ROOTS OF DEHN TWISTS ABOUT SEPARATING CURVES

KASHYAP RAJEEVSARATHY

(Received 10 December 2011; accepted 4 March 2013; first published online 17 June 2013)

Abstract

Let C be a curve in a closed orientable surface F of genus $g \geq 2$ that separates F into subsurfaces \widetilde{F}_{i} of genera g_{i}, for $i=1,2$. We study the set of roots in $\operatorname{Mod}(F)$ of the Dehn twist t_{C} about C. All roots arise from pairs of $C_{n_{i}}$-actions on the \widetilde{F}_{i}, where $n=\operatorname{lcm}\left(n_{1}, n_{2}\right)$ is the degree of the root, that satisfy a certain compatibility condition. The $C_{n_{i}}$-actions are of a kind that we call nestled actions, and we classify them using tuples that we call data sets. The compatibility condition can be expressed by a simple formula, allowing a classification of all roots of t_{C} by compatible pairs of data sets. We use these data set pairs to classify all roots for $g=2$ and $g=3$. We show that there is always a root of degree at least $2 g^{2}+2 g$, while $n \leq 4 g^{2}+2 g$. We also give some additional applications.

2010 Mathematics subject classification: primary 57M6O.
Keywords and phrases: surface, mapping class, Dehn twist, separating curve, root.

1. Introduction

Let F be a closed orientable surface of genus $g \geq 2$ and C be a simple closed curve in F. Let t_{C} denote a left-handed Dehn twist about C.

When C is a nonseparating curve, the existence of roots of t_{C} is not so apparent. In their paper [5], Margalit and Schleimer showed the existence of such roots by finding elegant examples of roots of t_{C} whose degree is $2 g+1$ on a surface of genus $g+1$. This motivated an earlier collaborative work with McCullough [6] in which we derived necessary and sufficient conditions for the existence of a root of degree n. As immediate applications of the main theorem in the paper, we showed that roots of even degree cannot exist and that $n \leq 2 g+1$. The latter shows that the Margalit-Schleimer roots achieve the maximum value of n among all the roots for a given genus.

Suppose that C is a curve that separates F into subsurfaces \widetilde{F}_{i} of genera g_{i} for $i=1,2$, where $g_{1} \geq g_{2}$. (For convenience, we will denote this by $F=F_{1} \#_{C} F_{2}$, where the F_{i} are the closed surfaces of genus g_{i} obtained by coning the \widetilde{F}_{i}.) It is evident that roots of t_{C} exist. As a simple example, we can obtain a square root of t_{C} by rotating one of the subsurfaces \widetilde{F}_{i} on either side of C by an angle π, producing a half-twist near C. As in the case for nonseparating curves, a natural question is whether we can

[^0]give necessary and sufficient conditions for the existence of a root of t_{C} of degree n. In this paper, we derive such conditions and apply them to obtain information about the possible degrees.

We will use a special class of C_{n}-actions. A nestled (n, ℓ)-action is defined to be an orientation-preserving C_{n}-action on an oriented surface F for which the points fixed by at least one nontrivial element of C_{n} form $\ell+1$ orbits, one of which is a distinguished point fixed by all elements. In terms of the quotient orbifold, there are $\ell+1$ cone points, one of which is a distinguished cone point of order n. Nestled (n, ℓ)-actions are called equivalent if they are conjugate by a homeomorphism taking the distinguished fixed point of one to that of the other. The term nestled is motivated by the fact that in our context, these actions appear as portions of larger actions, nestled, so to speak, inside them. The equivalency of two such actions will be given by the existence of a conjugating homeomorphism that also satisfies an additional condition on their distinguished fixed points.

Two equivalence classes of actions will form a compatible pair if the turning angles of their representative actions around their distinguished fixed points add up to $2 \pi / n$. The key topological idea in our theory is defining nestled (n_{i}, ℓ_{i})-actions on the subsurfaces \tilde{F}_{i} for $i=1,2$ so that they form a compatible pair, thus giving a root of degree $n=\operatorname{lcm}\left(n_{1}, n_{2}\right)$. Conversely, for each root of degree n, we reverse this argument to produce a corresponding compatible pair.

Thereom 3.4. Let $F=F_{1} \#_{C} F_{2}$ be a closed oriented surface of genus $g \geq 2$. Then the conjugacy classes in $\operatorname{Mod}(F)$ of roots of t_{C} of degree n correspond to the compatible pairs $\left(\left[h_{1}\right],\left[h_{2}\right]\right)$ of equivalence classes of nestled $\left(n_{i}, \ell_{i}\right)$-actions h_{i} on F_{i} of degree n.

In Section 4, we introduce the abstract notion of a data set of degree n. As in the case of nonseparating curves [6], a data set of degree n is basically a tuple that encodes the essential algebraic information required to describe a nestled action. We show that equivalence classes of nestled (n, ℓ)-actions actually correspond to data sets, that is, each class has a corresponding data set representation. We use Thurston's orbifold theory [10, Ch. 13] to prove this result. A good reference for this theory is Scott [9]. Data sets D_{i} of degree n_{i}, for $i=1,2$, form a data set pair $\left(D_{1}, D_{2}\right)$ when they satisfy the formula $\left(n / n_{1}\right) k_{1}+\left(n / n_{2}\right) k_{2} \equiv 1 \bmod n$, where the turning angles at the centers of the disks are $\left(2 \pi k_{i} / n_{i}\right) \bmod 2 \pi$ and $n=\operatorname{lcm}\left(n_{1}, n_{2}\right)$. In Theorem 5.2, we show that this number-theoretic condition is an algebraic equivalent of the compatibility condition for actions, thus proving that data set pairs correspond bijectively to conjugacy classes of roots. Theorem 5.2 is essentially a translation of our topological theory of roots to the algebraic language of data sets. An immediate application of Theorem 5.2 is the following corollary.

Corollary 5.3. Suppose that $F=F_{1} \#_{C} F_{2}$. Then there always exists a root of the Dehn twist t_{C} about C of degree $\operatorname{lcm}\left(4 g_{1}, 4 g_{2}+2\right)$.

In Section 6, we classify the roots for the closed orientable surfaces of genus 2 and 3. In Section 7, we obtain some bounds on the orders of spherical nestled
actions, that is, nestled actions whose quotient orbifolds are topologically spheres. For example, we prove that all nestled (n, ℓ)-actions for $n \geq \frac{2}{3}(2 g-1)$ have to be spherical. In Section 8, we use the main theorem and the results obtained in Section 7 to obtain the following upper bound on n.

Theorem 8.6. Let $F=F_{1} \#_{C} F_{2}$ be a closed oriented surface of genus $g \geq 2$. Suppose that n denotes the degree of a root of the Dehn twist t_{C} about C. Then $n \leq 4 g^{2}+2 g$.

We show in Proposition 8.9 that if we have a nestled (n, ℓ)-action on F of odd order, then $n \leq 3 g+3$. Using this result, we refine the upper bound derived in Theorem 8.6 to obtain a sharper upper bound for n for $g \geq 10$. Though Theorem 8.6 gives a better upper bound for n for $g \leq 13$, the bound in Theorem 8.14 seems to provide a considerable improvement for $g \geq 14$.

Theorem 8.14. Let $F=F_{1} \#_{C} F_{2}$ be a closed oriented surface of genus $g \geq 10$. Suppose that n denotes the degree of a root of the Dehn twist t_{C} about C. Then $n \leq \frac{16}{5} g^{2}+$ $12 g+\frac{45}{4}$.

For $g \geq 14$, in Table 2, we provide calculations which indicate the degree of improvement of this estimate.

2. Nestled (n, ℓ)-actions

We introduce nestled (n, ℓ)-actions in this section and give an example of such an action. We know that an action of a group G on a topological space X is defined as a homomorphism $h: G \rightarrow \operatorname{Homeo}(X)$. Since we are interested only in C_{n}-actions on F, we will fix a generator t for C_{n} and identify the finite order homeomorphism $h(t) \in \operatorname{Homeo}(F)$ as the generating homeomorphism of the action. For the sake of notational convenience, throughout this section and later, we will use h to also denote the generating homeomorphism $h(t)$ of the nestled action. As mentioned earlier, nestled actions will play a crucial role in the theory we will develop for roots of Dehn twists.

Definition 2.1. An orientation-preserving C_{n}-action on a surface F of genus at least 1 is said to be a nestled (n, ℓ)-action if either $n=1$, or $n>1$ and:
(i) the action has at least one fixed point;
(ii) the points fixed by some nontrivial element of C_{n} form $\ell+1$ orbits, one of which is a distinguished point fixed by all elements.

This is equivalent to the condition that the quotient orbifold of the action has $\ell+1$ cone points, one of which is a distinguished cone point of order n.

A nestled (n, ℓ)-action is said to be trivial if $n=1$, that is, if it is the action of the trivial group on F. In this case only, we allow a cone point of order one in the quotient orbifold. The distinguished cone point can then be any point in F, and we require $\ell=0$.

Figure 1. A nestled $(2 g+1,2)$-action for $g=1$.

Defintition 2.2. Assume that F has a fixed orientation and fixed Riemannian metric. Let h be a nestled (n, ℓ)-action on F with a distinguished fixed point P. The turning angle $\theta(h)$ for h is the angle of rotation of the induced isomorphism h_{*} on the tangent space T_{P}, in the direction of the chosen orientation.

Example 2.3 (Margalit and Schleimer [5]). Rotate a regular ($4 g+2$)-gon with opposite sides identified about its center P through an angle $2 \pi(g+1) / 2 g+1$ as shown in Figure 1. Identifying the opposite sides of the polygon, we get a $C_{2 g+1}$-action h on the closed orientable surface S_{g} of genus g with three fixed points denoted by P, x and y. Since the quotient orbifold has three cone points of order $2 g+1$, this defines a nestled ($2 g+1,2$)-action on S_{g}. If we choose P as the distinguished fixed point for the action h, then $\theta(h)=2 \pi(g+1) / 2 g+1$.

Remark 2.4. Every nestled (n, ℓ)-action has an invariant disk around its distinguished fixed point. Indeed, let F be a closed oriented surface with a fixed Riemannian metric ρ, and let h be a nestled (n, ℓ)-action on F with a distinguished fixed point P. Consider the Riemannian metric $\bar{\rho}$ defined by

$$
\langle v, w\rangle_{\bar{\rho}}=\frac{1}{n} \sum_{i=1}^{n}\left\langle h_{*}^{i}(v), h_{*}^{i}(w)\right\rangle_{\rho},
$$

where $v, w \in T_{P} F$. Under this metric $\bar{\rho}, h$ is an isometry. Since there exists $\epsilon>0$ such that $\exp _{P}: B_{\epsilon}(0) \subset T_{P} F \rightarrow B_{\epsilon}(P) \subset F$ is a diffeomorphism, h preserves the disk $B_{\epsilon}(P)$.

