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Abstract

Aims. Our study aimed to (1) identify trajectories on different mental health components
during a two-year follow-up of the COVID-19 pandemic and contextualise them according
to pandemic periods; (2) investigate the associations between mental health trajectories and
several exposures, and determine whether there were differences among the different mental
health outcomes regarding these associations.
Methods. We included 5535 healthy individuals, aged 40–65 years old, from the Barcelona
Brain Health Initiative (BBHI). Growth mixture models (GMM) were fitted to classify indivi-
duals into different trajectories for three mental health-related outcomes (psychological dis-
tress, personal growth and loneliness). Moreover, we fitted a multinomial regression model
for each outcome considering class membership as the independent variable to assess the
association with the predictors.
Results. For the outcomes studied we identified three latent trajectories, differentiating two
major trends, a large proportion of participants was classified into ‘resilient’ trajectories,
and a smaller proportion into ‘chronic-worsening’ trajectories. For the former, we observed
a lower susceptibility to the changes, whereas, for the latter, we noticed greater heterogeneity
and susceptibility to different periods of the pandemic. From the multinomial regression
models, we found global and cognitive health, and coping strategies as common protective
factors among the studied mental health components. Nevertheless, some differences were
found regarding the risk factors. Living alone was only significant for those classified into
‘chronic’ trajectories of loneliness, but not for the other outcomes. Similarly, secondary or
higher education was only a risk factor for the ‘worsening’ trajectory of personal growth.
Finally, smoking and sleeping problems were risk factors which were associated with the
‘chronic’ trajectory of psychological distress.
Conclusions. Our results support heterogeneity in reactions to the pandemic and the need to
study different mental health-related components over a longer follow-up period, as each one
evolves differently depending on the pandemic period. In addition, the understanding of
modifiable protective and risk factors associated with these trajectories would allow the char-
acterisation of these segments of the population to create targeted interventions.

Introduction

The COVID-19 pandemic posed an extraordinary health, social and economic challenge to the
world. Due to the rapid spread of the virus, governments had to implement restrictive policies
such as lockdowns or stay-at-home orders (COVID-19 Mental Disorders Collaborators, 2021).
Although these restrictive policies varied between countries, they affected people’s daily lives
globally, in terms of their work, livelihood, leisure activities and social interactions (Prati and
Mancini, 2021). In the case of Spain, in the two years following the start of the pandemic, dif-
ferent containment measures were put into place, interleaving periods of strict lock-down con-
finement (e.g., home confinement, closure of schools and businesses, use of facemasks
outdoors/indoors) with those of more relaxed measures (progressive return to work, the
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opening of restaurants and shops, use of facemasks only in some
enclosed spaces, etc.) (Red Nacional de Vigilancia Epidemiológica.
Instituto de Salud Carlos III, 2022).

A large body of knowledge has been generated regarding the
impact of the pandemic and confinement in relation to mental
health (Salari et al., 2020; Prati and Mancini, 2021; Wu et al.,
2021). Whether through cross-sectional or longitudinal studies,
it has been reported prevalence rates or mean scores of depressive
or anxiety symptoms, assuming that the response to the pandemic
is homogeneous, i.e., the same among individuals (Shevlin et al.,
2023). In contrast, a systematic review based on longitudinal stud-
ies declared that the effect of lockdowns on depression and anx-
iety was small and significant, but also highly heterogenous (Prati
and Mancini, 2021). Similarly, a meta-review of mental health
during the COVID-19 pandemic, found an increase of mental
health problems from 20 to 36%, but also a high heterogeneity
among studies (de Sousa et al., 2021). It is worth mentioning
that this evidence come from studies carried out at most up to
one year after the pandemic, with a lack of studies that have ana-
lysed longer-term consequences on mental health. According to
Taylor (2019), pandemics are dynamic events and as such their
reactions were likely to vary over time (Taylor, 2019). For this rea-
son, the results should be contextualised at different times of the
pandemic and the events occurring in each period. In addition, in
order to evaluate change from pre-pandemic status, baseline
information is needed, and this condition has been less available
in the performed research (Ahrens et al., 2021; Ellwardt and Präg,
2021; Pierce et al., 2021).

