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Abstract. We investigate upon the change of an asteroid orbit caused by an impact. We find
that, given the assumption of two dimensional motion, the asteroid displacement may be de-
scribed by an analytic and explicit expression that is the vectorial sum of a radial component
and a component along the asteroid velocity. The new formulation bridges the gap between the
study of short-term effects, using numerical methods and the analytic study of secular changes
of the asteroid orbit. The relation of the method to the established formulations is described
and the known results are derived as limiting cases.

The application of the new method for the performance evaluation of an asteroid deflection
demonstration mission is illustrated. In such a mission the measurement of the change of the
asteroid orbit by an impact will be conducted by radio-ranging to a spacecraft orbiting the
deflected asteroid. Hence the measurement will primarily be sensitive to the deflection projected
onto the Earth-asteroid line of sight. We discuss how the new formulation of the deflection
can conveniently be employed for the estimation of the measurement accuracy and the optimal
planning of a deflection demonstration mission.
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In memoriam Floh

1. Introduction
One of the most promising strategies for mitigating the threat of an asteroid on collision

course with the Earth is the impulsive deflection of the asteroid by a kinetic impactor.
The key advantages of this method compared to deflection by applying long-duration
thrust to the asteroid or its explosive destruction are simplicity and technical maturity.
In particular the Deep Impact space mission [see A’Hearn et al. (2005) for an overview]
has demonstrated that a high velocity impact onto a small celestial body is indeed tech-
nologically feasible.

From the astrodynamics point of view the impulsive deflection of an asteroid has al-
ready received considerable attention and can be regarded as well understood. It has been
demonstrated by Carusi et al. (2002) that the most promising strategy is to apply a small
velocity change to the asteroid several orbital periods before the collision with Earth or
before the passage through the keyhole of a resonant return [see Valsecchi et al. (2003)
for an exposition of the keyhole concept] by a tangential impact. The tangential impact
leads to a change of the orbital period of the asteroid and hence to a secular change of
the orbit. This secular change will accumulate over time and — even for a minuscule
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change of asteroid velocity — lead to a large accumulated miss distance. This method
has meanwhile been implemented into a full end-to-end trajectory optimisation proce-
dure that maximises the secular change of an asteroid’s orbit achieved by a spacecraft
departing from Earth and reaching the asteroid either by chemical or electric propulsion
in Izzo (2005), Izzo et al. (2006a) and Izzo (2006b).

It is also known from the numerical study of Conway (2001) that, if the time between
the deflection and the potential collision with the Earth is small, the optimal impact
direction is no longer tangential to the asteroid orbit. This has recently also been verified
by Kahle et al. (2006) for a deflection taking place shortly before the passage through a
keyhole.

Up to now the short term regime (i.e. deflections taking place two or less orbits before
the dangerous close encounter) has not been described by analytical methods. In the
present paper we fill this gap by deriving an analytical description of the response of an
asteroid to a small impulsive velocity change. Our result is a solution for the relative
orbital dynamics between the perturbed and unperturbed orbit to linear order in the
change of velocity. In its present form the solution is restricted to a velocity change
in the orbital plane of the asteroid but it can be used advantageously both for short
term and for long term deflections. In particular the well known secular orbital change
is recovered in the limit of a long term deflection.

The study of the linearised equations of relative orbital motion has already received
long-standing attention in the context of spacecraft rendezvous manoeuvres and forma-
tion flying. In this realm the relative motion is typically treated in a local-horizontal
local-vertical (LHLV) coordinate system. The equations of relative motion in these coor-
dinates are the so-called Tschauner-Hempel equations [cf. Tschauner & Hempel (1964)],
a system of three linear differential equations in the true-anomaly difference with peri-
odic coefficients. For a circular orbit the Tschauner-Hempel equations reduce to three
linear differential equations with fixed coefficients, the Clohessy-Wiltshire equations [cf.
Clohessy & Wiltshire (1960)]. If rewritten in LHLV coordinates, our solution is an ex-
plicit algebraic solution of the Tschauner-Hempel equations. For the case of a circular
orbit, we establish the equivalence of our solution to the well know analytic solution of
the Clohessy-Wiltshire equations.

In order to illustrate the usefulness of our solution we apply it to the performance
evaluation for a space mission that aims at demonstrating the capability to deflect an
asteroid. A deflection demonstration mission that is currently being studied by ESA
under the name Don Quijote [cf. Carnelli et al. (2006)] is taken as the example case.

