A NOTE ON THE DENSITY THEOREM

BY JOHN LAWRENCE

In this note we prove:

THEOREM. Let R be a right primitive ring with pair-wise non-isomorphic faithful irreducible modules M_1, M_2, \ldots, M_k . Let $D_i = \operatorname{End}_R M_i$. For each i, let $\{v_{ij}\}_{j=1}^{n_i}$ be elements of M_i linearly independent over D_i . For each i, let $\{u_{ij}\}_{j=1}^{n_i}$ be a set of elements of M_i . Then there exists an element r of R such that $u_{ij} = v_{ij}r$, for $i = 1, 2, \ldots, k$ and $j = 1, 2, \ldots, n_i$.

Thus the statement of the density theorem generalizes from the case of a single faithful irreducible module to the case where we have a finite collection of pairwise nonisomorphic faithful irreducible modules.

I would like to thank Professors Alperin and Herstein for suggesting the above theorem.

Proof. It is enough to show that for given $(a, b) \in N \times N$ there exists an element $r_{ab} \in R$ such that $v_{ij}r_{ab} = 0$ if $(i, j) \neq (a, b)$ and $v_{ij}r_{ab} \neq 0$ if (i, j) = (a, b). Without loss of generality, we consider only the case where $(a, b) = (k, n_k)$. By the Jacoson Density Theorem [1], we can choose $t \in R$ such that $v_{kj}t = 0$, $j = 1, 2, ..., n_k - 1$, and $v_{kn_k}t \neq 0$. Consider the external direct sum of modules

$$\sum_{i=1}^{k-1} l_i(M_i),$$

where $l_i(M_i)$ stands for the direct sum of n_i copies of M_i . Let $\alpha = v_{11}t + v_{12}t + \cdots + v_{1n_1}t + v_{21}t + \cdots + v_{k-1n_{k-1}}t$. The relation $f: \alpha R \to M_k$ defined by $\alpha a \mapsto v_{kn_k} ta$, where $a \in R$, is a nonzero module homomorphism if it is well-defined as a function. This is impossible by the Jordan-Hölder Theorem, since M_k is not isomorphic to any other M_i . Thus there is an $s \in R$ such that $\alpha s = 0$ and $v_{kn_k} ts \neq 0$. Let $r_{kn_k} = ts$. This completes the proof.

Reference

1. Herstein, Noncommutative rings, Carus Monograph, Math. Assoc. of America, (1968).

The University of Chicago and the University of Waterloo

Received by the editors January 3, 1980.