In agreement with the assumption that psychological adjust-
ment in front of an adverse event is heterogeneous and may
vary over time, different studies have been carried out on mental
health trajectories (Ahrens et al., 2021; Batterham et al., 2021;
Ellwardt and Präg, 2021; Joshi et al., 2021; Pellerin et al., 2021;
Pierce et al., 2021; Saunders et al., 2021; Shilton et al., 2021).
Most of these studies identified trajectories based on depression
and anxiety symptoms measures, using individual-centred statis-
tical techniques, as growth mixture models (GMM) or latent
class growth analysis. These techniques rely on the assumption
that individuals can be assigned to homogeneous subgroups
(i.e., distinct trajectories) based on similarities on given outcomes
(Nguena Nguefack et al., 2020). The abovementioned investiga-
tions identified from two (Joshi et al., 2021) to five trajectories
of depression or/and anxiety symptoms (Ahrens et al., 2021;
Batterham et al., 2021; Ellwardt and Präg, 2021; Pellerin et al.,
2021; Pierce et al., 2021; Saunders et al., 2021; Shilton et al.,
2021). In general terms, the results showed that a large proportion
of the sample was classified in a stable trajectory over time (called
‘resilient trajectory’), while a smaller proportion showed worse
scores or worsening over the follow-up period (‘chronic’ and
‘deteriorating trajectories’) (Ahrens et al., 2021; Batterham et al.,
2021; Ellwardt and Präg, 2021; Joshi et al., 2021; Pellerin et al.,
2021; Pierce et al., 2021; Saunders et al., 2021; Shilton et al.,
2021). These results support the model put forward by
Bonanno (2004), which argued that resilience is extremely com-
mon, finding higher proportions in the so-called ‘resilient’ trajec-
tory, where hardly any changes were observed throughout the
follow-up in the face of a stressor (Bonanno, 2004).

Nevertheless, these studies focused on psychological distress as
outcome measure, using mostly sociodemographic variables, and
in some cases personality (Saunders et al., 2021), loneliness
(Ahrens et al., 2021; Shevlin et al., 2023), coping strategies
(Joshi et al., 2021; Lin et al., 2021; Pellerin et al., 2021) and

subjective well-being variables (Pellerin et al., 2021) as predictors
of these trajectories. According to Keyes et al. (2020), mental
health is a conjunction of emotional (positive and negative
affect and psychological distress), psychological (positive func-
tioning variables, as meaning in life, personal growth, autonomy
and environmental mastery) and social wellbeing (social integra-
tion, social contribution and social acceptance), being more than
just the absence of psychopathology (Keyes et al., 2020).
Accordingly, it might be hypothesised that we could find changes
in these other components of mental health. For example, Baños
et al. (2022) found in a sample of Spanish residents that the scores
on positive functioning variables (meaning in life, gratitude, resili-
ence, compassion and life satisfaction) worsened from the begin-
ning of the lockdown, whereas emotional distress improved by the
end of the first Spanish state of alarm (June 21st, 2020) (Baños
et al., 2022). Thus, an in-depth study of the impact of the
COVID-19 pandemic on mental health should not be limited to
its effect on psychological distress, but on the different compo-
nents of wellbeing affecting mental health.

Likewise, people classified into different trajectories differed in
terms of several predictors at baseline. As reported in previous
research, being younger, female, reporting lower income, less edu-
cation and having a previous mental health diagnosis, were factors
consistently associated with ‘chronic’ and ‘worsening’ trajectories
(Pierce et al., 2021; Saunders et al., 2021; Shilton et al., 2021).
Fewer research studies examined modifiable determinants asso-
ciated with these mental health patterns such as emotion regula-
tion, coping strategies and locus of control (Ahrens et al., 2021;
Joshi et al., 2021; Shilton et al., 2021).

