piled blocks V and W are said to be tangled if there is no block that sepa-
rates them.

Example 2.5.4 Consider the following diagrams.

1 1
Vi U Wi
— 2 — 2 — 2
W,
33 3
4 4 fo—
5o V2 5o 2 5
6 Vs 6 Us
7 7 7 Ws
-
Vs U, W,
8
9 L 9 L 9

In the first diagram, V; separates V; from V3, and all three are piled with one another.
In the second diagram, Uj still separates U; and Us, but U; and Us are not piled with
each other. In the third diagram, there are no separators.

Definition 2.5.5 Suppose 7,0 € BNC(y) are such that = < g. We say 7 is a lateral
refinement of o and write 7 <j,¢ 0 if no two piled blocks in 7 are contained in the
same block of ¢.

Lateral refinements correspond to making horizontal “cuts” along the spines of
blocks of 7, between their ribs.

In the notation of Example 2.5.2, E; is a lateral refinement of E; made by cutting
the block {1,2} in between node 1 and node 2.

Lemma 2.5.6 If m € BNC(y,¢), then piled blocks of the same shade in m must be
separated. Consequently, if ¢ € BNC(a, €) and 7 < 0, then m <1t 0.

Proof Suppose V; and V; are piled blocks in 7 € BNC(y,€) that have the same
shade. Without loss of generality, k := max(V;) < max(V;). In the construction
of the diagram generating 7, when node k is placed the nearest spine must be of a
different shade, as k begins a new spine. In particular, this spine sits between the
spines of V; and V,, and so its block is a separator.

If two blocks of the same shade in 7 are piled, the above argument demonstrates
that they are separated by a block of a different shade and so cannotbe joinedino. H

https://doi.org/10.4153/CJM-2015-002-6 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-2015-002-6

1298 I. Charlesworth, B. Nelson, and P. Skoufranis

3 The Incident Algebra on Bi-Non-Crossing Partitions

Definition 3.0.1 The lattice of bi-non-crossing partitions is
BNC:=|J U  BNC(y),
n21 y:{1,..,n}—>{€,r}

where the lattice structure on BNC(x) is as above.
Given any lattice, there is an algebra of functions associated with the lattice.

Definition 3.0.2  'The incident algebra on BNC, denoted IA(BNC), consists of all
functions of the form

f: U( U BNC(y) x BNC(X)) -C
n2l" y:{1,..., n}—{e,r}

such that f(mr,0) = 0if 7 £ 0, equipped with pointwise addition and a convolution
product defined by
(f*g)(mo)= % f(mp)g(p,o)

n<p<o

for all 1,0 € BNC(y) and f, g € IA(BNC).

It is elementary to show that IA(BNC) is an algebra, and thus (f * g) * h = f *
(g*h).

3.1 Multiplicative Functions on the Incident Algebra

In order to construct the notion of multiplicative function on BNGC, it is necessary to
identify the lattice structure of an interval as a product of full intervals.

Proposition 3.1.1 Let 1,0 € BNC(y) be such that n < ¢. The interval

[m,0] = {p eBNC(y)|n<p< 0}
can be associated with a product of full lattices

k
[ BNC(Bx)
j=1
for some Bi:{1,...,my} - {&,r} so that the lattice structure is preserved.

Proof The idea behind the decomposition is to take 7 and o, view 7 and ¢ as ele-
ments of NC(n) by applying s, ', and using the decomposition of intervals in NC(n)
given in [4, Proposition 1] while maintaining the notion of left and right nodes.

First write 0 = {W,, ..., Wi }. Let 7r; and o; be the restrictions of 7 and o to W;.
Then we decompose |7, 0] into H;-(Zl[nj, 0;]. Note each o is a full bi-non-crossing
partition corresponding to some y;: {1,...,n;} = {€,7}, so one can reduce to inter-
vals of the form [7,1,].

For a fixed y:{1,...,n} — {¢ r}, a modification to the recursive argument of
[4, Proposition 1] under the identification of BNC( y) with NC(#) will be described.
First, viewing 7 € NC(n), examine whether 7 has a block V = {k; < kp <-+- <k, }
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containing non-consecutive elements; that is, there exists an index ¢ such that k; +1 #
k1. If so, the recursive argument of [4, Proposition 1] would decompose [ 7,1, ] into
the product of two intervals (removing any trivial intervals that occur): one corre-
sponding to taking [7,1,] and removing all nodes strictly between k; and k;,,; and
the other corresponding to taking only the nodes strictly between k; and k;,; and
adding an isolated node on the left. The only change made to accommodate BNC is
that the isolated node for the second interval should be added to the top left of the
bi-non-crossing diagram if the lower of the two nodes of the original diagram corre-
sponding to k; and k. is on the left and otherwise on the top right. For example:

1 1

Note that the first term in the product will be ignored as it is a full partition.

This recursive process eventually terminates, leaving only partitions 7 such that
the blocks of o ! are intervals. For such a bi-non-crossing partition, we associate
the zero bi-non-crossing partition corresponding to keeping only the lowest node of

each block. For example:

11—
20—
3
4 o— —>4e
50—
6
—e7 o7
Thus, we have reduced [7, 0] to products of full lattices in BNC. ]

Note that as in [4, Proposition 1] we make no claim that this association is unique.
However, this ambiguity does not affect the following computations.

Definition 3.1.2 A function f € IA(BNC) is said to be multiplicative if whenever
7,0 € BNC(y) are such that

k
< JTBNC(Bs)
j=1
for some Bi:{1,...,my} — {€,r}, then
k
f(m0) = T1£(0p15,)-
j=1
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For a multiplicative function f € IA(BNC), we will call the collection

{f([0,1,]) | n>L x:{L,...,n} > {&,r}} cC

the multiplicative net associated with f. Note that for any net

A:{ax|n21,)(:{l,...,n}—>

{E,r}} cC

there is precisely one multiplicative function f with multiplicative sequence A.

Lemma 3.1.3 If f, g € IA(BNC) are multiplicative,

See [4, Proposition 2] for a proof of the above.

then f % g is multiplicative.

Remark 3.1.4 There are three special multiplicative functions to consider; namely,

1 ifn=

(SBNc(T[,O') = {

which is called the delta function on BNC and is the

1 ifn<

(BNc(ﬂ, 0) = {

o,

0 otherwise,

identity element in IA(BNC),

o,

0 otherwise,

which is called the zeta function on BNC, and ygnc, which is called the Mébius func-

tion on BNC and which is defined such that

UBNC * CBNC = (BNC * UBNC

= 8BNC

(as it is clear that {gnc a left and right (and thereby a two-sided) inverse can be re-
cursively defined). It is clear that dpxc is multiplicative with dgnc(0y,1,) being one
if n = 1and zero otherwise, and {pnc is multiplicative with {gnc(0y,1,) = 1forall y.
In addition, one can verify that ypnc is multiplicative and for any 7, 0 € BNC(y),

psnc(m, o) = pt(s;(1 TSy

where p is the Mobius function in [4].

