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Traditionally most large storage rings for nuclear and high energy physics use magnetic particle optical
elements for focusing and bending. However, recent interest in the study of the possible existence of
an electric dipole moment (EDM) of protons, deuterons and others [1, 2] require the use of electrostatic
elements in rings, and would even greatly benefit from the use of purely electrostatic lattices without any
magnetic elements. Indeed the classical Thomas-BMT equation describing the motion of the spin due to
a magnetic dipole moment coupling to magnetic fields can be augmented to analogously also describe the
effects of a possibly present electric dipole moment coupling to electric fields, and the additional term
would lead to detectable effects.

We discuss how to address and resolve various particle optical problems appearing in the simulation of
such lattices. We begin with methods that allow the computation of all aberrations of individual elements
to high orders, typically up to order seven or nine, including the fringe fields of the elements. We also
discuss a problem arising in these rings, namely the possible non-conservation of the particle energies.

Dynamics in particle optics is usually expressed in terms of curvilinear coordinates [3] in which an orthog-
onal coordinate system {s,x,y} is attached to the reference particle, which is denoted by the subscript 0; s
is the position along the reference orbit, and, x and y are the horizontal and the vertical directions. Define
a= px/po, b=py/po, | = (t —19)x, & = (K —Kop)/Ko, where k = —vo)/(1 + 1) and K is the kinetic
energy. The variables in the optical coordinates Z= (x,a,y,b,l,d) form three canonically conjugate pairs,
and we arrive at the following equations of motion:
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Here h is the curvature of the reference orbit, = [Ko(1 + &) — ZeV]/mc? is a relativistic measure, and
Xe = pv/Ze and x,, = p/Ze are the electric and the magnetic rigidities which describe the strengths of
coupling to the electric and magnetic fields.

When comparing X, and J,, in SI units, we observe that because of the additional factor v, the electric
rigidity is around eight orders of magnitude larger for relativistic particles. Considering that magnets
easily reach strengths of 1 T and the superconducting bending magnets at the LHC are operated at ~ 8 T,
this quickly shows that to achieve bending similar to the magnetic case requires electric fields in the
neighborhood of 10° V/m. Yet actual practically achievable limits are a few tens of MV/m, which are also
the fields achievable in the Van de Graaff generator and incidentally also those found in lightning. This
is the reason that electrostatic elements are limited to moderate energies, and their desired use in storage
ring EDM studies represents a new frontier of their use.

Once the fields are known, the equations of motion determine the final status of the coordinate variables
Zy depending on the initial status Z;. Except for simplified models of electromagnetic elements, one may
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resort to numerical integrations of the differential equations on computers to relate Z £ and Z;. However,
using the Differential Algebraic (DA) method [4] one can readily obtain the transfer map .# relating final
conditions to initial conditions via Z =M (Z), where the order is limited only by computer resources.
But the use of DA methods is not limited to transfer maps, it allows the development of numerous other
interesting and useful computational algorithms. In fact, some DA-based algorithms can be used to ef-
ficiently handle the field description for the equations of motion. In fact, the DA PDE solver [4, 5] is
the main mechanism to supply the 3D fields including the derivatives at any position along the transfer
map flow integration for nontrivial electromagnetic elements in the code COSY INFINITY [6], freeing
the code from the need to rely on the conventional field computation methods such as FEM and BEM as
well as subsequent numerical interpolation and numerical differentiation. As we see below, also repetitive
tracking greatly benefits from the DA method since the transfer map has to be computed for only one
revolution, resulting in significant speed gains in tracking [7, 8].

Using a general form of the Laplace equation [9, 10, 11] expressed in curvilinear coordinates, we outline
the principle of the DA PDE solver. First, we bring the equation into a fixed point form:

- v ] W\ cd [ Vv
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where q;, b;, c¢; are functions of x, y, z. Viewing it as a DA fixed point problem, we provide the boundary
conditions V|,_q and (b2-dV/dy)|,_, as DA quantities, that is the field description in the midplane
as analytical functions of x and z. Then the right hand side is contracting with respect to y in the DA
framework [4], and we obtain V as a function of x, y, z by calculating the equation in the DA arithmetic
iteratively in finitely many steps.