Definition 2.5. Two nestled (n, ℓ)-actions h and h^{\prime} on F with distinguished fixed points P and P^{\prime} are equivalent if there exists an orientation-preserving homeomorphism $t: F \rightarrow F$ such that:
(i) $t(P)=P^{\prime}$;
(ii) $t h t^{-1}$ is isotopic to h^{\prime} relative to P^{\prime}.

Remark 2.6. By definition, equivalent nestled (n, ℓ)-actions h and h^{\prime} on F are conjugate in $\operatorname{Mod}(F)$. Since conjugate homeomorphisms have the same fixed point data, we have that $\theta(h)=\theta\left(h^{\prime}\right)$.

3. Compatible pairs and roots

Suppose that C is a curve that separates a surface F of genus g into two subsurfaces. As mentioned earlier, the central idea is defining compatible nestled actions on the subsurfaces that fit together to give a degree n root of the Dehn twist t_{C}. We will show in Theorem 3.4 that compatible pairs of equivalent actions correspond bijectively to conjugacy classes of roots of t_{C}.
Notation 3.1. Suppose that C separates a closed orientable surface F into subsurfaces of genera g_{1} and g_{2}, where $g_{1} \geq g_{2}$. Let F_{i} denote the closed surface obtained by coning the subsurface of genus g_{i}. We will think of F as $\left(F_{1}, C\right) \#\left(F_{2}, C\right)$, that is, the surface obtained by taking the connected sum of the F_{i} along C. For convenience, we will denote this by $F=F_{1} \#_{C} F_{2}$.

Definition 3.2. Equivalence classes [h_{i}] of nestled (n_{i}, ℓ_{i})-actions h_{i} on closed oriented surfaces F_{i}, for $i=1,2$, are said to form a compatible pair $\left(\left[h_{1}\right],\left[h_{2}\right]\right)$ if $\theta\left(h_{1}\right)+\theta\left(h_{2}\right)=$ $2 \pi / n \bmod 2 \pi$.

The integer $n=\operatorname{lcm}\left(n_{1}, n_{2}\right)$ is called the degree of the compatible pair. We may treat ($\left.\left[h_{1}\right],\left[h_{2}\right]\right)$ as an unordered pair, since $\left(\left[h_{2}\right],\left[h_{1}\right]\right)$ is a compatible pair if and only if ($\left[h_{1}\right],\left[h_{2}\right]$) is.
Lemma 3.3. Let F be a compact orientable surface, possibly disconnected. If h : $F \rightarrow F$ is a homeomorphism such that h^{n} is isotopic to $i d_{F}$, then h is isotopic to a homeomorphism j with $j^{n}=i d_{F}$.
Proof. When F is connected, this is Nielsen's theorem [7]. Suppose that F is not connected. We may assume that h acts transitively on the set of components $F_{1}, F_{2}, \ldots, F_{\ell}$ of F. Choose notation so that $\left.h\right|_{F_{i}}: F_{i} \rightarrow F_{i+1}$ and $\left.h\right|_{F_{\ell-1}}: F_{\ell-1} \rightarrow$ F_{1}. Since $h^{n}=\left(h^{l}\right)^{n / \ell} \simeq i d_{F}$, Nielsen's theorem implies that $\left.h^{\ell}\right|_{F_{1} \simeq j_{1}}$ where j_{1} is a homeomorphism on F_{1} with $j_{1}^{n / \ell}=i d_{F_{1}}$. Therefore, $i d_{F_{1}} \simeq j_{1} \circ\left(\left.h^{\ell}\right|_{F_{1}}\right)^{-1}$ via an isotopy K_{t}. Define an isotopy H_{t} of h by $\left.H_{t}\right|_{F_{i}}=h$ for $1 \leq i \leq \ell-2$ and $\left.H_{t}\right|_{F_{\ell-1}}=$ $\left.K_{t} \circ h\right|_{F_{t-1}}$. Then $\left.H_{1}\right|_{F_{t-1}}=K_{1} \circ h=j_{1} \circ\left(\left.h^{\ell}\right|_{F_{1}}\right)^{-1} \circ h$. We see that

$$
\left(\left.H_{1}\right|_{F_{i}}\right)^{\ell}=h^{i} \circ\left(j_{1} \circ h^{1-\ell}\right) \circ h^{\ell-1-i}=h^{i} \circ j_{1} \circ h^{-i}
$$

and

$$
\left(\left.H_{1}\right|_{F_{i}}\right)^{n}=\left(\left.H_{1}\right|_{F_{i}} ^{\ell}\right)^{n / \ell}=h^{i} \circ j_{1}^{n / \ell} \circ h^{-i}=h^{i} \circ h^{-i}=i d_{F_{i}} .
$$

The required homeomorphism is $j=H_{1}$.
Theorem 3.4. Let $F=F_{1} \#_{C} F_{2}$ be a closed oriented surface of genus $g \geq 2$. Then the conjugacy classes in $\operatorname{Mod}(F)$ of roots of t_{C} of degree n correspond to the compatible pairs $\left(\left[h_{1}\right],\left[h_{2}\right]\right)$ of equivalence classes of nestled $\left(n_{i}, \ell_{i}\right)$-actions h_{i} on F_{i} of degree n.

Figure 2. The surface F with the separating curve C and the tubular neighborhood N of C.

Proof. We will first prove that every root of degree n yields a compatible pair of ($\left[h_{1}\right],\left[h_{2}\right]$) of degree n.

Fix a closed annulus neighborhood N of C. Let \widetilde{F}_{i}, for $i=1,2$, be the components of $\overline{G-N}$, and denote the genus of \widetilde{F}_{i} by g_{i}. We fix coordinates on F so that the subsurface \widetilde{F}_{1} is to the left of C as shown in Figure 2. By isotopy we may assume that $t_{C}(C)=C, t_{C}(N)=N$, and $t_{C}{\widetilde{F_{i}}}=i d_{\widetilde{F}_{i}}$ for $i=1,2$.

Suppose that h is an nth root of t_{C}. We have $t_{C} \simeq h t_{C} h^{-1} \simeq t_{h(C)}$, which implies that $h(C)$ is isotopic to C. Changing h by isotopy, we may assume that h preserves C and takes N to N. Put $\widetilde{h_{i}}=\left.h\right|_{\widetilde{F}_{i}}$ for $i=1,2$. Since $h^{n} \simeq t_{C}$ and both preserve C, there is an isotopy from h^{n} to t_{C} preserving C and hence one taking N to N at each time. That is, \widetilde{h}_{1}^{n} is isotopic to $i d_{\widetilde{F}_{1}}$ and \widetilde{h}_{2}^{n} is isotopic to $i d_{\widetilde{F}_{2}}$. By Lemma 3.3, \widetilde{h}_{i} is isotopic to a homeomorphism whose nth power is $i d_{\widetilde{F}_{i}}$ for $i=1,2$. So we may change \widetilde{h}_{i} and hence h by isotopy to assume that $\widetilde{h}_{i}^{n}=i d_{\widetilde{F}_{i}}$ for $i=1,2$.

Let n_{i} be the smallest positive integer such that $\widetilde{h}_{i}^{n_{i}}=i d_{\widetilde{F}_{i}}$ for $i=1,2$. Let $s=$ $\operatorname{lcm}\left(n_{1}, n_{2}\right)$. Clearly, $s \mid n$ since $n_{i} \mid n$. Also, $h^{s}=i d_{\widetilde{F}_{1} \cup \widetilde{F}_{2}}$ which implies that $h^{s}=t_{C}{ }^{d}$ for some integer d. Hence, $\left(h^{s}\right)^{n / s}=\left(t_{C}{ }^{d}\right)^{n / s}$, that is, $h^{n}=t_{C}{ }^{d n / s}$. We get $t_{C}=t_{C}{ }^{d n / s}$, which implies that $d n / s=1$ since no higher power of t_{C} is isotopic to t_{C}. Hence, $d=1$ and $n=s=\operatorname{lcm}\left(n_{1}, n_{2}\right)$.

Assume for now that h does not interchange the sides of C. We fill in the boundary circles of \widetilde{F}_{1} and \widetilde{F}_{2} with disks to obtain the closed orientable surfaces F_{1} and F_{2} with genera g_{1} and g_{2}. We then extend $\widetilde{h_{i}}$ to a homeomorphism h_{i} on F_{i} by coning. Thus h_{i} defines a $C_{n_{i}}$-action on F_{i} where $n_{i} \mid n, C_{n_{i}}=\left\langle h_{i} \mid h_{i}^{n_{i}}=1\right\rangle$ for $i=1,2$, and $\underline{\operatorname{lcm}\left(n_{1}, n_{2}\right)}=n$. Since the homeomorphism h_{i} fixes the center point P_{i} of the disk $\overline{F_{i}-\widetilde{F}_{i}}$, we choose P_{i} as the distinguished fixed point for h_{i}. So h_{i} defines a nestled (n_{i}, ℓ_{i})-action on F_{i} for some ℓ_{i}.

The orientation on F restricts to orientations on the F_{i}, so that we may speak of rotation angles $\theta\left(h_{i}\right)$ for h_{i}. Then the rotation angle $\theta\left(h_{i}\right)=2 \pi k_{i} / n_{i}$ for some k_{i} with $\operatorname{gcd}\left(k_{i}, n_{i}\right)=1$. As seen in Figure 3, the difference in turning angles

Figure 3. The local effect of h_{1} and h_{2} on disk neighborhoods of P_{1} and P_{2} in F_{1} and F_{2}, and the effect of h on the neighborhood N of C in F. Only the boundaries of the disk neighborhoods are contained in \widetilde{F}_{i}, where they form the boundary of N. The rotation angle $\theta\left(h_{1}\right)$ is $2 \pi k_{1} / n_{1}$ and the angle $\theta\left(h_{2}\right)$ is $2 \pi k_{2} / n_{2}=2 \pi\left(1 / n-k_{1} / n_{1}\right)$.
equals $2 \pi k_{2} / n_{2}-\left(-2 \pi k_{1} / n_{1}\right)=2 \pi / n$, giving $\theta\left(h_{1}\right)+\theta\left(h_{2}\right) \equiv 2 \pi / n \bmod 2 \pi$. That is, $\left(h_{1}, h_{2}\right)$ is a compatible pair.