1'0_)’

Remark 3.1.5 To consolidate the above with Subsection 2.3, for T3, . .., T, in a non-
commutative probability space (A, ¢) and 7 € BNC(y) where x:{1,...,n} - {€, 1}
and V; = {k¢) <+ <kym,}fort € {l,..., k} being the blocks of 7z, we define

k
ﬁbrr(Tla‘ (R} Tn) = Ijl¢(Tkt,1 Tkt,mt)

and

k(T s T) = S $o(Th

0eBNC(y),0<m

Then, as in [4], one can show that

k
k(T T) = [ ] Kaly, (T
t=1
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where k|, should be thought of as the (single block) partition induced by the block
V; of m, and
¢(T]...Tn): Z Kn(Tl,...,Tn).

meBNC(y)
In particular, 1, = x are the bi-free cumulant functions of [1, Definition 5.2].
For atwo-faced family z = ((zi)icr, (2) jej ) @: {1,...,n} - IuJ,and 7 € BNC(«)
we denote

¢n(z) = ¢n(z(x(l)>--->za(n)) and Kn(z) = Kﬂ(ztx(l)""’zlx(i’l))'
In particular, ¢ (z) = ¢4(2) and x1, (2) = k4 (z). When the faces consist of a single
element each, say z, and z,, we define the above quantities for y: {1,...,n} — {€,r}
replacing «. In this case we let m,,x, € IA(BNC) be the multiplicative functions
with multiplicative nets (¢,(z)), and (x,(z) ), respectively. We call m the moment
function and «x, the bi-free cumulant function. Thus, the formulae m, * ugnc = «, and
k; * (gnc = m, are obtained.

4 Unifying Bi-free Independence
4.1 Computing Bi-free Moments

We will demonstrate how the partitions of BNC( y, €) may be used to compute joint
moments of a bi-free pair of two-faced families.

Fix y:{1,...,n} - {¢,r} and a shading ¢ € {",” }", and let T ¢ L£(X). Given
D € LR(y,¢€), we will assign a vector weight y(D; Ty,..., T,) € X to D. Define y €
{Ap}"byuj=Aif x(j) = €and u; = pif y(j) = r. Let V = {k; <--- < k, } be ablock
in Dandlete(V) =€, =--- = €,. If the spine of V is not connected to the top gap,
then V contributes a scalar factor of

Y(ViTy. s T) = ¥ (T, (1= p ) T, - (1= p V) T, £

toy(D; Ty, ..., T,). If the spine does reach the top gap, then it contributes a vector
factor of

Y(ViTy.o, To) = (1= p ) T (1= p ) T, - (1= p) T, 89

Then y(D; Ty, ..., Ty,) is the product of the scalar factors and the tensor product of

the vector factors where the order in the tensor product is determined by the left to

right order of the spines reaching the top gap. If all contributions are scalar factors

then we multiply this with the state-vector &, thinking of it as the “empty tensor word”
Recalling Example 2.5.2, we see that

Y(Ess Ty, T, T3) = ¢ (Ti(1 - p") L&)y (T5€7)E,
while
Y(Es; T, To, T3) = (1- p )& @ (1- p") T38" ® (1- p') Ty €.

Proposition 4.1.1  Fix x:{l,...,n} — {€,r} and a shadinge ¢ {!,; }". Let y
{A, p}" be as above. If Tj € L(X) for j=1,...,n, then

(4'1) Ml(Tl)"'ﬂn(Tn)Ez Z III(D;TI,...,T,,).
DeLR(y.€)
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Moreover,

42) ¢(p(T)--ua(T)) = X > () (T, ).
neBNC(y)L 0eBNC(y,¢)

Proof We establish (4.1) via induction on #. The base case is clear, so we assume the
formula holds for n — 1 operators and apply it as

VZ(TZ)"'FW(Tn)EZ Z W(D;TZ:'-~)T}1))
DeLR(xo0-€0)

where yo = x |12,...,.n} and €0 = (€2,...,€,). Fixa D € LR(x0,€0) and assume p; = A.
Either there is a leftmost spine in D of the shade ¢; reaching the top gap, or there is not
(meaning either the nearest spine is the wrong shade or that D has no spines reaching
the top gap). In the former case, writing y(D; T3, .. ., T, ) as X; ® - - - ® X, this implies
x1 € X, Hence,

A(Tl)x1®~-®xm
ZVI(TI(I—pel)XI)X2®"'®Xm + (l—pel)Tl(l—pEl)Xl®XZ®"'®xm
= I//(Dl; Tl)"')Tn) +W(D2; Tl)--~)Tn))

where Dy, D, € LR(y,¢) are the diagrams constructed from D by adding a rib and,
respectively, terminating the leftmost spine in D at the new top node or extending the
leftmost spine in D.

If there is no leftmost spine of the same shade as €;, then y(D; T, ..., T;,) can be
written in the same way as before except x; ¢ X (if D has no spines reaching the top
gap then this is simply a scalar multiple of £). Hence

/\(Tl)x1®~--®xm = lpe‘(Tlfel)x1®~--®xm + (1_p€1)T1£€1 RX R R Xy
= I/I(EI;TI,..., Tn) +ll/(E2; Tl,...,Tn),

where Ej, E; € LR(, €) are the diagrams constructed from D by, respectively, leaving
the new top node isolated or adding a new rib and spine.

Since every D € LR(y, €) is constructed from exactly one diagram in LR(x0,¢€),
we have

A(Tl)."lZ(TZ)['{n(Tn)E: Z W(D,T],Tn)

DeLR(y.€)

The case yy = p is exactly the same upon replacing “leftmost” with “rightmost” and
the considerations about x; with ones about x,,.

Now, ¢(p1(T1) -+ pn(Ty)) is given by applying y to the left side of (4.1). So only
the terms on the right whose vector parts are & will survive, that is, the terms corre-
sponding to E € LRo(y,¢). Fix such a diagram and let ¢ € BNC(x, ¢) be the corre-
sponding partition. We examine

V(EsT,.... Tw) = [ w(Ws Th,..., Tn).

Weo
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For W = {l; <--- < I;} € 0, we have
Y(W;Th,.., Ty) = ¥ (1, (1= pM) T, o (1= p ) 1,8V
= 2. (—1)m¢e(w)(Tzl"'Tqu)"'ﬁbe(v)(Tzqu"'Tzs)f-

1<g1<+<qm<s—1

Each term in the last sum corresponds to a lateral refinement 7y = {Vi,..., Vi1 }
of W, weighted by (-1)™I=I"| As any lateral refinement of ¢ is simply a collection
of lateral refinements of its individual blocks, we see that 7 = Uy, 7w is a lateral
refinement of . The overall weight associated to 77 is [Ty, (=1)/" Wl = (=1)I7I-lel,
Thus we obtain

Y(ET,....T) = > ()"l (m,....1,).
neBNC(x)
T<]at O
Summing over E € LRy (,€) (or equivalently 0 € BNC( y, €)) and reversing the order
of the two summations yields (4.2). [ |

Corollary 4.1.2  Let z' and 2" be a pair of two-faced families in (A, ¢). Then z' and
z"" are bi-free if and only if for every map a: {1,...,n} > IuJande e {',” }" we have

(43) ¢(x(ze) _ Z Z (_1)|Tl|*|0‘ (pﬂ(ze),
neBNC(a)L 0eBNC(a,€)

where z° = (z;l(l), ceo fo"(n)).