The layout of this paper is the following: We start by formulating the deflection of
an asteroid in terms of the perturbation of the asteroid state vector in Sec. 2. For this
formulation of the problem we first obtain the solution for the radial perturbation in
Sec. 2.1 and then for the tangential perturbation in Sec. 2.2. The combined result, yielding
the total deflection, is then discussed in Sec. 2.3. In Sec. 3 we apply the solution to the
performance evaluation for a deflection demonstration mission. We close with a summary
of our key results and give an outlook on further extensions and applications of the new
method in Sec. 4.

2. Impulsive deflection as a perturbation of the state vector
For the present study we restrict our analysis to the case of a velocity change in

the orbital plane of the asteroid. While the generalisation to out of plane deflection is
straightforward it is of little practical relevance for a space mission that performs an
asteroid deflection rehearsal. In the following we will determine the deflection of the
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asteroid with respect to the unperturbed orbit of the asteroid. For the unperturbed orbit
we choose a description in terms of the propagation of the initial state vector [r0,v0] at
the time t0 by means of the Lagrange coefficients. The radius vector at other times is
then given by

r = Fr0 + Gv0 . (2.1)
Here F and G are the Lagrange coefficients,

F = 1 − r

p
(1 − cos θ) and G =

rr0√
µp

sin θ , (2.2)

where
r =

pr0

r0 + (p − r0) cos θ −√
pσ0 sin θ

, (2.3)

and p is the orbit parameter, θ is the true anomaly difference between r0 and r, σ0 ≡
r0 · v0/

√
µ = r0v0 cos γ0/

√
µ, γ0 denotes the flight path angle at t0 and µ is the gravita-

tional parameter of the Sun.
If the orbit is perturbed by a velocity change ∆V at the instant t0 then the perturbation

on the radius (that from now on will be called the deflection) is be given by

∆r = ∆Fr0 + ∆Gv0 + G∆V . (2.4)

Here ∆F and ∆G denote the perturbed Lagrange coefficients.
In order to facilitate the calculation it is helpful to choose a non-orthogonal coordinate

system for ∆r. We decompose ∆r into a component along the unperturbed radius vector
and a component along the unperturbed velocity,

∆r = ∆qir + ∆siv , (2.5)

where ir is the unit vector in radial direction and iv is the unit vector in velocity direction.
Using this system of skew axis the contravariant component of the perturbation in the
radial direction is equal to the perturbation of the absolute value of the radius vector
under the constraint of unperturbed difference in true anomaly θ between r0 and r,

∆q = ∆r|∆θ=0 . (2.6)

Hence one can easily perturb Eq. (2.3) for the determination of ∆q. A further advantage
of the use of these skew axis is that the secular change of orbit will only affect the
component along the velocity vector. Hence one retains the intuitive interpretation of
the secular term that would for instance be lost in the LHLV coordinate system.

2.1. The radial part
The equation for the absolute value of the radius in terms of the initial radius, initial
velocity and true-anomaly difference is given by the polar form of the equation of orbit
Eq. (2.3). The change of the radius ∆q is determined to linear order by variation of
parameters under the constraint that θ is unperturbed,

∆q =
r2

√
pr0

sin θ∆σ − r2 cos θ

pr0
∆p +

r2σ0

2p3/2r0
sin θ∆p +

r

p
∆p . (2.7)

The variations of p and σ0 by a ∆V transfer are in turn given by

∆p = 2
√

p

µ
|r0 × ∆V| = 2

√
p

µ
r0∆V sin φ , (2.8)

∆σ =
r0 · ∆V

√
µ

=
r0∆V
√

µ
cos φ , (2.9)
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where φ is the angle between r0 and ∆V. Inserting these expressions we arrive at

∆q = r
2r0√
µp

sinφ ∆V

+ r2 r0v0

µp
[sin γ0 cos φ sin θ − 2 sin γ0 sinφ cos θ + cos γ0 sin φ sin θ] ∆V , (2.10)

where we have used
√

µp = r0v0 sin γ0 and r0 · v0 = r0v0 cos γ0. In Eq. (2.10) the terms
with sin φ correspond to a change of orbital angular momentum while the term propor-
tional to cos φ corresponds to a change of orbital energy.