For the main fields of an electromagnetic element, one carefully attempts to keep the field constant along
the reference trajectory. However, in the fringe field region, unavoidable nonlinearity in the motion and
hence aberrations are introduced due to the curvature of field lines, affecting particles at different locations
from reference orbit differently. This method of the DA PDE solver is useful to treat the fringe fields, often
the main source of non-deliberate nonlinearities. The process starts with a suitable analytical function
describing the field falloff, and a commonly used representation is the Enge function

1
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Enge Function, Dipole, Entrance: Default
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Figure 1. The profile of the default fringe field falloff of electrostatic deflectors and bending magnets.
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mode Xf ar Vf by Ly dep.
0.876407 -0.024984 0 0 -0.343123 | x;
9.282307 0.876407 0 0 -1.697380 | aq;
FR 3 0 0 1.000588 0.000121 0 Vi
0 0 9.686087 1.000588 0 b;
1.697380 0.343123 0 0 1.712180 | &
0.876408 -0.024984 0 0 -0.343120 | x;
9.282277 0.876407 0 0 -1.697352 | q;
FR 2.5 0 0 1.000588 0.000122 0 Vi
0 0 9.686121 1.000590 0 b;
1.697364 0.343120 0 0 1.712164 | §;
0.876407 -0.024984 0 0 -0.343120 | x;
FR 2.5 9.282277 0.876408 0 0 -1.697364 | q;
Reverse 0 0 1.000590 0.000122 0 Vi
0 0 9.686121 1.000588 0 b;
1.697352  0.343120 0 0 1.712164 |
0.876045 -0.025052 0 0 -0.343058 | x;
9.282348  0.876045 0 0 -1.697394 | q;
FR O 0 0 1.000000 0.000000 0 Vi
0 0 9.685965 1.000000 0 b;
1.697394  0.343058 0 0 1.712239 |

Table 1. Transfer maps of a cylindrical electric deflector with fringe fields (FR 3, 2.5) and without fringe
fields (FR 0). Digits differing from the FR 3 case are marked by bold face. (I¢|/;) = 1 for all cases; omitted
to save space.

which has the useful property that the function value smoothly changes from 1 (fully in the main field
corresponding to negative s) to O (fully outside and sufficiently large positive s). The scalar parameters
a; are chosen suitably, and D = 2d is the full aperture of the device. Figure 1 is an example of an Enge
function that is used for bending elements by default both for the electrostatic and the magnetic cases,
based on magnet measurement at SLAC. The horizontal axis shows the distance from the effective field
boundary in s/D, and the plot is drawn by the FP command in COSY INFINITY [6]. The fields of the
entire element now can be obtained via the DA PDE solver by supplying the necessary boundary conditions
as the DA multiplication of the s-dependent Enge function and the midplane main field.

An an example to study fringe field effects, we use a cylindrical electrostatic deflector, considered for a
storage ring for EDM experiments at Forschungszentrum Jiilich, which has an arc length of about 10 m to
deflect 22.5° with 24.7 m radius and a half aperture of d = 5 cm [12]. The transfer maps of the deflector
without and with fringe fields are computed in COSY INFINITY [6], and the linear parts are listed in
Table 1. In the field falloff profile seen in Figure 1, the fringe fields span about 3- D = 6d = 30 cm in s in
both the entrance and the exit of the element, about 1-D = 10 cm inside and about 2 - D = 20 cm outside, a
much smaller scale than the entire size of ~ 10 m, resulting in a relatively small discrepancy between the
cases without (FR 0) and with (FR 3, FR 2.5) fringe fields. Typically, after establishing an initial design
of beam lattices using hard edge elements, the effects of the fringe fields are evaluated, and the system is
iteratively tuned based on the findings.
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Figure 2. The field distribution of a cylindrical electrostatic deflector and trajectories of the reference
particle at the entrance fringe region. E, is multiplied by 10* to emphasize the subtlety of the fringe fields.
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Figure 3. Trajectories of the reference particle in a cylindrical electrostatic deflector. (a) The entire view
in the 22.5° deflector with 24.7 m radius, shown in m. (b) The exit area, shown in mm. The effective field
boundaries, and the crossing points expected by the hard edge model are marked by lines, and x’s.