Suppose now that h interchanges the sides of C. Then h must be of even order, say $2 n$, and h^{2} preserves the sides of C and is of order n. Since the actions of $\left.h^{2}\right|_{\widetilde{F}_{i}}$ on the \widetilde{F}_{i} are conjugate by $\left.h\right|_{\widetilde{F}_{1} \cup \widetilde{F}_{2}}$, these actions will induce conjugate C_{n}-actions on the coned surfaces F_{i}. Consequently, these induced actions will have the same turning angles at the centers P_{i} of the coned disks of F_{i}. For this compatible pair of nestled $\left(n_{i}, \ell_{i}\right)$-actions, say $\left(h_{1}, h_{2}\right)$, associated with h^{2}, we must have $\theta\left(h_{1}\right)=\theta\left(h_{2}\right)=\pi / n$ and $n_{1}=n_{2}=n$. If we extend to N using a simple left-handed twist, the twisting angle is $2 \pi k / n$, and consequently $h^{2 n}=t_{C}^{2 k}$. Other extensions will differ from this by full twists, giving $h^{2 n}=t_{C}^{2 k+2 j n}$ for some integer j. In any case, $h^{2 n}$ cannot equal t_{C}. This proves that h cannot reverse the sides of C.

Suppose that we have roots h and h^{\prime} that are conjugate in $\operatorname{Mod}(F)$, that is, there exists $t \in \operatorname{Mod}(F)$ such that $h^{\prime}=t \circ h \circ t^{-1}$. Then $\left(h^{\prime}\right)^{n}=t \circ h^{n} \circ t^{-1}$, that is, $t_{C}=t \circ t_{C} \circ t^{-1}=t_{t(C)}$. This shows that C and $t(C)$ are isotopic curves. Changing t by isotopy, we may assume that $t(C)=C$ and $t(N)=N$. Let t_{i}, h_{i} and h_{i}^{\prime} respectively denote the extensions of $\left.t\right|_{\widetilde{F}_{i}},\left.h\right|_{\widetilde{F}_{i}}$ and $\left.h^{\prime}\right|_{\widetilde{F}_{i}}$ to F_{i} by coning.

Assume for now that t does not exchange the sides of C. Since t, h and h^{\prime} all preserve N, we may assume that the isotopy from $t \circ h \circ t^{-1}$ to h^{\prime} preserves N, and consequently each $t_{i} \circ h_{i} \circ t_{i}^{-1}$ is isotopic to h_{i}^{\prime} preserving P_{i}. Since t_{i} takes P_{i} to P_{i}, h_{i} and h_{i}^{\prime} are equivalent as nestled (n_{i}, ℓ_{i})-actions on F_{i}, so h and h^{\prime} produce the same compatible pair ([$\left.h_{1}\right],\left[h_{2}\right]$).

Suppose that t exchanges the sides of C. Then $g_{1}=g_{2}, h_{3-i}^{\prime} \simeq t_{i} \circ h_{i} \circ t_{i}^{-1}$ and $t_{i}\left(P_{i}\right)=P_{3-i}$. So the actions h_{1} and h_{2}^{\prime} are equivalent, as are the actions h_{1}^{\prime} and h_{2}. Therefore, the (unordered) compatible pairs for the two roots are the same.

Conversely, given a compatible pair ($\left[h_{1}\right],\left[h_{2}\right]$) of equivalence classes of nestled $\left(n_{i}, \ell_{i}\right)$-actions, we can reverse the argument to produce a root h. For let P_{i} denote the distinguished fixed point of h_{i} and let p_{i} denote the corresponding cone point of

Figure 4. The orbifold O.
order n_{i} in the quotient orbifold O_{i}. By Remark 2.4, there exists an invariant disk D_{i} for h_{i} around p_{i}. Removing D_{i} produces the surfaces \widetilde{F}_{i}, and attaching an annulus N produces the surface F of genus g. Condition (ii) on compatible pairs ensures that the rotation angles work correctly to allow an extension of $\left.\left.h_{1}\right|_{\widetilde{F}_{1}} \cup h_{2}\right|_{\widetilde{F}_{2}}$ to an h with h^{n} being a single Dehn twist about C.

It remains to show that the resulting root h of t_{C} is determined up to conjugacy in the mapping class group of F. Suppose that $h_{i}^{\prime} \in\left[h_{i}\right]$. Let P_{i}^{\prime} denote the distinguished fixed point for h_{i}^{\prime}, and let D_{i}^{\prime} be an invariant disk for h_{i}^{\prime} around P_{i}^{\prime}. Removing the D_{i}^{\prime} produces surfaces $\widetilde{F}_{i}^{\prime} \cong F_{i}$, for $i=1,2$, and attaching an annulus N^{\prime} with a $(1 / n)$ th twist, extends $\left.\left.h_{1}^{\prime}\right|_{\widetilde{F}_{1}^{\prime}} \cup h_{2}^{\prime}\right|_{\widetilde{F}_{2}^{\prime}}$ to a homeomorphism h^{\prime} on a surface $F^{\prime} \cong F$ of genus g. Since $h_{i}^{\prime} \in\left[h_{i}\right]$, by definition, there exists t_{i} such that $t_{i}\left(P_{i}\right)=P_{i}^{\prime}$ and $t_{i} \circ h_{i} \circ t_{i}^{-1} \simeq h_{i}^{\prime}$ rel P_{i}^{\prime} via an isotopy H_{i} in $\operatorname{Mod}\left(F_{i}^{\prime}\right)$. Since h_{i} and h_{i}^{\prime} have finite order and are conjugate up to isotopy by t_{i}, we may assume that $t_{i}\left(D_{i}\right)=D_{i}^{\prime}$ and, identifying F and F^{\prime} using t, that the isotopy H_{i} from $t_{i} \circ h_{i} \circ t_{i}^{-1}$ to h_{i}^{\prime} is relative to D_{i}. With respect to this identification, we choose a $k: N \rightarrow N$ such that $\left.h^{\prime}\right|_{N}=\left.k \circ h\right|_{N} \circ k^{-1}$. Now define $t: F \rightarrow F$ by $\left.t\right|_{\widetilde{F}_{i}}=\left.h_{i}\right|_{\widetilde{F}_{i}}$, and $\left.t\right|_{N}=k$. Then $h^{\prime} \simeq t \circ h \circ t^{-1}$ via an isotopy H given by $\left.H\right|_{\widetilde{F}_{i}}=\left.H_{i}\right|_{\widetilde{F}_{i}}$, and $\left.H\right|_{N}=i d_{N}$.

4. Nestled (n, ℓ)-actions and data sets

In this section, we will introduce the language of data sets of degree n in order to algebraically encode equivalence classes of nestled (n, ℓ)-actions. We will prove that the equivalence classes of nestled (n, ℓ)-actions actually correspond to data sets of length ℓ.

Notation 4.1. For a nestled (n, ℓ)-action h on a closed orientable surface F of genus g, we will use the following notation throughout this section. Let O be the quotient orbifold for the action and let \widetilde{g} be the genus of its underlying 2-manifold. Let P be the distinguished fixed point of h and let p be the cone point in O of order n that is its image in O. Let p_{1}, \ldots, p_{ℓ} be the other possible cone points of O, if any.

Figure 4 shows a generator α of the orbifold fundamental group $\pi_{1}^{\text {orb }}(O)$ that goes around the point p, and generators $\gamma_{i}, 1 \leq i \leq \ell$ going around p_{i}. Let a_{j} and b_{j}, $1 \leq j \leq \widetilde{g}$, be standard generators of the underlying surface of O, chosen to give the
following presentation of $\pi_{1}^{\mathrm{orb}}(O)$:

$$
\begin{aligned}
& \pi_{1}^{\text {orb }}(O)=\left\langle\alpha, \gamma_{1}, \ldots, \gamma_{\ell}, a_{1}, b_{1}, \ldots, a_{\widetilde{g}}, b_{\widetilde{g}}\right| \\
& \left.\quad \alpha^{n}=\gamma_{1}^{x_{1}}=\cdots=\gamma_{\ell}^{x_{\ell}}=1, \alpha \gamma_{1} \cdots \gamma_{\ell}=\prod_{i=1}^{\widetilde{g}}\left[a_{i}, b_{i}\right]\right\rangle .
\end{aligned}
$$

With this notation, we develop a set of numerical parameters in order to classify nestled (n, ℓ)-actions.
Remark 4.2. From orbifold covering space theory [10], we have the exact sequence

$$
1 \longrightarrow \pi_{1}(F) \longrightarrow \pi_{1}^{\mathrm{orb}}(O) \xrightarrow{\rho} C_{n} \longrightarrow 1 .
$$

The homomorphism ρ is obtained by lifting path representatives of elements of $\pi_{1}^{\text {orb }}(O)$-these do not pass through the cone points so the lifts are uniquely determined.

For $1 \leq i \leq \ell$, the preimage of p_{i} consists of n / x_{i} points cyclically permuted by h, where x_{i} is the order of the stabilizer of each point in the preimage of p_{i}. Each of the points has stabilizer generated by $h^{n / x_{i}}$. Its rotation angles must be the same at all points of the orbit, since its action at one point is conjugate by a power of h to its action at each other point. So the rotation angle at each point is of the form $2 \pi c_{i}^{\prime} / x_{i}$, where c_{i}^{\prime} is a residue class modulo x_{i} and $\operatorname{gcd}\left(c_{i}^{\prime}, x_{i}\right)=1$. Lifting the γ_{i}, we have that $\rho_{1}\left(\gamma_{i}\right)=h^{\left(n / x_{i}\right) c_{i}}$ where $c_{i} c_{i}^{\prime} \equiv 1 \bmod x_{i}$.

Since C_{n} is abelian, we have that $\rho\left(\prod_{i=1}^{\tilde{g}}\left[a_{i}, b_{i}\right]\right)=1$, so

$$
1=\rho_{i}\left(\alpha \gamma_{1} \cdots \gamma_{\ell}\right)=t^{a+\left(n / x_{1}\right) c_{1}+\cdots+\left(n / x_{i}\right) c_{i}}
$$

giving

$$
a+\sum_{i=1}^{\ell} \frac{n}{x_{i}} c_{i} \equiv 0 \quad \bmod n
$$

Thus, we obtain a collection of numerical parameters $D=\left(n, \tilde{g}, a ;\left(c_{1}, x_{1}\right), \ldots\right.$, $\left(c_{\ell}, x_{\ell}\right)$) satisfying certain number-theoretic conditions.

We call the collection of numerical parameters obtained in Remark 4.2 a data set, which we formalize in the following definition.

Defintion 4.3. A data set is a tuple $D=\left(n, \widetilde{g}, a ;\left(c_{1}, x_{1}\right), \ldots,\left(c_{\ell}, x_{\ell}\right)\right)$ where n, \widetilde{g} and the x_{i} are integers, a is a residue class modulo n, and each c_{i} is a residue class modulo x_{i}, such that:
(i) $n \geq 1, \widetilde{g} \geq 0$, each $x_{i}>1$, and each x_{i} divides n;
(ii) $\operatorname{gcd}(a, n)=\operatorname{gcd}\left(c_{i}, x_{i}\right)=1$;
(iii) $a+\sum_{i=1}^{\ell}\left(n / x_{i}\right) c_{i} \equiv 0 \bmod n$.