2.2. The tangential part

In order to obtain the tangential part of the deflection one has to consider the full
variation of the state vector. Singling out the components along the velocity vector v one
obtains

∆siv = v

{
− 3a

µ
[t − t0](v0 · ∆V) − 3a2

µ3/2
(σ − σ0)(v0 · ∆V)

− 3a2rσ0

µ3/2p
(1 − cos θ)(v0 · ∆V) +

ar0r

µ3/2p
(σ − σ0)(1 − cos θ)(v0 · ∆V)

+
3a2r

µ3/2√p
sin θ(v0 · ∆V) +

r2
0r

2

(µp)3/2
(1 − cos θ) sin θ(v0 · ∆V)

− r0r

µp
(1 − cos θ)(r0 · ∆V) − r0r

2v0

(µp)3/2
(1 − cos θ) sin(θ − γ0)(r0 · ∆V)

− r2r0

µp
sin θ sin(θ − φ)∆V

}
, (2.11)

where we have introduced σ = r · v/
√

µ and a denotes the semimajor axis.
Several of the terms of Eq. 2.11 have a direct interpretation. Most notably the first

term proportional to the time after impact, t− t0, is the only secular perturbation of the
orbit. This term had already been obtained in Izzo (2005) and compared in magnitude
to the other terms for different orbits and times. The next three terms are effects of the
eccentricity of the unperturbed orbit and vanish for a circular orbit. Again all terms with
the exception of the last term can be associated with either a change of orbital energy
(term 1–6) or angular momentum (term 7 and 8). The last term is the projection of the
third term in Eq. (2.4).

2.3. The total deflection

The total deflection is obtained by inserting Eqs. (2.10) and (2.11) into Eq. (2.5). The
total deflection is a an exact solution to linearised equations of motion for the relative
motion between the perturbed and unperturbed orbit. Higher order terms will only lead
to corrections of order O(∆V/v0)2. For the case of a real asteroid deflection ∆V is foreseen
to be of the order 10−5 m/s while the orbital velocity will be of the order 10 km/s. Hence
corrections to Eq. (2.5) will be suppressed by a factor 10−9 and higher order terms can
be neglected without introducing significant errors.†

† The situation is analogous to that of spacecraft rendezvous in Earth orbit. Also there the
relative motion is usually only treated to linear order for all practical applications.
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While the new expression is fully analytical and explicit, it depends on both the true
anomaly difference, θ, and time after the impulsive velocity change, t − t0. Hence the
application of the solution requires solving Kepler’s equation for the unperturbed orbit.

In conclusion, the new deflection equation gives a full description of the change of a
Keplerian orbit after an impulsive velocity change. After transformation into a LHLV co-
ordinate system the solution becomes an analytic and explicit solution of the Tschauner-
Hempel equations for the relative dynamics on elliptic orbits.

Indeed similar formulations in terms of perturbation matrices have already been ob-
tained previously [see e. g. Battin (1994) p. 463ff. for an introduction to the topic]. The
new formulation has however a significant advantage over the known formulations. In
order compute the deflection in terms of perturbation matrices one has to numerically
solve the variational equation for the secular part of the deflection. In our new formu-
lation the secular term is given explicit and analytic in terms of the time after impact
and the non-secular terms are given explicit and analytic in terms of the true anomaly
difference.

Our new formulation encompasses the established treatments of long-term impulsive
asteroid deflection in Carusi et al. (2002) and Izzo (2006b). These results of these studies
are recovered in the limit of long times after the deflective impact. The particular power
of the new method lies however in the regime of mid-term deflection, that is the case
where the deflection has to be achieved a few orbital periods before the collision with the
Earth. On the one hand, in this regime the radial term is not yet negligible and needs to
be taken into account. On the other hand the propagation time after deflection is already
so long that an analytical treatment of the secular term has significant advantages over
numerical schemes.

It is also straightforward to show that our solution reduces to the solution of the
Clohessy-Wiltshire equations [cf. Clohessy & Wiltshire (1960)] for the case of a circular
orbit because for this case the LHLV coordinate system and the radial-tangential coor-
dinate system coincide. The equivalence of the two solutions is readily established by
noting that for a circular orbit we have σ = σ0 ≡ 0 and exploiting the simplifications of
the Lagrange coefficients that arise for circular orbits

Ft = −G , and Gt = F , (2.12)

where Ft and Gt denote the Lagrange coefficients for the equation for the velocity vector
v = Ftr0 + Gtv0. From Eq. (2.12) we have the relation

(1 − F )r + Gv = −(1 − F )r0 + Gv0 , (2.13)

by which we can easily transform Eq. (2.11) into the tangential component of the solution
of the Clohessy-Wiltshire equations for an impulsive orbit change.