Proof Ifz’andz” are bi-free then this immediately follows by applying the previous
proposition to the representation guaranteed by the definition of bi-freeness.
Conversely, suppose z' and 2"’ satisfy (4.3) for each « and €. As in the proof of
[5, Proposition 2.9], we consider the universal representations of z’ and z”. That the
joint representation in their free product is the same as the joint representation of z’
and 2"’ follows precisely from (4.3). [ |

4.2 Summation Considerations

For y:{1,...,n} > {€,r},ee {, }", and m € BNC(), we will write 7 < € where we
think of € as the induced partition in P(#n).

Proposition 4.2.1 Let y:{1,...,n} — {&,r} and e € {," }". Then for every m €
BNC(y) such that <,

> (-1)lml=lel = >, uenc(m0).
0eBNC(y,€) 0eBNC(y)
Ot T n<o<e

To prove Proposition 4.2.1 we will appeal to free probability to handle the following
case and reduce all others to it.
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Lemma 4.2.2 Let y:{1,...,n} - {&,r} with y = € and e € {',” }"". Then for every
7 € BNC( ) such that < ¢,

Z (_1)|Tt|*‘0| — Z ,UBNC(T[’U)-
0eBNC(x,€) 0eBNC(y)
O2pat 7T n<o<e

Proof Let{X{,...,X,}and {X{,...,X]/} be freely independent sets. Note by [5,
Proposition 2.15b] these sets can be viewed as a bi-free pair of two faced families X’
and X"’ with trivial right faces. Hence, by Corollary 4.1.2,

(/S(Xfl"'Xf,“) - Z ( Z (_1)7T—U|)¢7T(X1€1,""X;n).
neBNC(x) \ 0eBNC(x,€)
O2at T

Since y = ¢, BNC(y) = NC(#n). Thus, since {X7,..., X } and {X{,..., X}, } are free,

BXT - XP) = Y Ka(XP,..,XE)
0eBNC(y)
ke(XTH .. X5m)

geBNC(y)
0<e

> 2 #mo)ga(X],.., X))

0eBNC(x) meBNC(y)

0<€ <o
=y ( > y(n,a))(/)n(Xf‘,...,Xfl").
meBNC(x) \ 0eBNC(y)

<€ n<0<€
Since these expressions agree for any selection of {X;,..., X} and {X{,..., X!/}
that are freely independent, by selecting {Xj, ..., X}, } and {X}', ..., X} } that are free
and such that ¢, (X", ..., X{") is non-zero for precisely one 7, the desired sums are
obtained to be equal (as 4 = ppnc in this setting). ]

We will use Lemma 4.2.2 to show that the desired equations in Proposition 4.2.1
hold. To do so, we will show that an arbitrary bi-non-crossing partition can be ob-
tained by a sequence of steps, preserving the summations in Proposition 4.2.1, applied
to a partition with all left nodes.

Lemma 4.2.3 Lety:{1,...,n} - {&,;r}withy(n) =¢,ec{’,” }", and n ¢ BNC(y)
be such that m < €. Let :{1,...,n} — {€,r} be such that

o x(@) ift#n,
X(t)—{r ft=n

and let T € BNC(Y) be the unique shaded bi-non-crossing partition with the same blocks
as 7t (note 7@ < € by construction). Then

D (-1)ll=lel = 3 (-1)7-1e]
0eBNC(x,€) GeBNC(7€)
O2at 70 21t T
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and

>, wenc(mo)= > uenc(T0).
0eBNC(y) GeBNC(Y)
M<O<€ T<o<e

Proof It is clear that the operator that takes an element ¢ € BNC(y,€) and con-
structs an element & € BNC(;, ¢) with the same blocks as ¢ corresponds to taking
the bottom node of ¢ that is on the left and placing this node on the right (keeping all
strings connected). For example, consider the following diagrams.

5T_|—l6

1 14 I
2I 2I :
3I 3I E
44 44 !
1
1

1
1
1
1
1
1
1 1 — 1
1
1
1
1
1
1
1

Such an operation is clearly a bijection, maps BNC( x, €) to BNC(%;¢), (-1)I-lol =
(—1)‘ﬁ“|3|, and o )¢ 7 if and only if @ )¢ 7. Hence, the first equation holds. Simi-
larly, by Remarks 3.1.4, it is clear that the second equation holds. |

Lemma 4.2.4 Let x:{1,...,n} > {€,r} be such that there existsak € {1,...,n-1}
such that x(k) = €and y(k+1) =r,e € {",/" }", and let m ¢ BNC(x) be such that m < e.
Fixke{l,...,n—1}. Let€e {",” }" be such that
e ifte{k k+1},
a =1 €k lft =k+1,
€k+1 l_ft = k)
let ¥:{1,...,n} > {€ r} be such that

x(t) ift ¢ {k,k+1},
RO ={x(k)  ifr=k+l
x(k+1) ift=k
and let T € BNC(Y) be the unique shaded bi-non-crossing partition obtained by inter-
changing k and k + 1 in 7 (note 7 <€ by construction). Then

D (-1)ll=lel = D (1)l

0eBNC(x€) TeBNC(¥;€)
021at 0 T2t T
and
Z pnc(m, 0) = Z uenc (7, 0).
0eBNC(y) GeBNC(Y)
n<o<e T<G<E

Proof Since the operation that takes an element ¢ € BNC(y) with ¢ < ¢ and pro-
duces an element ¢ € BNC(¥) with @ < € by interchanging k and k + 1in 0 is a
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bijection, and since upnc(7, 0) = upnc (7, 0) by Remarks 3.1.4, the second equation
clearly holds.

To prove the first equation holds, we break the discussion into several cases. For
the first case, suppose €, # €x.1; that is, the nodes we desire to change the orders of
are of different shades. For example, see the following diagrams where k = 4.

I
2| 1 2| 1
3I:| : 3I:| :
1 1 — 1
44 ' 4
1

| .

I [: 5 59 I
1 1 1 1
! 6 ! 6
1 1 1
In this case, it is clear that the operation described above that takes ¢ € BNC(y) to
@ € BNC(¥) is a bijection that maps BNC(y, €) to BNC(¥; €), is such that (-1)/"-le! =
(—1)‘5“|ﬁ|, and is such that ¢ >}, 7 if and only if T >},¢ 7. Hence, the first equation
holds in this case.

Otherwise, €; = €+1. Suppose k and k + 1 are in the same block of 7. For example,
consider the following diagrams where k = 3.

1¢ I 14 I

24 : 24 :

3e | | 03
1 | 1 1
: v 44 :

5¢ I 59 I
1 1 1 1
. 6 . 6
1 1

It is again clear that the same identifications hold as the previous case, and thus the
first equation holds in this case. Hence, we have reduced to the case that k and k + 1
are in different blocks of the same shade.

Let V; and V; be the blocks in 7 of k and k + 1 respectively. Note that V; contains
aleft node and V; contains a right node and the sum on the left-hand side of the first
equation is

D (-1)li=lel 4 D (1)l

0eBNC(yx,€) 0eBNC(x,€)
021t T 02t 7T
k,k+1 in separated blocks of o k,k+1 not in separated blocks of o

We claim that

D (-1)l=lel — o

0eBNC(y,¢€)
02t T
k,k+1 not in separated blocks of o

Indeed, we will split the discussion into two cases: when V; and V, are piled and
when they are not. For an example where V; and V; are piled, consider the following

https://doi.org/10.4153/CJM-2015-002-6 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-2015-002-6

On Two-faced Families of Non-commutative Random Variables 1307

diagram.