The number n is called the degree of the data set and the number ℓ is called the length of the data set. If $n=1$, then we require that $a=1$, and the data set is $D=(1, \bar{g}, 1 ;)$. The integer g defined by

$$
g=\widetilde{g} n+\frac{1}{2}(1-n)+\frac{1}{2} \sum_{i=1}^{\ell} \frac{n}{x_{i}}\left(x_{i}-1\right)
$$

is called the genus of the data set. We consider two data sets to be the same if they differ by reordering the pairs $\left(c_{1}, x_{1}\right), \ldots,\left(c_{\ell}, x_{\ell}\right)$.
Remark 4.4. For any data set $D=\left(n, \tilde{g}, a ;\left(c_{1}, x_{1}\right), \ldots,\left(c_{\ell}, x_{\ell}\right)\right)$, we have $\operatorname{lcm}\left\{x_{1}\right.$, $\left.x_{2}, \ldots, x_{n}\right\}=n$. To see this, put $k=\operatorname{lcm}\left\{x_{1}, x_{2}, \ldots, x_{\ell}\right\}$. Since each $x_{i} \mid n$, we have $k \mid n$. So it remains to show that $n \mid k$. Condition (iii) implies that

$$
\frac{a k}{k}+\sum_{i=1}^{\ell} \frac{n\left(k / x_{i}\right)}{k} c_{i} \equiv 0 \quad \bmod n
$$

Multiplying by k,

$$
a k+n \sum_{i=1}^{\ell}\left(k / x_{i}\right) c_{i} \equiv 0 \quad \bmod n
$$

Since $\operatorname{gcd}(a, n)=1$, we have $n \mid k$.
With this notation, we are ready to establish the key property of data sets.
Proposition 4.5. Data sets of degree n, genus g and length ℓ correspond to equivalence classes of nestled (n, ℓ)-actions on closed orientable surfaces of genus g.

Proof. Let h be a nestled (n, ℓ)-action. From Remark 4.2, it is apparent that h yields a data set $D=\left(n, \widetilde{g}, a ;\left(c_{1}, x_{1}\right), \ldots,\left(c_{\ell}, x_{\ell}\right)\right)$ of degree n and length ℓ. The fact that the data set D has genus equal to g follows easily from the multiplicativity of the orbifold covering $F \rightarrow O$:

$$
\begin{equation*}
\frac{2-2 g}{n}=2-2 \widetilde{g}+\left(\frac{1}{n}-1\right)+\sum_{i=1}^{\ell}\left(\frac{1}{x_{i}}-1\right) . \tag{4.1}
\end{equation*}
$$

Consider another nestled (n, ℓ)-action h^{\prime} in the equivalence class of h with a distinguished fixed point P^{\prime}. Then by definition there exists an orientation-preserving homeomorphism $t \in \operatorname{Mod}(F)$ such that $t(P)=P^{\prime}$ and $t h^{\prime} t^{-1}$ is isotopic to h relative to P. Therefore, the two actions will have the same fixed point data and hence produce the same data set D.

Conversely, given a data set $D=\left(n, \widetilde{g}, a ;\left(c_{1}, x_{1}\right), \ldots,\left(c_{\ell}, x_{\ell}\right)\right)$, we can reverse the argument to produce an equivalence class of a nestled (n, ℓ)-action h on a surface F of genus g. We construct the orbifold O and representation $\rho: \pi_{1}^{\mathrm{orb}}(O) \rightarrow C_{n}$. Any finite subgroup of $\pi_{1}^{\text {orb }}(O)$ is conjugate to one of the cyclic subgroups generated by α or a γ_{i}, so condition (ii) in the definition of the data set ensures that the kernel of ρ is
torsion-free. Therefore the orbifold covering $F \rightarrow O$ corresponding to the kernel is a manifold, and calculation of the Euler characteristic shows that F has genus g.

It remains to show that the resulting action on F is determined up to our equivalence in $\operatorname{Mod}(F)$. Suppose that two actions h and h^{\prime} on F with distinguished fixed points P and P^{\prime} have the same data set D. D encodes the fixed-point data of the periodic transformations h. By a result of Nielsen [7] (see also Edmonds [2, Theorem 1.3]), h and h^{\prime} have to be conjugate by an orientation-preserving homeomorphism t. As in the proof of Theorem 1.1 in [6], t may be chosen so that it preserves $t(P)=P^{\prime}$. Thus D determines h up to equivalence.

Proposition 4.5 enables us to view equivalence classes of nestled (n, ℓ)-actions simply as data sets.
Notation 4.6. We will denote a data set of degree n and genus g by $D_{n, g, i}$, where i is an index that can be used to distinguish data sets with the same values of (n, ℓ). The trivial data set $D=\{1, g, 1 ;\}$, for any g, will be denoted by $D_{1, g}$.

Example 4.7. The following are examples of data sets that represent nestled ($n, 2$)actions, for every $g \geq 1$ and n equal to $2 g+1,4 g$ and $4 g+2$.
(i) $D_{2 g+1, g, 1}=(2 g+1,0,1 ;(g, 2 g+1),(g, 2 g+1))$.
(ii) $\quad D_{4 g, g, 1}=(4 g, 0,1 ;(1,2),(2 g-1,4 g))$.
(iii) $D_{4 g+2, g, 1}=(4 g+2,0,1 ;(1,2),(g, 2 g+1))$.

Remark 4.8. For the data set $D=\left(n, \widetilde{g}, a ;\left(c_{1}, x_{1}\right), \ldots,\left(c_{n}, x_{\ell}\right)\right)$ associated with a nestled (n, ℓ)-action, Equation (4.1) in the proof of Proposition 4.5 gives the inequality

$$
\begin{equation*}
\frac{1-2 g}{n}=-(\ell-1)-2 \widetilde{g}+\sum_{i=1}^{\ell} \frac{1}{x_{i}} \leq-(\ell-1)+\sum_{i=1}^{\ell} \frac{1}{x_{i}} . \tag{4.2}
\end{equation*}
$$

Remark 4.9. There exists no nontrivial action with $\ell=0$. Suppose that we assume the contrary. Using Notation 4.1,

$$
\pi_{1}^{\mathrm{orb}}(O)=\left\langle\alpha, a_{1}, b_{1}, \ldots, a_{\widetilde{g}}, b_{\widetilde{g}} \mid \alpha^{n}=1, \alpha=\prod_{j=1}^{\widetilde{g}}\left[a_{j}, b_{j}\right]\right\rangle .
$$

Since C_{n} is abelian, $\rho(\alpha)=\rho\left(\prod_{j=1}^{\widetilde{g}}\left[a_{j}, b_{j}\right]\right)=1$, which is impossible since ρ has torsion-free kernel.

5. Data set pairs and roots

By Theorem 3.4, each conjugacy class of a root of t_{C} in $\operatorname{Mod}(F)$ corresponds to a compatible pair ($\left[h_{1}\right],\left[h_{2}\right]$) of (equivalence classes of) nestled actions, and by Proposition 4.5 , such a pair determines a pair $\left(D_{1}, D_{2}\right)$ of data sets. To determine which pairs of data sets arise, we must replace the geometric compatibility condition in Theorem 3.4 by an algebraic compatibility condition on the corresponding data sets.

Defintion 5.1. Two data sets $D_{1}=\left(n_{1}, \widetilde{g_{1}}, a_{1} ;\left(c_{11}, x_{11}\right), \ldots,\left(c_{1 \ell}, x_{1 \ell}\right)\right)$ and $D_{2}=$ $\left(n_{2}, \widetilde{g_{2}}, a_{2} ;\left(c_{21}, x_{21}\right), \ldots,\left(c_{2 m}, x_{2 m}\right)\right)$ are said to form a data set pair $\left(D_{1}, D_{2}\right)$ if

$$
\begin{equation*}
\frac{n}{n_{1}} k_{1}+\frac{n}{n_{2}} k_{2} \equiv 1 \quad \bmod n \tag{5.1}
\end{equation*}
$$

where $n=\operatorname{lcm}\left(n_{1}, n_{2}\right)$ and $a_{i} k_{i} \equiv 1 \bmod n_{i}$. Note that although the k_{i} are only defined modulo n_{i}, the expressions $\left(n / n_{i}\right) k_{i}$ are well defined modulo n. The integer n is called the degree of the data set pair and $g=g_{1}+g_{2}$ is called the genus of the data set pair. We consider $\left(D_{1}, D_{2}\right)$ to be an unordered pair, that is, $\left(D_{1}, D_{2}\right)$ and $\left(D_{2}, D_{1}\right)$ are equivalent as compatible pairs.

We can now reformulate Theorem 3.4 in terms of data sets.
Theorem 5.2. Let $F=F_{1} \#_{C} F_{2}$ be a closed oriented surface of genus $g \geq 2$. Then data set pairs $\left(D_{1}, D_{2}\right)$ of degree n and genus g, where D_{1} is a data set of genus g_{1} and D_{2} is a data set of genus g_{2}, correspond to the conjugacy classes in $\operatorname{Mod}(F)$ of roots of t_{C} of degree n.

Proof. Let h denote the conjugacy class of a root of t_{C} of degree n with compatible pair representation $\left(\left[h_{1}\right],\left[h_{2}\right]\right)$. From Proposition 4.5, the h_{i} correspond to data sets $D_{i}=$ $\left(n_{i}, \widetilde{g}_{i}, a_{i} ;\left(c_{i 1}, x_{i 1}\right), \ldots,\left(c_{i i_{i}}, x_{1 \ell_{i}}\right)\right)$. So it suffices to show that the geometric condition $\theta\left(h_{1}\right)+\theta\left(h_{2}\right)=2 \pi / n$ in Definition 3.2 is equivalent to the condition $\left(n / n_{1}\right) k_{1}+$ $\left(n / n_{2}\right) k_{2} \equiv 1 \bmod n$ in Definition 5.1.

As in the proof of Proposition 3.4, let P_{i} denote the center of the filling disk of the subsurface \widetilde{F}_{i} of genus g_{i}. Choosing P_{i} as the distinguished fixed point of h_{i}, we get that $\theta\left(h_{i}\right)=2 \pi k_{i} / n_{i}$, where $\operatorname{gcd}\left(k_{i}, n_{i}\right)=1$ and $a_{i} k_{i} \equiv 1 \bmod n_{i}$. Since $h^{n}=t_{C}$, the left-hand twisting angle along N is $2 \pi / n$, which equals $2 \pi k_{2} / n_{2}-\left(-2 \pi k_{1} / n_{1}\right)=2 \pi / n$, giving $\left(n / n_{1}\right) k_{1}+\left(n / n_{2}\right) k_{2} \equiv 1 \bmod n$. The converse is just a matter of reversing the argument.