3. Application to deflection demonstration missions
The perturbative solution is particularly suited for the assessment and optimisation

of the performance of a deflection demonstration space mission. The basic principle of
a deflection demonstration mission is to impact an asteroid that poses no threat to the
Earth and measure the achieved deflection. The measurement of the achieved deflection
is of crucial importance because it yields a measurement of the momentum carried away
by ejecta. It is expected that the momentum transfer to the asteroid from the shedding of
ejecta will considerably exceed the momentum transfered by the impact itself. Hence, the
determination of the momentum transfer caused by the impact achieved by measuring the
orbital change of the asteroid gives more reliable estimates for future deflection missions.
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A deflection demonstration that follows this principle is currently being studied by ESA
under the name Don Quijote [see Carnelli et al. (2006) for an overview]. The Don Quijote
mission is envisaged to comprise two spacecraft, the Orbiter and the Impactor. The
Orbiter will be launched first. It will travel to the asteroid and conduct a precision
determination of the asteroid orbit and carry out a precision measurement of its mass,
gravity field, topography, rotational motion and composition. After the successful arrival
of the Orbiter at the asteroid the Impactor will be launched from Earth. It will travel
to the asteroid and collide with it in a way to achieve the largest possible change of the
orbital energy of the asteroid. The minimum goal is to change the semimajor axis of the
asteroid orbit by 100 m. The Orbiter will observe the collision of the Impactor from a safe
position and analyse the ejecta. Then it will return to closer proximity of the asteroid
and conduct a second orbit determination campaign in order to measure the deflection
that has been achieved.

In a deflection demonstration mission the smallness of the orbital changes makes it
necessary to measure it via radio-tracking of a transponder orbiting the asteroid (or
placed on it). Consequently the mission layout has to take into account the peculiarities
of radio-tracking measurements. In particular the measurement will be sensitive primarily
to special components of the deflection in the geocentric frame because the measurement
will be carried out from a groundstation on Earth.

The methods of choice for the deflection measurement are ranging and differential very
large baseline interferometry (∆VLBI) [see Thornton & Border (2000) for a description of
these techniques and their performance]. In particular Doppler tracking can immediately
be excluded as a suitable method because the velocity change of the asteroid will be in
the order of 1 to 10 × 10−5 m/s whereas the absolute accuracy of present-day Doppler
spacecraft tracking is limited to approximately 10−3 m/s post-processing accuracy.

Radio ranging, in which the runtime of a signal to the spacecraft and back to the
ground station is measured, is sensitive primarily to the distance change between the
asteroid and the Earth. Hence this method will be sensitive to the deflection along the
line-of-sight between the asteroid and the Earth. As a rule of thumb we can expect a
post processing accuracy for the ranging of about 10 m, which will be dominated by the
uncertainty in the position of the asteroid centre of mass which respect to the Orbiter.

∆VLBI measures the angular position of the Orbiter on the sky relative to a known
astronomical radio source such as a quasar by triangulation with two ground stations.
Hence it is mainly sensitive to the asteroid’s change in angular position, i.e. the compo-
nent of the deflection orthogonal to the Earth line of sight. With present-day equipment
a post-processing accuracy of 50 nrad is achieved. For upcoming missions with new equip-
ment we can however assume a post-processing accuracy of 5 nrad, which we will assume
in our analysis [cf. Thornton & Border (2000) p. 65]. As a consequence, the deflection
needs to be assessed in terms of the projections onto the measurable quantities in the
geocentric frame.

While the above performance values give a rule of thumb, the precise expected perfor-
mance for the orbit determination of the asteroid from the radio measurements can only
be determined from a complete simulation. Important parameters, that will influence
the measurement performance, are the Yarkowsky effect on the asteroid, and the correct
estimation of it, the determination of the asteroid centre of mass position with respect to
the Orbiter, the knowledge of non-gravitational disturbances on the Orbiter, and effects
on the radio signal propagation.

Hence a determination of the measurement performance from simple astrodynamical
considerations remains elusive. Nevertheless the orbital change of the asteroid in the
measurement frame provides an important figure of merit. Such a figure of merit is
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Table 1. Asteroid and Impact parameters for the two Don-Quijote strawman targets.