“j[w

If Vi and V; are piled, it is easy to see that any o € BNC(y,¢) such that 7 < ¢ and k
and k + 1 are not in separated blocks of ¢ must be such that V] and V, are contained
in the same block of 0. However, this implies that 7 is not a lateral refinement of o,
as joining piled blocks cannot be undone by a lateral refinement. Hence the sum is
zero in this case. Otherwise, suppose V; and V, are not piled. For an example where
Vi and V; are not piled, consider the following diagram.

14 I
24 :
vil | o
3 I
: b4
S¢ 'V,
1 1
! 6

This implies that k is the lowest element of V; in the bi-non-crossing diagram of =
and k + 1 is the highest element of V;. If ¢ € BNC(, €) is such that k and k + 1 are
not in separated blocks of 0 and ¢ > 7, then if k and k + 1 are in the same block of ¢,
let 0’ <j4¢ o splitting the block containing k and k + 1 in between these nodes (note
o’ € BNC(y,¢€)). Otherwise, k and k + 1 are not in the same block of o, so letting
0’ >1a¢ 0 be the partition made by joining the blocks containing k and k + 1 together
also forms a partition in BNC( y, €). In either case (~1)71=1 + (-1)"I=1"l = 0. Note
that the correspondance between ¢ and ¢’ in each case is one-to-one, and thus the
sum is zero.
Similar arguments show that
3 (-7l = 3 (-1)/A-a,
GeBNC(7©) GeBNC(17%)

alatﬁ 77?Zlat7f
k,k+1in separated blocks of T

However, the map taking 0 € BNC(y) to @ € BNC(}) is such that k and k + 1 are
in separated blocks of ¢ if and only if k and k + 1 are in separated blocks of 7, and
under these conditions ¢ € BNC(y,¢) if and only if & € BNC(};€), 0 214 7 if and
only if & 1 7, and (~1)/71-1°l = (—1)7-19, Hence the first equation holds in this
final case. ]

Proof of Proposition 4.2.1 Given 7, a 7@ in BNC(Y) where 3:{1,...,n} — {¢} can
be constructed such that 77 can be modified to make 7 via the operations in used in
Lemmas 4.2.3 and 4.2.4. Since the sums are equal for 7 by Lemma 4.2.2, and since
Lemmas 4.2.3 and 4.2.4 preserve the equality of the sums, the result hold for . W
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We apply Proposition 4.2.1 to Corollary 4.1.2 to immediately obtain the following
corollary.

Corollary 4.2.5 Let z' and 2" be a pair of two-faced families in (A, ¢). Then z' and
z'" are bi-free if and only if for every map a: {1,...,n} > IuJande e {!, }" we have

$a(2) = 3 > unc(m0) | ¢a(2),
neBNC(a)L 0eBNC(a)
n<o<€

where z° = (z;/(}y, .- ZZ"(n)).

4.3 Bi-free is Equivalent to Combinatorially-bi-free

Theorem 4.3.1 Letz' = ((2])ier, (2}) jey) and 2" = ((2 )ie1, (2]) jes) be a pair of
two-faced families in a non-commutative probability space (A, ¢). Then z’ and z'" are
bi-free if and only if they are combinatorially-bi-free.

Proof Supposez’ andz” are bi-free, and fix a shading e € {’,” }". By Corollary 4.2.5,
for a:{1,...,n} - IuJ we have

(@)= T ( 5 yBNcma))%(ze).
neBNC(a) JGBEIUC;(:)

Therefore

by Remark 3.1.5. Using the above formula, we will proceed inductively to show that
ks(z°) =0if 0 € BNC(a) and o £ €. The base case is where n = 1 is immediate.
For the inductive case, suppose the result holds for any $: {1, ..., k} — I uJ with

k <n.Leta:{l,...,n} — I U ]. Suppose € is not constant (so, in particular, 1, £ €).
Then
>, Kko(Z)=¢a(2) = Y Ke(2).
0eBNC(a) 0eBNC(a)
(53

By induction, x,(z°) = 0 if 0 € BNC(«) \ {1,} and ¢ £ e. Consequently,

Yoo ke(2) =x, () + D) Ke(2).
0eBNC(a) 0eBNC(a)
0<€

Combining these two equations gives x;, (z°) = 0, completing the inductive step.
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Now suppose that z’ and z”/ are combinatorially-bi-free. Then, for any € € {',” }"
anda: {1,...,n} > IU],

¢a(z%) = Z Ko (2°) = Z Ko (2°)
0eBNC(a) 0eBNC(a)
o<e

Z ¢ (2°) ppnc(m, o)

0eBNC(a) 7eBNC(a)
o<e <o

I (o) PR}
7€BNC(a) \ 0eBNC(a)
n<o<e

Hence, Corollary 4.2.5 implies that z’ and z"’ are bi-free. [ |

4.4 Voiculescu’s Universal Bi-free Polynomials
Using the equivalence of bi-free independence and combinatorial-bi-free indepen-

dence, we obtain explicit formulas for several universal polynomials appearing in [5].

Proposition 4.4.1 Let a:{l,...,n} - I u]. For each shading e € {',” }" we define
a polynomial Py . on indeterminates X}, and Xy indexed by non-empty subsets K c
{1,...,n} by the formula

Pa,e = Z Z /ABNc(TL’,O') H X;(V)

neBNC(a,e)L 0eBNC(a) Ven
n<o<e

Then for z' and z"" a bi-free pair of two-faced families in (A, ¢) we have
$a(2°) = Poe(2,2"),

where P, ((2',2") is given by evaluating P, . at X?k1<»-~<k,} = ¢(z2(kl) "'Zg(k,))’ de
{”/I }'

Furthermore, if we define Qq as the sum of the Py, . over all possible shadings then

Qo =Xy, oy + X0y + 2 Paes

..........

where the summation is over non-constant shadings €, and
$a(2' +2") = Qu(Z,2"),
where Qu(2',2") is Q, evaluated at the same point as the P, . above.
Proof The first part of this corollary is immediate from Corollary 4.2.5. The as-

sertion regarding Q. (2z’,2") is also immediate when expanding the product in the
left-hand side. All that remains to show is
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which is equivalent to saying P, = Xfl ,,,,, n} when ¢ is the constant shading € =
(8,...,8),8€{,)” }. Such a shading induces the full partition 1,, and hence

Z penc(m, 0) = Z penc (7, 0) = 8pne (7, 1q).
0eBNC(a) 0eBNC(a)
n<0<€ <0<,

Then the only term in P, . with a non-zero coefficient is the one corresponding to
T =1,4. |

Proposition 4.4.2  For any a:{1,...,n} — I U], recursively define polynomials R,
on indeterminates X indexed by non-empty subsets K € {1,...,n} by the formula

Re= Y, wenc(mly) [ Xv.

neBNC(a) Ven

If Xk is given degree |K|, then R, is homogeneous with degree n.
For z a two-faced family in (A, ¢), if Ry (z) denotes R, evaluated at the point

X{k1<---<k,} = ¢(za(k1) '”Z“(kr))

then Ry (2) = k4 (2). Moreover, if z' and 2" are bi-free in (A, ¢), then R, (2 +2") =
Ry (2") + Ry (2"); that is, R, has the cumulant property.