Corollary 5.3. Suppose that $F=F_{1} \#_{C} F_{2}$. Then there always exists a root of the Dehn twist t_{C} about C of degree $\operatorname{lcm}\left(4 g_{1}, 4 g_{2}+2\right)$.
Proof. As in Theorem 5.2, let \widetilde{F}_{i} denote the subsurfaces obtained by cutting F along C, and let F_{i} denote the surfaces obtained by adding disks to the F_{i}. Let $n_{1}=4 g_{1}$ and $n_{2}=4 g_{2}+2$. From Example 4.7, for any residue class a_{i} modulo n_{i} with $\operatorname{gcd}\left(a_{i}, n_{i}\right)=$ 1 , the data set $D_{1}=\left(n_{1}, 0, a_{1} ;\left(-a_{1}, 2 g_{1}\right),\left(a_{1}, 4 g_{1}\right)\right)$ defines a nestled $\left(n_{1}, 2\right)$-action on a surface F_{1} of genus g_{1}, and the data set $D_{2}=\left(n_{2}, 0, a_{2} ;\left(a_{2}, 2\right),\left(a_{2} g_{2}, 2 g_{2}+1\right)\right)$ defines a nestled ($n_{2}, 2$)-action on F_{2} of genus g_{2}.

Let k_{i} denote the inverse of a_{i} modulo n_{i} and let $n=\operatorname{lcm}\left(n_{1}, n_{2}\right)$. We will now show that the a_{i} can be selected so that Equation (5.1) is satisfied. In other words, this will prove that D_{1} and D_{2} form a data set pair $\left(D_{1}, D_{2}\right)$. Since n / n_{1} and n / n_{2} are relatively prime, there always exist integers p and q such that

$$
\frac{n}{n_{1}} p+\frac{n}{n_{2}} q=1
$$

In particular, since n / n_{1} and n / n_{2} are not both odd, by [6, Lemma 7.1], p and q can be chosen so that $\operatorname{gcd}\left(p, n_{1}\right)=\operatorname{gcd}\left(q, n_{2}\right)=1$. Let k_{1} be the residue class of p modulo n_{1} and let k_{2} be the residue class of q modulo n_{2}. Taking modulo n,

$$
\frac{n}{n_{1}} k_{1}+\frac{n}{n_{2}} k_{2} \equiv 1 \quad \bmod n
$$

Therefore, by Theorem 5.2, there exists a root of t_{C} of order $1 \mathrm{~cm}\left(4 g_{1}, 4 g_{2}+2\right)$.
Corollary 5.4. Let $F=F_{1} \#_{C} F_{2}$ be a closed oriented surface of genus $g \geq 2$. Suppose that M denotes the maximum degree of a root of the Dehn twist t_{C} about C. Then $2 g^{2}+2 g \leq M$.

Proof. If g is even, then Corollary 5.3 with $g_{1}=g_{2}=g / 2$ gives a root of degree $\operatorname{lcm}(2 g, 2 g+1)=2 g(2 g+1)$. If g is odd, then $g_{1}=(g+1) / 2$ and $g_{2}=(g-1) / 2$ gives a root of degree lcm $(2(g+1), 2 g)=2 g(g+1)$.

6. Classification of roots for the closed orientable surfaces of genus 2 and 3

6.1. Surface of genus 2. Let $F=F_{1} \#_{C} F_{2}$ be the closed orientable surface of genus 2. Up to homeomorphism, there is a unique curve C that separates F into two subsurfaces of genus 1 . Given a root of t_{C}, the process described in the proof of Theorem 3.4 produces orientation-preserving $C_{n_{i}}$-actions on the tori F_{i}, for $i=1,2$, with $n=\operatorname{lcm}\left(n_{1}, n_{2}\right)$.

If a cyclic group C_{n} acts faithfully on a surface F fixing a point x_{0}, then the map $C_{n} \longrightarrow \operatorname{Aut}\left(\pi_{1}\left(F, x_{0}\right)\right)$ is a monomorphism [1, Theorem 2, page 43]. We also know that the group of orientation-preserving automorphisms $\operatorname{Aut}^{+}\left(\pi_{1}\left(F_{i}, x_{0}\right)\right) \cong \operatorname{Aut}^{+}(\mathbb{Z} \times \mathbb{Z}) \cong$ $\operatorname{SL}(2, \mathbb{Z}) \cong \mathbb{Z}_{4} *_{\mathbb{Z}_{2}} \mathbb{Z}_{6}$. Since any element of finite order of an amalgamated product $A *_{C} B$ is conjugate to one of the groups A or B [4], it can only be of order 2, 3, 4 or 6. Taking the least common multiple of any two of these orders gives 12 as the only other possibility for the order of a root of t_{C}. We summarize these inferences in the following corollary.

Corollary 6.1. Let F be the closed orientable surface of genus 2 and C a separating curve in F. Then a root of a Dehn twist t_{C} about C can only be of degree 2, 3, 4, 6, or 12.

By Theorem 5.2, classifying compatible pairs of $C_{n_{i}}$-actions on F_{i} is equivalent to classifying all data set pairs of genus 2 . Given below are the data set pairs that represent each conjugacy class of roots. For $n=2$:
(i) $\quad\left(D_{2,1,1}, D_{1,1}\right)$, where $D_{2,1,1}=(2,0,1 ;(1,2),(1,2),(1,2))$.

For $n=3$:
(i) $\quad\left(D_{3,1,1}, D_{1,1}\right)$, where $D_{3,1,1}=(3,0,1 ;(1,3),(1,3))$;
(ii) $\quad\left(D_{3,1,2}, D_{3,1,2}\right)$, where $D_{3,1,2}=(3,0,2 ;(2,3),(2,3))$.

For $n=4$:
(i) $\quad\left(D_{4,1,1}, D_{1,1}\right)$, where $D_{4,1,1}=(4,0,1 ;(1,2),(1,4))$;
(ii) $\quad\left(D_{4,1,2}, D_{2,1,1}\right)$, where $D_{4,1,2}=(4,0,3 ;(1,2),(3,4))$.

For $n=6$:
(i) $\quad\left(D_{6,1,1}, D_{1,1}\right)$, where $D_{6,1,1}=(6,0,1 ;(1,2),(1,3))$;
(ii) $\quad\left(D_{6,1,2}, D_{3,1,1}\right)$, where $D_{6,1,2}=(6,0,5 ;(1,2),(2,3))$;
(iii) $\left(D_{3,1,2}, D_{2,1,1}\right)$.

For $n=12$:
(i) $\quad\left(D_{6,1,2}, D_{4,1,1}\right)$;
(ii) $\quad\left(D_{4,1,2}, D_{3,1,1}\right)$.

It can be shown using elementary calculations that these are the only possible roots for the various orders. For example, when $n=12$, the condition $\operatorname{lcm}\left(n_{1}, n_{2}\right)=12$ would imply that the set $\left\{n_{1}, n_{2}\right\}$ can be either $\{6,4\}$ or $\{4,3\}$. When $n_{1}=6$ and $n_{2}=4$, the data set pair condition gives $2 k_{1}+3 k_{2} \equiv 1 \bmod 12$. Since k_{i} is a residue modulo n_{i}, the only possible solution to this equation is $k_{1}=5$ and $k_{2}=1$. This would imply that $a_{1}=5$ and $a_{2}=1$ since a_{i} is the inverse of k_{i} modulo n_{i}. Geometrically, this represents the root h of t_{C} whose twisting angle on one side is $2 \pi k_{1} / n_{1}=5 \pi / 3$ and on the other side of C is $2 \pi k_{2} / n_{2}=\pi / 2$. Each data set D_{i} in the data set pair $\left(D_{1}, D_{2}\right)$ is then uniquely determined by condition (iii) (for data sets) and the formula for calculating the genus g_{i}. Similar calculations can be used to determine all the data set pairs for the surface of genus 3 .
6.2. Surface of genus 3. Let $F=F_{1} \#_{C} F_{2}$ be the closed orientable surface of genus 3 . Then (up to homeomorphism), F has a unique curve that separates the surface into two subsurfaces of genera 2 and 1 . As in the classification of roots of in the genus 2 case, it suffices to classify pairs of compatible pairs of nestled (n_{i}, ℓ_{i})-actions on surfaces F_{i}, for $i=1,2$. The various nestled $\left(n_{2}, \ell_{2}\right)$-actions on the torus F_{2} have already been classified in the genus 2 case. So it remains to classify all possible (n_{1}, ℓ_{1})-actions on the surface F_{1} of genus 2 and then determine how many of these actions form compatible pairs with nestled $\left(n_{2}, \ell_{2}\right)$-actions on F_{2}. By Remark 8.1, we have that $n_{1} \leq 10$ and $n_{2} \leq 6$. Therefore, Theorem 5.2 would imply that classifying compatible nestled $\left(n_{i}, \ell_{i}\right)$-actions on the F_{i} is equivalent to determining all possible data sets pairs ($D_{n_{1}, 2, i}, D_{n_{2}, 1, j}$), where $n_{1} \leq 10$ and $n_{2} \leq 6$. Given below are the data set pairs that represent roots of various degrees that were determined by programming the numbertheoretic conditions for data set and their pairs in software [8] written for the GAP programming language. For $n=2$:
(i) $\quad\left(D_{1,2}, D_{2,1,1}\right)$;
(ii) $\quad\left(D_{2,2,1}, D_{1,1}\right)$, where $D_{2,2,1}=(2,0,1 ;(1,2),(1,2),(1,2),(1,2),(1,2))$;
(iii) $\left(D_{2,2,2}, D_{1,1}\right)$, where $D_{2,2,2}=(2,1,1 ;(1,2))$.

For $n=3$:
(i) $\quad\left(D_{1,2}, D_{3,1,1}\right)$;
(ii) $\quad\left(D_{3,2,1}, D_{1,1}\right)$, where $D_{3,2,1}=(3,0,1 ;(2,3),(2,3),(1,3))$;
(iii) $\left(D_{3,2,2}, D_{1,1}\right)$, where $D_{3,2,2}=(3,0,2 ;(1,3),(1,3),(2,3))$.

For $n=4$:
(i) $\quad\left(D_{1,2}, D_{4,1,1}\right)$;
(ii) $\quad\left(D_{4,2,1}, D_{1,1}\right)$, where $D_{4,2,1}=(4,0,1 ;(1,2),(1,2),(3,4))$;
(iii) $\left(D_{4,2,2}, D_{4,1,1}\right)$, where $D_{4,2,2}=(4,0,3 ;(1,2),(1,2),(2,4))$.