Beyond the discrepancies observed in the transfer maps, one encounters the problem that the reference
trajectory becomes different from the originally considered ideal one using the hard edge model, which can
have far reaching consequences. For the example electrostatic deflector, the horizontal field components
(E.,Ey) in the midplane around the entrance are shown by vectors in Figure 2. For better visualization,
the z component E, is multiplied by 10* and also the z and x axis scales differ by a factor of 100. The
figure shows the entrance position of the reference orbit in the hard edge mode by a cross, and the actual
reference orbits for the fringe field modes FR 3 and FR 2.5 we now discuss.

The fringe field computation mode FR 2.5 calculates the high-order map from x = 0 from far left traveling
parallel to the z axis. While being the easiest to implement, in this case the reference trajectory throughout
the element does not form the expected mirror symmetry about the middle of the element. The linear
transfer map of the example electrostatic deflector computed in the mode FR 2.5 is shown in Table 1
together with its reverse map using the command MR to illustrate the difference. In order to enforce the
symmetry, it is necessary to first integrate the reference orbit backwards from the middle of the element,
and then shift and rotate the element to account for the resulting deviations from the hard edge case. This
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Xy ar Vi by dep.
1 6.696550e-9 0 0 X;
-6.696550e-9 1 0 0 a;
0 0 1 -4.702209¢-15 | y;
0 0 4.702209e-15 1 b;
3.061968e-12  -6.688603¢-16 0 0 2
1.339527e-8  4.364584e-16 0 0 x;a;
0 0 2.084504e-8  -4.517182e-5 | b}

Table 2. A transfer map of a non-relativistic spherical electrostatic deflector of 360°.

Xf ar yf bf deep.
0.786219  -0.686056 0 0] x
0.556601  0.786219 0 0| a

0 0 1 0|

0 0 0.600000 1 | b

0 0 -1 0| A,
-0.357515  0.072130 0 0| x?
-0.173442  -0.556601 0 0| »?

0 0 0.130739 0 | b

Table 3. A transfer map of a cylindrical electrostatic deflector followed by a vertical position offset,
My © Mey, Which agrees with A o M.

is done in the mode FR 3, and the obtained linear transfer map is listed in Table 1 as well. In this case,
the reversed map via MR agrees with the forward map as it should, and the starting x position at far left is
shifted accordingly; in the example element, ~ 0.1 mm offset is turned out. The reference trajectories of
the both cases are plotted in Figures 2 and 3.

Besides the problem of the trajectory offset that needs to be accounted for, there is another major problem
since particle optical elements with fringe fields are usually described by three separate parts, namely the
entrance fringe field, the main field, and the exit fringe fields. But in electrostatic elements, at the end
of the entrance fringe fields there are nonzero potentials affecting the particle’s energy. If this is now
followed by a shift or rotation of the reference orbit to line up with the subsequent main field, as is usually
done, this leads to a jump of potential and a violation of energy conservation. While seemingly small,
these effects can very detrimentally build up in repetitive systems as seen in Figure 4. Thus different from
common particle optical practice, the above discussed fringe field computation modes, FR 3 and FR 2.5,
in COSY INFINITY carry the computation throughout the entire element including the entrance and exit
fringe field regions.