Proof We see that R,(z) and x,(z) are equal by Remark 3.1.5. Then R, has the
cumulant property simply because «, does. ]

Remark 4.4.3 The polynomials Py, Qq, and R, are precisely the universal poly-
nomials from [5], Propositions 2.18, 5.6, and Theorem 5.7, respectively.

5 A Multiplicative Bi-free Convolution
5.1 Kreweras Complement on Bi-non-crossing Partitions

In [3], the Kreweras complement Ky¢ on the non-crossing partitions was used to sim-
plify the convolution of multiplicative functions. In particular, we have the following
extension to BNC.

Definition 5.1.1 Forany y:{1,...,n} - IuJand n € BNC(y), the Kreweras com-
plement of 7, denoted Kpnc (1), is the element of BNC( ) obtained by applying s, to
the Kreweras complement in NC(n) of s, - 7; explicitly,

KBNc(TI) = SX . I(Nc(S)_(1 . TI).

Remark 5.1.2 Note that Kgnc(7) can be obtained by taking the diagram corre-
sponding to 7, placing a node beneath each left node and above each right node of 7,
and drawing the largest bi-non-crossing diagram on the new nodes.
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Example 5.1.3 Inthe following diagram, if 7 is the bi-non-crossing partition drawn
in black, Kgnc(7) is the bi-non-crossing partition in grey.

1._
1o
2
5
°3
—e3
Zo—
5._
5
6._
g
7
o7
—38
—e 38

Remark 5.1.4 Since Kyc is an order reversing and s, is order preserving, Kgnc is
an order reversing bijection. Thus [7,14] ~ [Kenc(1a), Kenc(7)] = [0a, Kpnc(77)]
for all m e BNC(«). Hence, if f, g € IA(BNC) are multiplicative functions, then

(f *g)(ooc’loc) = Z f(oa’”)g(ooc)KBNC(”)) = (g*f)(oarloc))

me€BNC(a)

and thus f » g =g f.

5.2 Computing Cumulants of a Multiplicative Bi-free Convolution

Taking inspiration from [3], we use the Kreweras complement to examine the bi-free
cumulants of a two-faced family generated by products of a bi-free pair of two-faced
families.

Theorem 5.2.1 Letz = ({z,},{z.}) and 2" = ({2} },{z}'}) be a bi-free family of
pairs of faces and let z = ({z,z} },{z]z.}). Then
K)((Z) = Z KT!(Z,)KKBNC(ﬂ) (Z”)

neBNC(yx)
forall x:{1,...,n} - {&,r}.

Proof Recall from Remark 3.1.5 the definition of the moment and bi-free cumu-
lant functions m, and «,, and, moreover, that these are uniquely determined by the
moments and cumulants of the family (x), respectively. Since the bi-free cumulant
functions are multiplicative and by the structure of the convolution of multiplicative
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functions given in Remark 5.1.4, it suffices to show k, = x,/ * k.. Using the relations
m, * upNc = K, and k, * {gNc = M, it suffices to show m, = ks * m .

Suppose x:{1,...,n} - {€r}. Let B: {1,...,2n} - {€,r} be given by f(2k-1) =
B(2k) = x(k). Take e € {',” }*" so that €51 = "and e = " if k € y7'(£), and the
opposite if k € y™*(r). Then

mz(0y,1,) = ¢, (2) = ‘P(Z;(nz;z(l) "'Z;Z(ﬂr;;zjcz(""))

= (251 %6(2) " Zp(an-1)%p(am))
S ka(2)

neBNC(f,¢)
= Y k(@)Y kn(Z)
meBNC(y) m,€BNC(x)

m2<Kpnc (1)

> Km(2)Prane(m) ()

me€BNC(y)
(KZI * mzll)(ox’ IX)

Hence, as m, and ks * m,» are multiplicative functions that agree on full lattices in
BNGC, and consequently on all intervals by bi-multiplicitivity. ]

Remark 5.2.2 Note that the above generalizes the formula for the free cumulants
of the multiplicative convolution of freely independent random variables in terms of
their individual cumulants (cf. [3, Section 3.5]). This seems to suggest that when
defining the multiplicative convolution of a bi-free pair of two-faced families, one
should multiply the right faces as if in the opposite algebra.

Remark 5.2.3  Since convolution is abelian on multiplicative functions, we obtain

that ({z}z} }, {z/'2,}) and ({2} z;}, {z.z;'}) have the same joint distributions.

6 An Operator Model for Pairs of Faces

In this section we will construct an operator model for a two-faced family in a non-
commutative probability space. This model will generalize the operator model usually
considered in free probability introduced by Nica in [2].

In [2, Definition 3.2.1], Nica’s operator model is constructed via unbounded op-
erators on a Fock space making use of the left creation and annihilation operators
where each product of creation operators is weighted by a free cumulant of the ran-
dom variables. The operator model for a pair of faces in a non-commutative probabil-
ity space will be constructed in Theorem 6.4.1, with terms similarly weighted by the
corresponding bi-free cumulants. We use left annihilation operators in the same way
as Nica’s model, though we must use more complex operators than simply left and
right creation, essentially to account for the fact that the order in which variables are
annihilated does not correspond to the order in which they were added as strongly
as in the free case. Our model reduces to Nica’s model when all variables are left (or
right) variables. Moreover, a model using only left and right creation and annihilation
operators is unlikely, by discussions in [1].
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Nica’s operator model also gives a direct analogue to the R-series of a collection
of random variables in a non-commutative probability space. We introduce an anal-
ogous operator @, in Theorem 6.4.1, which serves as the R-series of the two-faced
family z = ({z; }ic1, {2j} jes)- In particular, if

Z = ({Z;}iel’ {Z;}jel) and z" = ({Z;’}ieb {Z;l}je])

is a bi-free pair of two-faced families, we can consider the single family
z= ( {z; + 2/ }ier, {Z; + Z;’}jel)

and construct the corresponding operator @ . It will follow that
O,-1=(0,-1)+(0,-1I).

Hence, the operator ®, from Theorem 6.4.1 behaves like an R-series.

6.1 Nica’s Operator Model

We will take a moment to recall Nica’s operator model from [1] to demystify our con-
struction. Given an index set I, let F(C) be the Fock space generated by I; that is,

F(ChH = (CQGB( P Cle, ®~--®eik)),

where {e;}ics is an orthonormal basis of C!. Recall that € is called the vacuum vector
of F(CT), and is thought of as a “length zero tensor”; that is, for example, &, ®- - ® & =
Q if k = 0. To simplify notation, we will sometimes join impure tensors of varying
lengths together with a tensor product symbol, which should be distributed across
sums. For example, (§+6,®&) 08, =6 08+65H06 08, whileé®Q =E=QL

Recall next that the left creation operator corresponding to e;, denoted L;, is de-
finedby L;(§ ® --- ® &) = e; ® § ® --- ® &, while its adjoint L} is called the left
annihilation operator corresponding to e;. We take w: £L(F(C')) — C to be the vec-
tor state corresponding to Q, so w(T) := (TQ, Q).