For $n=5$:
(i) $\quad\left(D_{5,2,1}, D_{1,1}\right)$, where $D_{5,2,1}=(5,0,1 ;(1,5),(3,5))$;
(ii) $\quad\left(D_{5,2,2}, D_{1,1}\right)$, where $D_{5,2,2}=(5,0,1 ;(2,5),(2,5))$.

For $n=6$:
(i) $\quad\left(D_{1,2}, D_{6,1,2}\right)$;
(ii) $\quad\left(D_{6,2,1}, D_{1,1}\right)$, where $D_{6,2,1}=(6,0,1 ;(2,3),(1,6))$;
(iii) $\left(D_{2,2,1}, D_{3,1,2}\right)$;
(iv) $\left(D_{2,2,2}, D_{3,1,2}\right)$;
(v) $\left(D_{3,2,2}, D_{2,1,1}\right)$;
(vi) $\left(D_{3,2,1}, D_{6,1,2}\right)$;
(vii) $\left(D_{6,2,2}, D_{3,1,1}\right)$, where $D_{6,2,2}=(6,0,5 ;(1,3),(5,6))$.

For $n=8$:
(i) $\quad\left(D_{8,2,1}, D_{1,1}\right)$, where $D_{8,2,1}=(8,0,1 ;(1,2),(3,8))$;
(ii) $\quad\left(D_{8,2,2}, D_{2,1,1}\right)$, where $D_{8,2,2}=(8,0,5 ;(1,2),(7,8))$;
(iii) $\left(D_{8,2,3}, D_{4,1,1}\right)$, where $D_{8,2,3}=(8,0,7 ;(1,2),(5,8))$;
(iv) $\left(D_{8,2,4}, D_{4,1,2}\right)$, where $D_{8,2,4}=(8,0,3 ;(1,2),(1,8))$.

For $n=10$:
(i) $\quad\left(D_{10,2,1}, D_{1,1}\right)$, where $D_{10,2,1}=(10,0,1 ;(1,2),(2,5))$;
(ii) $\quad\left(D_{5,2,3}, D_{2,1,1}\right)$, where $D_{5,2,3}=(5,0,3 ;(1,5),(1,5))$;
(iii) $\left(D_{5,2,4}, D_{2,1,1}\right)$, where $D_{5,2,4}=(5,0,3 ;(3,5),(4,5))$.

For $n=12$:
(i) $\quad\left(D_{4,2,2}, D_{3,1,1}\right)$;
(ii) $\left(D_{3,2,1}, D_{4,1,2}\right)$;
(iii) $\left(D_{4,2,1}, D_{6,1,2}\right)$;
(iv) $\left(D_{6,2,2}, D_{4,1,1}\right)$.

For $n=15$:
(i) $\quad\left(D_{5,2,5}, D_{3,1,2}\right)$, where $D_{5,2,5}=(5,0,3 ;(1,5),(1,5))$;
(ii) $\quad\left(D_{5,2,6}, D_{3,1,2}\right)$, where $D_{5,2,6}=(5,0,3 ;(3,5),(4,5))$.

For $n=20$:
(i) $\quad\left(D_{5,2,5}, D_{4,1,1}\right)$, where $D_{5,2,5}=(5,0,4 ;(4,5),(2,5))$;
(ii) $\quad\left(D_{5,2,6}, D_{4,1,1}\right)$, where $D_{5,2,6}=(5,0,4 ;(3,5),(3,5))$;
(iii) $\left(D_{10,2,1}, D_{4,1,2}\right)$, where $D_{10,2,1}=(10,0,7 ;(1,2),(4,5))$.

For $n=24$:
(i) $\quad\left(D_{8,2,4}, D_{3,1,2}\right)$;
(ii) $\left(D_{8,2,3}, D_{6,1,1}\right)$.

For $n=30$:
(i) $\quad\left(D_{10,2,2}, D_{3,1,1}\right)$, where $D_{10,2,2}=(10,0,9 ;(1,2),(3,5))$;
(ii) $\quad\left(D_{5,2,7}, D_{6,1,2}\right)$, where $D_{5,2,7}=(5,0,1 ;(1,5),(3,5))$;
(iii) $\quad\left(D_{5,2,8}, D_{6,1,2}\right)$, where $D_{5,2,8}=(5,0,1 ;(2,5),(2,5))$.

As in the earlier genus 2 case, it can be shown using elementary calculations that these are the only possible roots up to conjugacy for the various orders. For example, when $n=15$, since $n_{1} \leq 10$ and $n_{2} \leq 6$, we would have that $\left\{n_{1}, n_{2}\right\}=\{3,5\}$. Since there is no C_{5}-action on the torus, we have that $n_{1}=5$. When $n_{1}=5$ and $n_{2}=3$, the data set pair condition gives $3 k_{1}+5 k_{2} \equiv 1 \bmod 15$, where k_{i} is a residue modulo n_{i}. The only solution to this equivalence is $k_{1}=k_{2}=2$, which would imply that $a_{1}=3$ and $a_{2}=2$. The data set pairs satisfying these conditions are ($D_{5,2,5}, D_{3,1,2}$) and ($D_{5,2,6}, D_{3,1,2}$). Using similar calculations, we can determine all the other possible data set pairs.

7. Spherical nestled actions

A spherical action is simply a nestled (n, ℓ)-action whose quotient orbifold is topologically a sphere. We will show in Proposition 7.3 that nestled (n, ℓ)-actions must be spherical when n is sufficiently large relative to g. This means that in order to derive bounds on n, it suffices to restrict attention to spherical actions. We will also derive several other results on spherical actions which we will use in later sections.

Definition 7.1. A nontrivial nestled (n, ℓ)-action is said to be spherical if the underlying manifold of its quotient orbifold is topologically a sphere.

Example 7.2. The actions in Examples 2.3 and 4.7 are spherical actions.
Proposition 7.3. If $n>\frac{2}{3}(2 g-1)$, then every nestled (n, ℓ)-action on F is spherical.
Proof. Let $D=\left(n, \widetilde{g}, a ;\left(c_{1}, x_{1}\right), \ldots,\left(c_{n}, x_{\ell}\right)\right)$ be the data set associated with a nestled (n, ℓ)-action on F. Equation (4.2) gives

$$
\begin{equation*}
\widetilde{g}=\frac{1}{2}+\frac{2 g-1}{2 n}-\frac{\ell}{2}+\frac{1}{2} \sum_{i=1}^{\ell} \frac{1}{x_{i}} \tag{7.1}
\end{equation*}
$$

Each $x_{i} \geq 2$, and by Remark 4.9, we must have $\ell \geq 1$, so this becomes

$$
\widetilde{g} \leq \frac{1}{2}+\frac{2 g-1}{2 n}-\frac{\ell}{4} \leq \frac{1}{4}+\frac{2 g-1}{2 n} .
$$

That is, $\widetilde{g} \geq 1$ can hold only when $n \leq(4 g-2) / 3$.
Remark 7.4. There exists no spherical nestled ($n, 1$)-action on the surface of genus $g \geq 1$. Suppose we assume to the contrary that $\ell=1$. Then Equation (4.1) would
imply that

$$
\frac{1-2 g}{n}=\frac{1}{x_{1}} .
$$

This is impossible since $x_{1}>0$ and $g \geq 1$.
Proposition 7.5. Suppose that a surface F of genus g has a spherical nestled (n, ℓ) action. Write the prime factorization of n as $n=p^{a} q_{1}{ }^{a_{1}} \cdots q_{k}{ }^{a_{k}}$ where $p^{a}>q_{i}{ }^{a_{i}}$ for each $i \geq 1$, and write q for $\min \left\{p, q_{1}, \ldots, q_{k}\right\}$. If

$$
n>\frac{2 g-1}{2-\frac{2}{q}-\frac{1}{p^{a}}},
$$

then $\ell=2$.
Proof. Each $x_{i} \geq q$, and by Proposition 4.4, at least one $x_{i} \geq p^{a}$. Using Equation (7.1),

$$
\begin{gathered}
0=\frac{1}{2}+\frac{2 g-1}{2 n}-\frac{\ell}{2}+\frac{1}{2} \sum_{i=1}^{\ell} \frac{1}{x_{i}} \leq \frac{1}{2}+\frac{1}{2 p^{a}}+\frac{2 g-1}{2 n}-\frac{\ell}{2}+\frac{\ell-1}{2 q} \\
\ell \leq 1+\frac{q}{(q-1) p^{a}}+\frac{q}{q-1}\left(\frac{2 g-1}{n}\right)
\end{gathered}
$$

The right-hand side of the latter inequality is less than 3 when the inequality in the proposition holds. Therefore, by Remark 7.4, $\ell=2$.

Corollary 7.6. Suppose that a surface F of genus g has a spherical nestled (n, ℓ) action, $\ell \geq 2$.
(i) If $n=2$, then $\ell=2 g+1$. In particular, there does not exist a spherical nestled (2, 2)-action.
(ii) If $n=3$, then $\ell=g+1$. There exists a spherical nestled $(3,2)$-action if and only if $g=1$.
(iii) If n is even, $n \geq 4$, and $n>\frac{4}{3}(2 g-1)$, then $\ell=2$.
(iv) If n is odd, $n \geq 5$, and $n>\frac{15}{17}(2 g-1)$, then $\ell=2$.

Proof. For (i), an Euler characteristic calculation shows that $\ell=2 g+1$ when $n=2$. These are exactly the hyperelliptic actions.

For (ii), when $n=3$, an Euler characteristic calculation shows that $\ell=g+1$, and as seen in Section 6, there is a nestled (3,2)-action on the torus.

For (iii), suppose first that $n=6$. In Proposition 7.5 we have $q=2$ and $p^{a}=3$, giving the conclusion that if $6>\frac{3}{2}(2 g-1)$, then $\ell=2$. The condition $6>\frac{3}{2}(2 g-1)$ holds exactly when $g \leq 2$, so (iii) is true in this case. One can check that there exist nestled $(6,2)$-actions exactly when $g \leq 2$. For the cases of (iii) other than $n=6$, we have $q=2$ and $p^{a} \geq 4$, and Proposition 7.5 gives the result.

For (iv), we have $q \geq 3$ and $p^{a} \geq 5$. Again Proposition 7.5 gives the result.