We now describe some consistency tests and observations for electrostatic deflectors that allow far-reaching
cross checks of high-order aberrations. The first test is based on the observation that the motion is that
of a Kepler problem, which entails that in the non-relativistic case the motion should return to the exact
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Xf ar Yf bf dep.
0.055684  -0.481518 0 0 X;
2.070327  0.055684 0 0 a;

0 0 -1 -3.043659%-16 | y;

0 0 3.043659%-16 -1 b;

0 0 2.220446e-16  3.043659%e-16 | A
-0.996899  3.313187e-16 0 0 X7
2.070327  -0.944316 0 0 yibi
0.524939  -0.225147 0 0 X

0 0 -1.157618e-11  -4.060167 | y?b?

Table 4. A transfer map a spherical electrostatic deflector of 180° with tilts of plane .# o #p180 0 A .

original state after one full revolution, independent of initial conditions. Thus a transfer map of a spherical
deflector of 360° should be an identity map. For the test, the fringe fields must not be included. The short
code in COSY INFINITY

OV5 20 ; RPP 1e-6 ; UM ; ESP 1 360 0.1 ; PM 6 ;
computes such a map up to the fifth order, and part of the resulting output omitting lengthy intermediate
terms is listed in Table 2, demonstrating the intended result. A “lattice” consisting of n spherical deflectors
of angle 360° /n also produces the same result.

The second test is to demonstrate that the motion in an electrostatic cylindrical deflector is invariant under
translation along the y axis, and the y motion behaves like a drift. Furthermore, although the x motion
depends on y and b, an offset in the y direction does not alter the x motion. Thus, a transfer map of a
cylindrical deflector .#,; and a y offset map .#, need to commute; i.e., .#y o Mny = My 0 M. For
the test, we express the offset A, as a DA parameter, and the displacement map .#, can be produced by
an axis offsetting command SA in COSY INFINITY with DA(5) for the y offset. The displacement map
A py has (y|Ay) = —1 added into the identity map, and is listed in Table 5. The next short code computes
My 0 M up to the Sth order.

Ov521; RP 1000 1 1 ; UM ; ECL 1 PHI 0.08 ; SA 0 DA(5) ; PM 6 ;
And the next one computes .#; o .4 py up to the 5th order.

OV521; RP 1000 1 1 ; UM ; SA O DA(5) ; ECL 1 PHI 0.08 ; PM 6 ;
Here the deflection angle PHI is insignificant, and for the purpose of the computation we choose PHI :=
0.6%180/PI ; which amounts to about 34.36°. The resulting output showing some selected aberrations
is listed in Table 3. The two resulting transfer maps agree up to the accuracy of 10~!4, succeeding the test.
It is worth noting that the deflector transfer map ., is the same as the one in Table 3 except for missing
the A, dependent term in the 5th line.

A similar displacement test can be performed for an electrostatic spherical deflector, as it has to be invariant
under any rotation around an axis through the center. This test involves a tilt of the plane of motion through
the deflector along a central axis parallel to the reference orbit. Such a tilt of plane consists of a series
of misalignment actions in the optical system; first translate the system in the x direction to the spherical
center for the amount of radius R, next rotate the system any angle 0, then translate the system back to the
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coef. My \ AN comment

1 (x[x), (ala), (yly), (b]b) identity

-1 WlAy) | WD), GlxA), (blad)

[ (y2), (abXr)
-0.500000 (x|A?), (x|xA?), (alaA?), (Y|yA?), (b|bA?) | 0.500000=1/2!
0.166667 (Y|A3), (y[xA3), (blal?) 0.166667=1/3!
-0.166667 (x|[yA3), (albL?)
0.041667 (x|AY), (x|xAY), (alars?), (Y|yAH), (b|bA*) | 0.041667=1/4!