Asteroid (10302) 1989 ML 2002 AT4

Asteroid parameters
a (AU) 1.27 1.87
perihelion (AU) 1.10 1.03
e 0.14 0.45
P (days) 524 931

Impact parameters
Impact date 6 Feb. 2018 9 April 2017
φ (deg) −29 −70
∆V (m/s) 10−5 6 × 10−5

∆a (m) 96.4 2232

in particular necessary for the design a suitable Impactor trajectory. Due to the large
number of possible trajectories, it is not feasible, in practice, to evaluate the suitability
of each of them by a full radio-tracking simulation. The simple geometrical quantities
provide a reliable criterion if a particular Impactor trajectory is suitable to achieve a
measurable deflection. The projections of the deflection onto the Earth line of sight x‖
and orthogonal to it x⊥ are given by

x‖ = ∆q (ir · i⊕A) + ∆s (iv · i⊕A) , (3.1)
x⊥ = ∆q |ir × i⊕A| + ∆s |iv × i⊕A| , (3.2)

where ir ≡ r/r, iv ≡ v/v and i⊕A is the unit vector along the Earth asteroid line of sight.
In a deflection demonstration mission the measurement time after the deflection will

typically be limited in order to limit the overall mission duration. For example, for the
Don Quijote study ESA aims at completing the deflection measurement within 1/2 year
after the impact. Noting that the period of a Near Earth Asteroid will be one year or
even significantly more it is immediately obvious that such a measurement time lies in
the last-minute regime of asteroid deflection. Hence it becomes necessary to build the
performance meter for the deflection on the full (albeit linearised) orbital change taking
into account both, secular and non-secular terms.

For the Don Quijote study ESA chose not to aim at a deflection that is optimally
measurable but instead has chosen a scenario that is close to a real case of long-term
deflection: An Impactor trajectory is considered optimal if it achieves a change of semi-
major axis of ∆a = 100 m at minimal mission cost and complexity. This corresponds to
an optimisation of the secular deflection. In order to determine if this is a viable strategy
it has to be considered if the trajectories optimised in this way lead to a deflection that
is measurable in the geocentric frame.

We approach this problem by considering trajectories to both Don Quijote targets that
have been optimised for a change of semimajor axis and evaluate the measurable deflec-
tion for them. The trajectories that we consider have been obtained in the framework of
an ongoing industrial phase A study of the Don Quijote mission by the company Deimos
Space. They assume a launch with the Russian Dnepr launcher and Earth escape with
a LISA-Pathfinder propulsion module. Furthermore the Sun-asteroid-Impactor angle is
limited to 70 deg during the terminal approach to ensure sufficient illumination for visual
terminal navigation.

Some key parameters of the target asteroid orbit and the parameters characterising
the impact are given in Table 1. The achievable velocity increments ∆V are based on
rough mass estimates for the asteroids and the assumption of a totally inelastic collision.
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Figures 1 to 4 display the result of our analysis. Figure 1 displays the deflection for the
asteroid (10302) 1989 ML. The maximal orbital change along the direction of the Earth
line-of-sight reaches approximately 550 m. At the end of the measurement period the
measurable deflection rapidly decays because the Earth has ‘overtaken’ the asteroid and
the tangential and and radial deflection partially compensate each other in the projection
along the Earth line-of-sight. The maximal measurable deflection is reached near the
opposition of the asteroid. Briefly before that the Earth line-of-sight is aligned with the
vector of the deflection. At this instance the measurable deflection and the total deflection
coincide. The change of the relative position of Earth causes a strong modulation of the
measurable deflection component. Clearly the secular term is neither representative for
the total deflection nor for the tangential deflection. Still in this scenario, that has been
optimised for the secular term, the measurable deflection is one order of magnitude
larger than the expected ranging accuracy in the second half of the measurement period.
This shows that a reliable measurement of the deflection is feasible in this scenario. The
angular deflection of 1989 ML seen from the Earth is displayed in Figure 2. The angular
deflection remains below the capabilities of ∆VLBI for the first 300 days after the impact.
A precise measurement of the deflection is not possible with this method.

Figure 3 shows the deflection achieved for 2002 AT4. The deflection is nearly one order
of magnitude larger than for 1989 ML. For this asteroid the observation period comprises
less than half of orbital period and is hence truly in the ‘last minute’ regime of deflection.
Also for this object the secular term is not representative of the total deflection or the
tangential deflection. Despite of the much larger deflection, the angular deflection is even
smaller than for 1989 ML. The reasons for this are the larger geocentric distance of the
asteroid during the measurement period and the higher eccentricity of the orbit by which
the tangential deflection is quite well aligned with the Earth direction for a considerable
part of the orbit after the impact.