Suppose that X = (X; ) ;s isa collection of random variables in a non-commutative
probability space (A, ¢), and consider the (unbounded) operator

®X = Ig?((cl) +Z Z K(Xip”-aXik)Lik"‘Lip

k>1iys...,igel

where « is the free cumulant functional. Next, set

Z,‘ = LT@XILT-FZ Z K(Xi1>-~~>Xik>Xi)Lik"'Li1~
Then the joint distribution of (Z;);e; with respect to w is the same as that of (X;);e;
with respect to ¢. Observe that given iy, . .., i,, there is a bijection between the non-
crossing partitions NC(#) and the terms in Z;, - - - Z; of non-zero trace: one takes the
finest partition such that if the annihilation operator of Z;, cancels a creation operator

added by a term from the variable Z; , then t and s lie in the same block.
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Example 6.1.1 Consider the product Ty T, T3 T4 Ts = Z1Z,Z5Z3Z,, which contains
the term of non-zero trace

K(Xz, X3)K(X1, X3, X])L;—L; (L;L3L2)L; (L;L1L3L1)

This corresponds to the non-crossing partition {{1,4,5}{2,3}}, since the term
k(X2,X3)L;LsL, was selected from T3, while the surviving L, was annihilated by
T,; this accounts for the block {2, 3}. Similarly, (X3, X3, X;) Ly L, L3 L, was added by
Ts, and its remaining pieces were annihilated by T, and Tj, which gives us the block
{1,4,5}.

On the other hand, to find the term corresponding to the non-crossing partition
{{1,5},{2,4},{3}}, we note that Ts must introduce an operator annihilated by Tj,
T4 must for T, and T5 annihilate any term it adds. That is, we have the term

L{Ly(x(X3)LyLs) ( k(X2 X3)L3LsLs) (x(X1, X1)Li LiLy) -

6.2 Skeletons Corresponding to Bi-non-crossing Partitions

The operator model from [2] can be thought of as a systematic way of constructing
all non-crossing partitions weighted by products of free cumulants. Recall that non-

crossing partitions can be viewed as bi-non-crossing partitions where all nodes are
on the left-hand side.

Definition 6.2.1 Let a:{1,...,n} — I uJ. For a bi-non-crossing partition 7 €
BNC(«), a skeleton on m is a bi-non-crossing diagram of 7 (as in Subsection 2.4),
labelled by «, with a choice of each node being either closed or open subject to the
constraint that any node below a closed node is also closed.

Example 6.2.2 If a and 7 are as in Example 2.4.1, the skeletons corresponding to 7
are the following diagrams.

(1)
«(2)

a(1)

«(2)
®(3)

a(4)
«(5)

a(1)
«(2)

a(1)

(2)
®(3)

a(4)
«(5)

a(1)

(2)
«(3)

a(4)
«(5) «(5) (5)

Definition 6.2.3 We will refer to a skeleton where all nodes are closed circles as
the completed skeleton. For a skeleton on 1, € BNC(«), the skeleton where all nodes
are open will be referred to as the empty skeleton corresponding to «, while the skele-
ton where all but the bottom node is open will be referred to as the starter skeleton

«(3)
a(4)
a(5)

a(1)
(2)
*(3) a(3)

a(4) a(4)

suline
sulie
suline
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corresponding to a. Any skeleton that is not empty will be referred to as a partially
completed skeleton.

Remark 6.2.4 We will examine Nica’s model in the language of skeletons, which
we will think of as a bi-free situation where all variables come from the left face. Let
{X;}ier be a family of non-commutative random variables, { Z; } ;; the corresponding
operator model, and fix some iy, . .., i, € [ and consider a product (L} T1)--- (L} Ty)
where

Ti € {I} u{x(Xir, ..., Xir )Lis, -+~ Lis|m 2 1,if, ..., i

m

el}.

Note that L} Ty = 0 unless the T chosen is either I or begins with L;,. For ¢ < n, we
think of (L} T;)--- (L} T,)Q as a partially completed skeleton weighted by a scalar
which is a product of free cumulants. There is no bijection between partially com-
pleted skeletons and basis vectors of our Fock space as the partially completed skeleton
will retain the information of how the vector was created. Each annihilation operator
acts on the skeleton by filling in the lowest open node if it is labelled appropriately
(to make the node closed in the new skeleton), and otherwise weights the skeleton
by zero (which removes the skeleton from consideration). Note, then, that the closed
nodes correspond to variables in the block which have been encountered, and the re-
quirement that they be filled from bottom to top ensures that the ordering of variables
matches the cumulant. For example,

2 2 2
1 L 1 Lt 1
3 j —0 whereas 3 j —3 :I
2 2 2
1 1 1
Each product of creation operators x(Xjr, ..., Xir )Lz -+ L;s adds an empty skele-

ton (corresponding to the creation operators chosen) to the skeleton under consid-
eration directly above the highest closed node, and is weighted by the appropriate
cumulant. The lowest node of the new block is immediately filled by the following
L7, . For example,

20— 20— 20—
10— 10— 10—
3 3 3
LyLyLiLs > Ly X
—_—1 e g |
2 2
1 1
2 2 2
lo—— lo—— Jo——
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For a product (L} Ty) -+ (L] T,)Q, we will get precisely one partially completed
skeleton. For example,

corresponds to the product

(#(X2, X2)Ly) LY L3 (%( X3, X1)L{ L1 L3)
(%(X3, X1, X2) Ly Lo Ly Ly) (x(X1, X1, X)Ly LiLi Ly ) Q.

Notice that when the above operators are applied to Q in the order listed, we obtain
the vector le, ® e3 ® e; ® e1, where A is a product of cumulants. The indices of the
tensor can be seen in the partially completed skeleton by reading the open nodes from
bottom to top. In this manner, vectors (L; Ty)--- (L}, T,)Q correspond to partially
completed skeletons and the only products such that

((LiT) (L1 T)Q,Q) 20

arise from completed skeletons. It is easy to see that a completed skeleton corresponds
to an element of 7 € NC(#n). These completed skeletons are weighted by the correct
product of cumulants so that when we sum over all completed skeletons, we get

(Ziy Z:,0,Q) = > kn(Xipso .5 Xi,) = 0(X5, - X)),
7eNC(n)

as desired.

6.3 A Construction

We will now construct our operator model for pairs of faces, motivated by our re-
alization of Nica’s operator model. Above, the model constructed all weighted non-
crossing partitions by using creation operators to glue in full non-crossing blocks and
annihilation operators to approve or reject non-crossing diagrams. As the combina-
torics of pairs of faces is dictated by bi-non-crossing partitions, we must construct
the appropriate creation operators to glue together bi-non-crossing partitions. How-
ever, unlike with non-crossing partitions where there is only one way to glue in a full
block at any given point, there may be multiple or no ways to glue one bi-non-crossing
skeleton into another. As such, the description of the appropriate creation operators
is more complicated.
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Let z = ((2i)ier> (2j) jey) be a two-faced family in (A, ¢). As before, consider the
Fock space H := F(C™/) with {ej } xery an orthonormal basis.

