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A NOTE ON THE DENSITY THEOREM 

BY 

JOHN LAWRENCE 

In this note we prove: 

THEOREM. Let R be a right primitive ring with pair-wise non-isomorphic 
faithful irreducible modules Ml9 M 2 , . . . , Mk. Let Dt = EndR Mt. For each i, let 
{V^JLI be elements of Mt linearly independent over Dt. For each i, let {w^^Li be a 
set of elements of Mj. Then there exists an element r of R such that utj = vtjr, for 
i = 1, 2 , . . . , k and j = 1 , 2 , . . . , nt. 

Thus the statement of the density theorem generalizes from the case of a 
single faithful irreducible module to the case where we have a finite collection 
of pairwise nonisomorphic faithful irreducible modules. 

I would like to thank Professors Alperin and Herstein for suggesting the 
above theorem. 

Proof. It is enough to show that for given (a,b)eNxN there exists an 
element rab e R such that v{irab = 0 if (i, j) ^ (a, b) and vtirab ^ 0 if (i, /) = (a, b). 
Without loss of generality, we consider only the case where (a, b) = (k, nk). By 
the Jacoson Density Theorem [1], we can choose teR such that vkjt = 0, 
j = 1, 2 , . . . , nk - 1, and vknJ^ 0. Consider the external direct sum of modules 

Z /i(M), 
i = l 

where li(Mt) stands for the direct sum of nt copies of Mt. Let a = 
Vnt + vl2t + ' ' ' + vlfllt + v21t + - - • + uk-ink_1t. The relation / : aR -» Mk defined 
by aa *-> vknJa, where a e R, is a nonzero module homomorphism if it is 
well-defined as a function. This is impossible by the Jordan-Holder Theorem, 
since Mk is not isomorphic to any other Mt. Thus there is an s e R such that 
as = 0 and vknjsj=0. Let rknk = ts. This completes the proof. 
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