Table 5. Transfer maps of the vertical offset .#, and the tilt of plane .Zx .

sphere of the same radius R. This corresponds to a move from the equator to the north on the same longitude
to the location with the latitude of 6. A corresponding map of plane tilting .#» can be achieved using the
axis offset command SA and the axis rotation command RA in COSY INFINITY by the following code

SA -R O ; RADA(S) ; SAR O ;
where we are setting the tilt angle as a DA parameter. Now choosing a spherical deflector with a deflection
of 180° entails that the reference orbit after the deflection is parallel to the reference orbit before the
deflection, but points in the opposite direction. Indeed, for the purpose of matching a move of a 180°
deflection on the equator, one first moves northward to latitude 6 , then travels for 180° around the center
to arrive opposite to the starting location and thus at latitude —60, and then has to move back north by
the angle 40 to reach the equator. So, a transfer map of the deflection combined with two tilts of plane
M 0o Mip1go 0 A, must agree with the transfer map of the deflection alone .#,130. We compute .#,130
up to the 5th order by the code

ovbs521; RP 10001 1 ; UM ; ESP 1 180 0.1 ; PM 6 ;
While .# o Mp130 0 A p can be computed by the code

PROCEDURE RRA R T ; SA -R O ; RA T+*DA(5) ; SA R O ; ENDPROCEDURE ;

Ovs521; RP10001 1 ; UM ; RRA1 T ; ESP 1 180 0.1 ; RRA1 T ; PM 6 ;
Since the RA command expects angles in degrees, T := 180/PI ; is supplied to obtain the output of
A in terms of radian, which is listed in Table 5. Similarly the result of computing .#Zx o #1580 © A
is listed in Table 4, again omitting lengthy intermediate terms and observing that A dependent terms are
negligible. Apparently this 5th order map agrees with .#, 150 up to an accuracy of 107, as it should from
the theoretical discussion.

To assess the discussed methods in practical settings, we perform long term nonlinear tracking. Using
an earlier studied example of the electrostatic cylindrical deflector of 22.5° deflection, 24.7 m radius and
half aperture d = 5 cm, we set up a very simple cell by adding a drift of 0.6 m. We compare various
computation orders up to seven and the fringe field computation modes FR 0, FR 2.5, FR 3, and the
classical piece-by-piece computation mode frequently used in particle optics. Particles are launched at
x =5 mm, 10 mm, 15 mm and 20 mm, the 6D positions are tracked and we plot the phase space position
in the x-a plane for every revolution consisting of 16 cells for 5000 turns.

The resulting FR 0 motion with no fringe field is stable and looks the same throughout the studied compu-
tation orders; the 7th order case is shown in Figure 4 (a). When fringe fields are considered, the situation
gets interesting. Both modes FR 3 and FR 2.5 provide stable motion for all orders computed, and the x-a
plots look indistinguishable from the FR O case; the 7th order case with FR 3 is shown in Figure 4 (d). In
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Figure 4. Long term tracking of an electrostatic cylindrical deflector, comparing various fringe field
modes (a: FR 0. b, c: piece-by-piece mode. d: FR 3) and the computation orders (a, b, d: 7th. c: 3rd).

the piece-by-piece computation method to treat the fringe fields, we expect to observe some violations of
the energy conservation. Indeed when performing long term tracking, we observe it in (b) for the order
7 case and in (c¢) for order 3 in 4. No difference is visible between (b) and (c), and so we conclude that
the observed effects are due to the energy mismatch in the piece-by-piece computation, the bulk of which
already manifests itself in low orders and which is not remedied by using higher orders.

From basic principles of charged particle motions, our discussion started from distinct properties of the
electrostatic and the magnetic elements for the purpose of bending charged beams. Based on the Differ-
ential Algebraic (DA) method, efficient techniques to compute high order transfer maps, the necessary 3D
fields including the edge region, and the effects of fringe fields are discussed. They are illustrated using
both benchmarks for cross checking as well as long term repetitive tracking examples that exhibit various
difficulties that can arise in practice [13].
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