For a:{1,...,n} — I U], we will define operators T, € L£(J) that should be
thought of as playing the same roll as the operators Ty in our discussion of Nica’s
model; that is, each adds an appropriate empty skeleton. Though we will often speak
of actions of these operators in terms of their actions on skeletons, one can return to
the context of J{ by letting a partially completed skeleton correspond to the vector
formed by taking the tensor product of the basis elements matching the labels of its
open nodes, from bottom to top, and weighting it based on which cumulants have
been chosen. For example, the skeleton

iy
o jl
Jj2

i3

corresponds to the vector e, ® e;, ® e;; and will be weighted by

K(Zip Zi3)K(Zi1’Zj2)K(Zjl)'

The key point here is that the only choices of future Zj that yield a non-zero Q compo-
nent when applied to such a vector have annihilation operators in the correct order.
In the above example, in order for this skeleton to make a contribution to the final
term, we must act on it by Z;,, Z;,, and Z;, in that order (though other variables may
occur between them). Since the closed nodes of the skeleton only effect the resulting
quantity in terms of its weight and cannot affect the action of future operators (as in-
deed they must not, for the vector has forgotten them), we will sometimes truncate
diagrams of skeletons to show only the open nodes. It is implied that there may be
significantly more nodes and blocks below the bottom of the diagrams that follow, but
their representation is eschewed. Likewise, in order to ensure that T, is well defined,
we cannot have behaviour depending on which partial skeletons have been chosen,
but only the choice of side and of labels of the open nodes.

For n =1, we define Ty, := L,(y). In this setting, one may think of T, as adding an
empty skeleton in the lowest possible position with a single open node on the left or
on the right depending on whether (1) is in I or J. For example,

i i

iz iz
T
—"‘I, a(l)o
1) € .
(D) .
i3 i3
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and

i i

ip T, ip
el °a(l)
a() e :
i3 i3

Observe that T, adds an open node in the lowest valid location (i.e., immediately
above all closed nodes); this behaviour will be mimicked by the other T, as well. That
is, the lowest open node added will always be added directly above the highest closed
node.

Let 2: H{ ® J{ — J{ be defined by

Z(fl®"'®fn’fn+l®"'®fn+m)::Zfo'(l)®"'®fu(n+m)a
o

where the sum is over all permutations ¢ € S, so that o|[1,n] and 0|[,,+1,n+m] are
increasing; that is, o interleaves the sets {1,...,n} and {n +1,...,n + m}. Note that
2(E Q) =E=2(Q,&). As an example,

2(61@62,63@64):€1®€2®e3®64+€1®€3®62®€4+€3®€1®62®€4

+te®e3®es Qe +es®e;®eys ®ey+e3®es Qe e

We will use £ to account for the fact that nodes on the right may be added with any
order to nodes on the left to obtain a valid skeleton.
For a:{1,...,n} - I U], we define

To(Q) = Lo(nyLan-1) " La()(Q) = 1) ® -+ ® €q(n)-

Note that this corresponds to taking a completed skeleton (possibly with no nodes),
and adding the empty skeleton corresponding to « above it.

We will now define T, for n > 2 on tensor products of basis elements, and extend
it by linearity to their span (which is dense 3). We consider only the case a(n) € I,
as the case when a(n) € J will be similar. Let 77 = eg(;) ® -+ ® eg(1y € H, where
B:{1,....m}>1Iu].

If B71(I) = @, we define T,(n) as follows. Let k = max ({0} ua™'(])), so that k
is the lowest of the nodes to be added by which falls on the right. We define T, () as
follows:

Ta(1) = Ca(n) ® % (Ca(n-1) ® ** ® Ca(kr)> p(m) @+ @ €4(1)) © Cat) @+ & €ar):

This is mimicking the action of adding a new skeleton to the existing skeleton. In
order to ensure that no crossings are introduced, all new nodes on the right must be
placed above all existing nodes on the right. Before any new right nodes are added,
though, nodes on the left can be added freely. One should think of this as the sum of
all valid partially completed skeletons where the old skeleton is below and to the right
of starter skeleton corresponding to a, with the node corresponding to a(n) in the
lowest possible position.
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Example 6.3.1 Ifa:{1,2,3,4} — Iu] satisfiesa }(I) = {1,3,4} and a71(J) = {2},
and j € ], then
Ta(ej) = ey(4) B ey(3) ®Ej B ey(2) ®en(1) T Eu(a) B Ej B €Ey(3) B ey(2) ® €Eq(1)-

This action corresponds to the following diagram:

a(1) a(1)
(2) (2)
T i+ )
’_@ a(3) r J
| a(4)o | a(4) o |

The purpose of allowing multiple diagrams is that the cumulant corresponding to a

bi-non-crossing diagram for a sequence of operators is equal to the same cumulant for

the sequence of operators obtained by interchanging the k-th and (k+1)-th operators

and the k-th and (k+1)-th nodes in the bi-non-crossing diagram, provided k and k+1

are in different blocks and on different sides of the diagram. In the end, a sequence of

annihilation operators can complete at most one skeleton and will produce the correct

completed skeleton for a given sequence of operators.

As a further example, suppose a:{1,2,3} - I and j;, j, € J. Then

Ta(ejz ® ejl) =e4(3) ®en(2) B ey(1) ®€j, ®ej, +ey(3) ®ey(2) ®ej, ®ey(1) B e€j,
+eq3) ®eq(2) ®ej, ®ej, ®eyq) +eq(3) ®ej, ®eyz) ®eq1) ®ej
T eq(3) ®@ej, ey2) ®ej ®ey1) +€x(3) BEj, ®Ej ®en(2) ®Ey(1)-

This action corresponds to the following diagram:

— j1 —j1 a(1)
—o j2 a(1) J1
a(1) — j2 J2

v _Te “(2)3 + a(2) + a(2)

’:zjz a(3) a(3) a(3)

— ji a(1) a(1)

a(1) i a(2)
a(2) a(2) Ji
+ —oj2 + J2 o+ J2

a(3) a(3) a(3)

Now, suppose that 7(I) # @, and let k = max(~'(I)). This corresponds to a
partially completed skeleton with open nodes on both the left and right, where the
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lowest open node on the left is the k-th from the top. We set T, () = 0 if a(¢t) € J for
some t, since the partially completed skeleton has open nodes on the left and right, we
cannot add the empty skeleton of & without introducing a crossing, since the lowest
node of « is on the left. Otherwise, a(t) € I forall t € {1,...,n}, and we set

Ta(n) = ea(n) ® Z(€a(n-1) ® -~ ® €a(1)> €p(m) ® @ €p(k+1)) ® €p(k) ® -+~ @ €p(1).-

One can think of this as the sum of all valid partially completed skeletons where the
empty skeleton of « sits below the lowest open node on the left of the old skeleton.