The two examples show that for the limited measurement duration of a deflection
demonstration the secular and non-secular contributions to the deflection are equally im-
portant. The modulation of the measureable deflection by the relative motion of the Earth
has a strong influence on the magnitude of the measureable deflection. In particular, for
certain Earth-asteroid configurations the contributions of the radial and tangential de-
flection to the apparent deflection can compensate each other. The optimal measurement
situation is only achieved if the apparent deflection is optimised.

The two examples also demonstrate that the secular term (i.e. the semimajor axis
change) is by no means representative of the measurable deflection in a deflection demon-
stration mission.

4. Conclusions
In the present study we have analysed the orbital change of a Keplerian orbit by

an impulsive velocity change in the orbital plane. A solution for the relative dynamics
with respect to the unperturbed orbit was obtained up to linear order. The solution
is algebraic, analytic and explicit albeit depending on both the time after the velocity
change and the relative true anomaly difference to the point of velocity change. It is well
suited for an implementation into a delfection optimisation procedure.

The solution was formulated in a non-orthogonal coordinate system with its principle
axis along the unperturbed radius vector and the unperturbed velocity. This coordinate
system is advantageous because the secular change of the orbit is oriented tangentially to
the orbit and hence secular changes are limited to one of the coordinate vectors. From the
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Figure 1. Deflection of 1989 ML and
components thereof

Figure 2. Angular deflection of
1989 ML as seen from Earth

Figure 3. Deflection of 2002 AT4

and components thereof
Figure 4. Angular deflection of
2002 AT4 as seen from Earth

new solution an explicit analytic solution of the Tschauner-Hempel equations is easily
obtained by projecting the solution into the LHLV coordinate system.

As an application of the new solution we studied the orbital deflection of an asteroid
after the impact of a spacecraft. For a velocity change which is small compared to the or-
bital velocity of the asteroid the solution describes accurately the relative dynamics of the
perturbed orbit compared to the unperturbed one. The new formulation is in particular
relevant for the description of the perturbation in the first few orbital revolutions after
the impact. For long times after the impact the secular perturbation of orbit becomes
dominant because it exhibits a linear growth with time whereas all the other terms show
a periodicity shorter or equal to one orbital period. A scenario in which the non-secular
terms are still important is that of mid-term deflection in which a collision with Earth in
the next few orbital periods needs to be mitigated. The effect of the non-secular terms is
even more significant for a deflection demonstration mission because for practical reasons
one will want to measure the achieved deflection on a timescale that will hardly exceed
one year.

The equal importance of all contributions in the deflection measurement of a demon-
stration mission has been illustrated using two example cases which are based on the
Don Quijote study currently being carried out by ESA. For each of the two strawman
targets of the Don Quijote mission, 1989 ML and 2002 AT4, a trajectory optimised for a
maximal secular change of the asteroid orbit was considered. It was found that the secu-
lar term is not representative for the perturbation of the asteroid orbit that is achieved.
The reasons are two-fold: Firstly, the non-secular terms are of the same magnitude. Sec-
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ondly the measurement of the deflection is primarily sensitive to the deflection along the
Earth-asteroid line of sight. This singles out a projection of the total deflection that does
not coincide with the deflection tangential to the asteroid orbit. While the two effects
do not exclude the measurement of the deflection in the example cases, they delay the
reliable detectability of the deflection — in the case of 1989 ML by several month.

In conclusion, a deflection demonstration mission can either be designed as closely as
possible to a real case deflection by optimising the secular change of the asteroid orbit or
it can be optimised to achieve a large measurable deflection by maximising the deflection
along the Earth-asteroid line-of-sight. Choosing the latter option has the potential of
considerable cost savings because a smaller velocity change of the asteroid orbit will be
sufficient to verify the ability of carrying out a real-case deflection.

Trajectory planning that optimises the measurable deflection is readily accomplished
by implementation of the new analytic deflection description into an optimiser. Due to
the analyticity of the new expressions the optimisation procedure will only marginally
exceed the computational requirements of a trajectory optimisation that maximises the
secular deflection. An implementation of an optimisation procedure for the measurable
deflection in a deflection demonstration mission is currently underway.
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