8. Bounds on the degree of a root

In this section, we use Theorem 5.2 and the results derived in Section 7 to derive some results on the degree n of a root. Among the results obtained are a general upper bound for n in Theorem 8.6, which is later refined in Theorem 8.14 to obtain a sharper upper bound which is stable in the sense that it applies once the genus is sufficiently large. In Table 2, we give data which indicate the degree of improvement of the stable upper bound for $g \geq 14$. However, it is worth mentioning here that Theorem 8.6 does provide a better bound for $g \leq 13$. As in Notation 3.1, we will assume throughout this section that $g_{1} \geq g_{2}$ whenever $F=F_{1} \#_{C} F_{2}$.
Remark 8.1. It is a well-known fact [3] that the maximum order for an automorphism of a surface of genus g is $4 g+2$. In Example 4.7, we showed that a nestled action of order $4 g+2$ always exists.
Proposition 8.2. There exists no nestled $(4 g+1, \ell)$-action.
Proof. By Proposition 7.3, a nestled $(4 g+1, \ell)$-action must be spherical, and by Proposition 7.5, $\ell=2$. Therefore, Equation (4.1) from the proof of Proposition 4.5 simplifies to give

$$
\frac{2 g+2}{4 g+1}=\frac{1}{x_{1}}+\frac{1}{x_{2}} .
$$

Without loss of generality, we may assume that $x_{1} \leq x_{2}$. Since $x_{i} \mid 4 g+1, x_{i} \geq 3$. If $x_{1}=3$, then

$$
x_{2}=\frac{3(4 g+1)}{2 g+5}=3\left(2-\frac{9}{2 g+5}\right) .
$$

Since $x_{2}=3$ is the only integer solution for x_{2}, Proposition 4.4 would imply that $n=3$, which contradicts the fact that $n=4 g+1$. If $x_{1} \geq 4$, then we would have that

$$
\frac{1}{2}<\frac{2+2 g}{4 g+1}=\frac{1}{x_{1}}+\frac{1}{x_{2}} \leq \frac{1}{2},
$$

which is not possible.
Proposition 8.3. Let $F=F_{1} \#_{C} F_{2}$ be a closed oriented surface of genus $g \geq 2$. Let $\left(D_{1}, D_{2}\right)$ be a data set pair corresponding to a root of t_{C} of degree n, and let n_{i} be the degree of D_{i} for $i=1,2$. Then the n_{i} cannot both satisfy $n_{i} \equiv 2 \bmod 4$.
Proof. Suppose for contradiction that both n_{i} satisfy $n_{i} \equiv 2 \bmod 4$. Let a_{i} denote the a-value of D_{i}, and let k_{i} denote the inverse of a_{i} modulo n_{i}. Since $\operatorname{gcd}\left(k_{i}, n_{i}\right)=1$, the k_{i} must be odd. Also the fact that $\operatorname{gcd}\left(n_{1}, n_{2}\right)=2 k$ for some odd integer k implies that n / n_{i} is odd. From Equation (5.1) for the data set pair (D_{1}, D_{2}), we must have that

$$
\frac{n}{n_{1}} k_{1}+\frac{n}{n_{2}} k_{2} \equiv 1 \quad \bmod n
$$

which is impossible since $\left(n / n_{1}\right) k_{1}+\left(n / n_{2}\right) k_{2}$ and n are even.

Proposition 8.4. Let $F=F_{1} \#_{C} F_{2}$ be a closed oriented surface of genus $g \geq 2$. Suppose that $M\left(g_{1}, g_{2}\right)$ denotes the maximum degree of a root of the Dehn twist t_{C} about C. Then $M\left(g_{1}, g_{2}\right) \leq 16 g_{1} g_{2}+4\left(2 g_{1}-g_{2}\right)-2$.

Proof. Let n be the order of a root of t_{C}, given by a data set pair $\left(D_{1}, D_{2}\right)$. We have $n=\operatorname{lcm}\left(n_{1}, n_{2}\right)$, where n_{i} is the degree of D_{i}. By Remark 8.1, each $n_{i} \leq 4 g_{i}+2$. By Proposition 8.2, neither $n_{i}=4 g_{i}+1$ nor, by Proposition 8.3, can we have both $n_{1}=4 g_{1}+2$ and $n_{2}=4 g_{2}+2$. If both $n_{1}=4 g_{1}$ and $n_{2}=4 g_{2}$, then

$$
\operatorname{lcm}\left(n_{1}, n_{2}\right)=4 \operatorname{lcm}\left(g_{1}, g_{2}\right) \leq 4 g_{1} g_{2} \leq 16 g_{1} g_{2}+4\left(2 g_{1}-g_{2}\right)-2
$$

In general, since $g_{1} \geq g_{2}$, we have that

$$
\begin{aligned}
M\left(g_{1}, g_{2}\right) & \leq \max \left\{\left(4 g_{1}+2\right)\left(4 g_{2}-1\right),\left(4 g_{1}-1\right)\left(4 g_{2}+2\right)\right\} \\
& =16 g_{1} g_{2}+4\left(2 g_{1}-g_{2}\right)-2 .
\end{aligned}
$$

Notation 8.5. We will denote the upper bound $16 g_{1} g_{2}+4\left(2 g_{1}-g_{2}\right)-2$ derived in Proposition 8.4 by $U\left(g_{1}, g_{2}\right)$.
Theorem 8.6. Let $F=F_{1} \#_{C} F_{2}$ be a closed oriented surface of genus $g \geq 2$. Suppose that n denotes the degree of a root of the Dehn twist t_{C} about C. Then $n \leq 4 g^{2}+2 g$.

Proof. Since $g_{2}=g-g_{1}$, we have that

$$
16 g_{1} g_{2}+4\left(2 g_{1}-g_{2}\right)-2=-16 g_{1}^{2}+g_{1}(16 g+12)-(4 g+2)
$$

which has its maximum when $g_{1}=\frac{1}{8}(4 g+3)$. The fact that g_{1} is an integer implies that when g is even, $g_{1}=g_{2}=g / 2$, and when g is odd, $g_{1}=(g+1) / 2$ and $g_{2}=(g-1) / 2$. So Proposition 8.4 tells us that when g is even, $n \leq M(g / 2, g / 2) \leq 4 g^{2}+2 g-2$, and when g is odd, $n \leq M((g+1) / 2,(g-1) / 2) \leq 4 g^{2}+2 g$.
Notation 8.7. We will denote the upper bound $4 g^{2}+2 g$ derived in Theorem 8.6 by $U(g)$.

Notation 8.8. Let $F=F_{1} \#_{C} F_{2}$ be a closed oriented surface of genus $g \geq 2$. We will denote the realizable maximum degree of a root coming from compatible pairs of spherical nestled ($n, 2$)-actions on the F_{i} by $m\left(g_{1}, g_{2}\right)$, and the maximum over all such pairs of genera $\left(g_{1}, g_{2}\right)$ (that is, $\left.\max \left\{m\left(g_{1}, g_{2}\right) \mid g_{1}+g_{2}=g\right\}\right)$ by $m(g)$.

For $14 \leq g \leq 35$, Table 1 shows the genus pairs $\left(g_{1}, g_{2}\right)$ for which $m\left(g_{1}, g_{2}\right)=m(g)$ and the upper bound $U(g)$. The last column gives the ratio $m(g) / U(g)$. These computations were made using software [8] written for the GAP programming language.

The following proposition and its subsequent corollary will be used later in Proposition 8.11 to derive a sharper upper bound for $M\left(g_{1}, g_{2}\right)$ than the $U\left(g_{1}, g_{2}\right)$ obtained in Proposition 8.4. Finally, in Theorem 8.14, we will use Proposition 8.4 and some elementary calculus to derive an upper bound for n that is significantly sharper than $U(g)$.

Table 1. The data seems to indicate that for large genera the ratio $m(g) / U(g)$ stabilizes to the range 0.79-0.82.

g	$m\left(g_{1}, g_{2}\right)=m(g)$	$U\left(g_{1}, g_{2}\right)$	$m\left(g_{1}, g_{2}\right) / U\left(g_{1}, g_{2}\right)$	$U(g)$	$m(g) / U(g)$
14	$m(8,6)=714$	806	0.89	812	0.88
15	$m(9,6)=798$	910	0.88	930	0.86
16	$m(10,6)=858$	1014	0.85	1056	0.81
17	$m(11,6)=966$	1118	0.86	1190	0.81
18	$m(10,8)=1122$	1326	0.85	1332	0.84
19	$m(10,9)=1254$	1482	0.85	1482	0.85
20	$m(12,8)=1326$	1598	0.83	1640	0.81
21	$m(11,10)=1518$	1806	0.84	1806	0.84
22	$m(12,10)=1650$	1974	0.84	1980	0.83
23	$m(12,11)=1794$	2162	0.83	2162	0.83
24	$m(12,12)=1950$	2350	0.83	2352	0.83
25	$m(15,10)=2046$	2478	0.83	2550	0.80
26	$m(14,12)=2262$	2750	0.82	2756	0.82
27	$m(15,12)=2418$	2950	0.82	2970	0.81
28	$m(16,12)=2550$	3150	0.81	3192	0.80
29	$m(17,12)=2730$	3350	0.81	3422	0.80
30	$m(16,14)=2958$	3654	0.81	3660	0.81
31	$m(16,15)=3162$	3906	0.81	3906	0.81
32	$m(18,14)=3306$	4118	0.80	4160	0.79
33	$m(17,16)=3570$	4422	0.81	4422	0.81
34	$m(18,16)=3774$	4686	0.81	4692	0.80
35	$m(18,17)=3990$	4970	0.80	4970	0.80

Proposition 8.9. Suppose that we have a nestled (n, ℓ)-action on a surface F of genus g, where n is a positive odd integer. Then $n \leq 3 g+3$.

Proof. From Remark 7.4, we have that $\ell \neq 1$. When $\ell \geq 2$, the proposition follows from Corollary 7.6. Let $D=\left(n, \widetilde{g}, a ;\left(c_{1}, x_{1}\right),\left(c_{2}, x_{2}\right)\right)$ be a data set for the nestled ($n, 2$)-action on F. Since n is odd and $x_{i} \mid n$, we have that $x_{i} \geq 3$. If $x_{1} \geq 3$, then Remark 4.4 implies that $x_{2} \geq \frac{n}{3}$. So Equation (4.2) gives the inequality

$$
\frac{1-2 g}{n} \leq-1+\frac{1}{3}+\frac{3}{n},
$$

which upon simplification gives $n \leq 3 g+3$.
Corollary 8.10. Suppose that we have a spherical nestled $(4 g-N, 2)$-action on an F of genus g, where N is a positive odd integer. Then $g \leq N+3$.

Proposition 8.11. Let $F=F_{1} \#_{C} F_{2}$ be a closed oriented surface of genus $g \geq 2$. Suppose that $M\left(g_{1}, g_{2}\right)$ denotes the maximum order of a root of the Dehn twist t_{C} about C. Then given a positive odd integer N, we have that $M\left(g_{1}, g_{2}\right) \leq 16 g_{1} g_{2}+$ $4\left(2 g_{1}-N g_{2}\right)-2 N$ whenever both $g_{i}>N+3$.