Example 6.3.2 Ifa:{1,2} > Tujhasa(2) eI, a(l) € Jandi € I, then T,(e;) = 0.
This is because there is no way to glue the empty skeleton corresponding to « into the
partially completed skeleton without introducing a crossing while placing the lowest
node of « at the bottom of the diagram (directly above the highest closed node):

—a(1)
a(2) J

Ifa:{1,2} > Tandie€l,j,j €], then
Ta(ej®@e;®ejr) =eq2) @eq)®@ej®e;®@ejr+eq2) ®ej®eqr) ®e; ®ejr.
This action corresponds to the following diagram:

—oj’ —oj’

i 0— i o—

j —i e |

i —5a(2) T a2)

As T, has been defined on an orthonormal basis, we may extend it by linearity to
obtain a densely defined operator on J(; note that T, may not be bounded due to the
action of 2. On the other hand, if a: {1, ..., n} — I, then T, acts on the Fock subspace
generated by {e;}icr as Lo() -+~ La(1)- Thus, if one considers only left variables, the
resulting operators are precisely those of Nica’s model.

We define T, in a similar manner when «a(n) € J.

6.4 The Operator Model for Pairs of Faces

With the above construction, the operator model for a pair of faces is at hand.
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Theorem 6.4.1 Let z = ({zi}ic1>{2j}jes) be a pair of faces in a non-commutative
probability space (A, ¢). With notation as in Construction 6.3, consider the (unboun-
ded) operator

0, ::I+Z Z Ko (2) Ty,

n21 q:{1,...,n}—>IuJ

andfork e IU ], set Z := L;©,. If T € alg({Zi } kery ), then (TQ, Q) is well defined.
Moreover, if w(T) = (TQ, Q), the joint distribution of {Z } kery with respect to w is
the same as the joint distribution of z with respect to ¢.

Before we begin the proof, we give the following example.

Example 6.4.2 In this example, let I = {1} and J = {2}. We will examine how the
completed skeleton below is constructed for Z,2,72,2,2,7,7,7,7,7,.

1o—
—e2
11—
1
2
2
gl
2
] o—
1

First x(21)(2) Ly T(21) is applied to get the partially completed skeleton

Then & (1511 (2) L{ T(1o11) is applied to obtain the following collection of partially com-
pleted skeletons

1 2

1 1

1 1 :
Applying &35y L; T(22) then gives the following collection of partially completed skele-
tons (where the first two below are from the first above and the third below is from
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the second above)

1o 1o 1o
o2 o2 o2
2 2 1o+
2 1o+ 2
1o+ [ 2 2
2 IjZ EZ
1e— 1e— 1e—
1 1 1

and applying x(11yL{ T(11y then gives the following collection of partially completed
skeletons (where the first below is from the first above, the second and third are from
the second above, and the last three are from the third above).

10— 10— 10—
—o2 —o2 —o2
—o2 —o2 —o2

2 10— 10—

lo— lo— lo—
Jo—— Jo—— Jo——
1 o— 10— 10—
o2 o2 o2
10— 10— 10—
—o2 —o2 1
2 1 2
1 ] 2 2
o] S|
2 2 2
le— le— le—
Jo— Jo— 1
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Applying L then gives the following collection of partially completed skeletons
(where the first, second, and fourth diagrams above were destroyed)

1 o— 10— 1 o—
—o2 —o2 —o2
—o2 10— 10—
10— —o2 1
1 1 2
] 2 ] 2 2
2 2 2
lo— lo— lo—
Jo—— Jo—— 1

and applying L} removes all but the last diagram to give

lo—

02
10—

1

2

2
gl

2

1o—

1

Applying L L7 L] L{ then gives us the desired diagram. We also see the diagram was
weighted by

K(21) (2) K (am1) (2) K (22) K (11 (2)
which is the correct product of bi-free cumulants for this bi-non-crossing partition.

Proof of Theorem 6.4.1 Leta:{l,...,n} — I'u]. To see that
w(Za(l) t 'Zoc(n)) = ¢(Zo¢(1) ’ "Zoc(n))a

we must demonstrate that the sum of over all

A € {Lyy} v {rp(2) Loy Tp | B:{L,...,m} > TuJ}
of (A;---A,Q,Q) is precisely ¢(zyq1)- - Zu(n)). (Note that LiyTg = 0 unless
B(m) = a(k).) This suffices, as these are precisely the terms that appear in expand-
ing the product Z(yy -+ Za(n). By construction, A, -+ A, acting on Q corresponds

to creating a (sequence of) partially completed skeletons and (A; -+ A,Q, Q) will be
the weight of the skeleton if the skeleton is complete and otherwise will be zero. Since

¢(th(1)"'za(n)) = Z Kﬂ(z)’

neBNC(a)
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it suffices to show that there is a bijection between completed skeletons and elements
7 of BNC(«), and that the weight of the skeleton is the corresponding cumulant.

Observe that after Ay is applied, the bottom n — k + 1 nodes of the partially com-
pleted skeleton will be closed, as Ay itself either closed an open node that was already
present or added a new block containing one closed node and zero or more open
nodes. In particular, the (# — k +1)-th node from the bottom must be on the side cor-
responding to a(k), since it was closed by L, (k- Thus when we have applied A; --- A,
any skeleton surviving has precisely n nodes and structure arising from «.

From a bi-non-crossing partition 7 € BNC(«), we can recover the choice of
Ay,..., A, that produces it. To do so, for each block V' = {k; < -+ < k;}, we let
Ay, = Lj fori # t,and if B(i) = a(k;), we set Ay, = kg(2z)L; Tg. Indeed, the par-
tially created skeletons created by Ay - - - A, agree with  on the bottom n—k+1nodes.
Moreover, given any other product A --- A’ that differs from A, --- A,, consider the
greatest index k so that A} # Aj. Then all partially completed skeletons in A, --- A’,
and Ay --- A, agree in structure for their bottom #n — k nodes, while the next either
starts a new block in one case but not the other or starts new blocks of different shapes.
Finally, note that if B corresponds to the block V' € 7 as above, then kg (z) = %, (2)
and so the total weight on the skeleton is precisely x,(z). ]

Remark 6.4.3 In [5, Theorem 7.4], an operator model for the bi-free central limit
distributions was given as sums of creation and annihilation operators on a Fock
space. It is interesting that the operator model from Theorem 6.4.1 uses different op-
erators. Indeed, for i, i’ € I and j € ], one can check that

T(,.,,.,):Z > Li,La(l)-~-L,,,(,,)LiL;(n)--~L;(1) and Ty = LiR;P,
n20 a:{1,..., n}—J

where P is the projection onto the Fock subspace of J{ generated by {e;} j; and R;
is the right creation operator corresponding to e;. Therefore, if ¢k, x, = ¢(2zx, 2k, ) for
ki, ky € I 1 J with z a bi-free central limit distribution, Theorem 6.4.1 produces the
operators

Zk = th + Z Ck’,kLZ T(k’,k)?
k’eluj]

which are very different from Ly + Ly (if k € I) and Ry + R} (if k € J) proposed in
[5]. The main issues with the model involving {L;, L}, R;, R} | i € I, j € J} is that
the vectors obtained by applying the algebra generated by these operators to Q do not
generate the full Fock space; indeed, they only generate vectors of the form

e, ®---®e¢;, ®ej, ---®ej
where n,m > 0, iy,...,i, € I, and ji,...,jn € J. It is not difficult to see that the

vectors obtained by the algebra generated {L}, L}, T(;,i), T(j,j) | i € I, j € J} applied
to ) generate the full Fock space.
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