Proof. By Remark 8.1, each $n_{i} \leq 4 g_{i}+2$. From Propositions 8.2 and 8.3, we know that $n_{i} \neq 4 g_{i}+1$ and that n_{i} cannot both be $4 g_{i}+2$. Suppose that the n_{i} are not both even. If $\ell_{i}>2$, then from Corollary 7.6 we have that $n_{i} \leq \frac{15}{17}\left(2 g_{i}-1\right)$. If $\ell_{i}=2$, then Corollary 8.10 tells us that for all $g_{i}>N+3$, there exists no spherical nestled $\left(4 g_{i}-N, 2\right)$-action on F. In particular, if $g_{i}>N+3$, then from Proposition 7.3, $n_{i} \leq \frac{2}{3}\left(2 g_{i}-1\right) \leq \frac{15}{17}\left(2 g_{i}-1\right)$. So for all ℓ, if $g_{i}>N+3$, then $n_{i} \leq \frac{15}{17}\left(2 g_{i}-1\right)$. We can see that $\frac{15}{17}\left(2 g_{i}-1\right) \leq 4 g_{i}-N$ whenever $g_{i} \geq \frac{1}{38}(17 N-15)$. Therefore, if $g_{i}>$ $\max \left\{N+3, \frac{1}{38}(17 N-15)\right\}=N+3$, then

$$
\begin{aligned}
M\left(g_{1}, g_{2}\right) & \leq \max \left\{\left(4 g_{1}-N\right)\left(4 g_{2}+2\right),\left(4 g_{1}+2\right)\left(4 g_{2}-N\right)\right\} \\
& =16 g_{1} g_{2}+4 \max \left\{\left(2 g_{1}-N g_{2}\right),\left(2 g_{2}-N g_{1}\right)\right\}-2 N \\
& =16 g_{1} g_{2}+4\left(2 g_{1}-N g_{2}\right)-2 N .
\end{aligned}
$$

Suppose that both the n_{i} are even. Then from Propositions 8.2 and 8.3,

$$
M\left(g_{1}, g_{2}\right) \leq \operatorname{lcm}\left(4 g_{1}+2,4 g_{2}\right) \leq 8 g_{1} g_{2}+4 g_{2}
$$

We need to show that

$$
8 g_{1} g_{2}+4 g_{2} \leq 16 g_{1} g_{2}+4\left(2 g_{1}-N g_{2}\right)-2 N .
$$

Since $g_{1}>N+3$,

$$
\begin{aligned}
& \left(16 g_{1} g_{2}+4\left(2 g_{1}-N g_{2}\right)-2 N\right)-\left(8 g_{1} g_{2}+4 g_{2}\right) \\
& \quad=8 g_{1} g_{2}+8 g_{1}-4(N+1) g_{2}-2 N>8 g_{1} g_{2}+8 g_{1}+4\left(g_{1}-2\right) g_{2}+2\left(g_{1}-3\right) \\
& \quad=12 g_{1} g_{2}+10 g_{1}-8 g_{2}-6>0
\end{aligned}
$$

Remark 8.12. Since $g_{1} \geq g_{2}$ by assumption, the condition $g_{i}>N+3$ in the hypothesis of Proposition 8.11 can be replaced by $g_{2}>N+3$. The fact that N is an odd integer would imply that both $g_{i} \geq 5$ and consequently $g \geq 10$.

Notation 8.13. Let $F=F_{1} \#_{C} F_{2}$ be a closed oriented surface of genus $g \geq 2$. We will denote the upper bound $16 g_{1} g_{2}+4\left(2 g_{1}-N g_{2}\right)-2 N$ derived in Proposition 8.11 by $\operatorname{SU}\left(g_{1}, g_{2}, N\right)$. From Remark 8.12, we have that $g_{i} \geq 5$ and $N<g_{2}-3$. Hence $\min \left\{\mathrm{SU}\left(g_{1}, g_{2}, N\right) \mid N\right.$ odd, $g_{i} \geq 5$, and $\left.1 \leq N<g_{2}-3\right\}$ is a well-defined positive integer and we denote this by $\mathrm{SU}\left(g_{1}, g_{2}\right)$.

Theorem 8.14. Let $F=F_{1} \#_{C} F_{2}$ be a closed oriented surface of genus $g \geq 10$. Suppose that n denotes the degree of a root of the Dehn twist t_{C} about C. Then $n \leq \frac{16}{5} g^{2}+$ $12 g+\frac{45}{4}$.
Proof. From Theorem 8.11, given a positive odd integer N, we have that $M\left(g_{1}, g_{2}\right) \leq$ $16 g_{1} g_{2}+4\left(2 g_{1}-N g_{2}\right)-2 N$ whenever both $g_{i}>N+3$. Since $g_{1} \geq g_{2}$, it suffices to assume that $g_{2}>N+3$, that is, $N<g_{2}-3$. Consequently, $N \leq g_{2}-5$ when N is odd, and $N \leq g_{2}-4$ when N is even. Therefore, for any g_{2},

$$
\mathrm{SU}\left(g_{1}, g_{2}\right) \leq \mathrm{SU}\left(g-g_{2}, g_{2}, g_{2}-5\right)=-20 g_{2}^{2}+2(8 g+5) g_{2}+8 g+10 .
$$

Table 2. This data illustrates that the stable bound $\operatorname{SU}(g)$ is significantly closer to $m(g)$ when compared with $U(g)$. The data seems to indicate that for large genera the ratio $m(g) / \mathrm{SU}(g)$ stabilizes to the range 0.90-0.92.

g	$m\left(g_{1}, g_{2}\right)=m(g)$	$\mathrm{SU}\left(g_{1}, g_{2}\right)$	$m\left(g_{1}, g_{2}\right) / \mathrm{SU}\left(g_{1}, g_{2}\right)$	$\mathrm{SU}(g)$	$m(g) / \mathrm{SU}(g)$
14	$m(8,6)=714$	806	0.89	806	0.89
15	$m(9,6)=798$	910	0.88	911	0.88
16	$m(10,6)=858$	1014	0.85	1022	0.84
17	$m(11,6)=966$	1118	0.86	1140	0.85
18	$m(10,8)=1122$	1258	0.89	1264	0.89
19	$m(10,9)=1254$	1330	0.94	1394	0.90
20	$m(12,8)=1326$	1530	0.87	1531	0.87
21	$m(11,10)=1518$	1638	0.93	1674	0.91
22	$m(12,10)=1650$	1806	0.91	1824	0.90
23	$m(12,11)=1794$	1886	0.95	1980	0.91
24	$m(12,12)=1950$	2050	0.95	2142	0.91
25	$m(15,10)=2046$	2310	0.89	2311	0.89
26	$m(14,12)=2262$	2450	0.92	2486	0.91
27	$m(15,12)=2418$	2650	0.91	2668	0.91
28	$m(16,12)=2550$	2850	0.89	2856	0.89
29	$m(17,12)=2730$	3050	0.90	3050	0.90
30	$m(16,14)=2958$	3190	0.93	3251	0.91
31	$m(16,15)=3162$	3286	0.96	3458	0.91
32	$m(18,14)=3306$	3654	0.90	3672	0.90
33	$m(17,16)=3570$	3762	0.95	3892	0.92
34	$m(18,16)=3774$	4026	0.94	4118	0.92
35	$m(18,17)=3990$	4130	0.97	4351	0.92

Since $-20 g_{2}^{2}+2(8 g+5) g_{2}+8 g+10$ has its maximum when $g_{2}=\frac{2}{5} g+\frac{1}{4}$, from Proposition 8.11, we have that

$$
n \leq M\left(\frac{3}{5} g-\frac{1}{4}, \frac{2}{5} g+\frac{1}{4}\right) \leq \frac{16}{5} g^{2}+12 g+\frac{45}{4} .
$$

Notation 8.15. We will denote the upper bound $\frac{16}{5} g^{2}+12 g+\frac{45}{4}$ derived in Theorem 8.14 by $\mathrm{SU}(\mathrm{g})$.

For $14 \leq g \leq 35$, Table 2 gives $\mathrm{SU}\left(g_{1}, g_{2}\right), m\left(g_{1}, g_{2}\right) / \mathrm{SU}\left(g_{1}, g_{2}\right)$, and the ratio $m(g) / \mathrm{SU}(g)$.

Based on the observable data in Tables 1 and 2, we make the following conjecture.
Conjecture 8.16. Let $F=F_{1} \#_{C} F_{2}$ be a closed oriented surface of genus $g \geq 2$. Then for sufficiently large values of g the ratio $m(g) / U(g)$ stabilizes to the range $0.79-0.82$, while the ratio $m(g) / \mathrm{SU}(g)$ stabilizes to the range $0.90-0.92$.

Acknowledgement

I would like to thank Steven Spallone for some useful discussions in elementary number theory.

References

[1] P. E. Conner and F. Raymond, 'Deforming homotopy equivalences to homeomorphisms in aspherical manifolds', Bull. Amer. Math. Soc. 83(1) (1977), 36-85.
[2] A. L. Edmonds, 'Surface symmetry. I', Michigan Math. J. 29(2) (1982), 171-183.
[3] W. J. Harvey, 'Cyclic groups of automorphisms of a compact Riemann surface', Quart. J. Math. Oxford Ser. (2) 17 (1966), 86-97.
[4] W. Magnus, A. Karrass and D. Solitar, Combinatorial Group Theory: Presentations of Groups in Terms of Generators and Relations (Dover Publications, Mineola, NY, 2004).
[5] D. Margalit and S. Schleimer, 'Dehn twists have roots', Geom. Topol. 13(3) (2009), 1495-1497.
[6] D. McCullough and K. Rajeevsarathy, 'Roots of Dehn twists', Geom. Dedicata 151 (2011), 397-409.
[7] J. Nielsen, 'Abbildungsklassen endlicher Ordnung', Acta Math. 75 (1943), 23-115.
[8] K. Rajeevsarathy, GAP Software. available at: home.iiserbhopal.ac.in/-kashyap/n2.g.
[9] P. Scott, 'The geometries of 3-manifolds', Bull. Lond. Math. Soc. 15(5) (1983), 401-487.
[10] W. P. Thurston, The geometry and topology of three-manifolds. notes available at: http://www.msri.org/communications/books/gt3m/PDF.

KASHYAP RAJEEVSARATHY, Department of Mathematics, Indian Institute of Science Education and Research Bhopal, ITI Campus (Gas Rahat) Building, Govindapura, Bhopal 462023, Madhya Pradesh, India
e-mail: kashyap@iiserb.ac.in

[^0]: (c) 2013 Australian Mathematical Publishing Association Inc. 1446-7887/2013 \$16.00