Altogether, the study of the impact of the pandemic on mental
health should take into account the heterogeneity of responses to
a crisis situation. Prevalence or incidence rates would not be suf-
ficient to estimate its impact. In this sense, the study of mental
health trajectories over a long follow-up would make it possible
to identify subgroups of the population in a situation of greater
vulnerability, as well as to visualise the most critical moments
of the pandemic. Furthermore, the understanding of modifiable
protective and risk factors associated with these trajectories
would allow the characterisation of these segments of the popula-
tion to create targeted interventions. The resulting body of knowl-
edge would have considerable practical implications for pressing
public health efforts.

Therefore, this study aimed to (1) identify trajectories based on
different mental health components (emotional, psychological
and social wellbeing) during a two-year follow-up of the
COVID-19 pandemic, and contextualise them according to rele-
vant events in each pandemic period; (2) investigate the associa-
tions between mental health trajectories and sociodemographic,
personality, coping, subjective well-being and lifestyles variables,
and to determine whether there were differences among the dif-
ferent mental health outcomes regarding these associations.

Method

Study design and participants

Middle- aged volunteers (40 to 65 years) participating in the
Barcelona Brain Health Initiative (BBHI), an ongoing prospective
longitudinal study that aims to understand and characterise the
determinants of brain health maintenance, were invited to partici-
pate in the current study. Briefly, BBHI study participants are
community-dwelling individuals, free from any self-reported
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neurological or psychiatric diagnosis at the time of the recruit-
ment, who answer annual questionnaires regarding demographic,
socio-economic, self-perceived health and lifestyles (general
health, physical activity, cognitive ability, socialisation, sleep,
nutrition and vital plan) information. The BBHI recruitment
took place in 2017 through an intensive dissemination campaign
including conferences, radio and TV interviews and social media
advertisements. For further details of the cohort and study proto-
col see Cattaneo et al. (Cattaneo et al., 2018).

The present work refers to a BBHI sub-study designed to
investigate mental health during the COVID-19 pandemic
(Bartrés-Faz et al., 2021; Pascual-Leone et al., 2021). BBHI parti-
cipants who had completed the annual questionnaires before the
COVID-19 widespread were invited to participate in subsequent
brief evaluations (March, April, June and October 2020, March,
July and October 2021 and February 2022) during the different
periods of the COVID-19 pandemic (See Fig. 1). In this sub-
study, several measures regarding mental health, subjective well-
being, quality of life and coping strategies, were included to
explore the effects of the pandemic on health and well-being.

In the present study, we included both the annual general
follow-up questionnaires and the COVID-19 assessments, consid-
ering the observations two years before the pandemic (2018 and
2019 annual questionnaires) as baseline data. We decided not to
include the 2017 annual questionnaire as we considered the infor-
mation from two points before the pandemic as a good baseline
on the individual’s mental health status.

Figure 1 summarises the periods covered by our study (from
early 2018 to February 2022), highlighting the time points
when the questionnaires were launched (orange dots), the rele-
vant highlights of the pandemic (blue dots) and their correspond-
ence with the epidemic periods established by the national
epidemiological surveillance network of the Carlos III National
Health Institute (Red Nacional de Vigilancia Epidemiológica.
Instituto de Salud Carlos III, 2022). These periods were defined
by this national epidemiological surveillance network by analysing
the evolution of incidence rates in the Spanish population.

The study was approved by the Catalan Union of Hospitals
ethics committee [Unió Catalana d’Hospitals] (approval refer-
ences: CEIC 17/06 and CEI 18/07). Moreover, written informed
consent was obtained from all participants in accordance with
the Code of Ethics of the World Medical Association
(Declaration of Helsinki).

Measures

Outcomes
According to Keyes et al. (2020) definition of mental health, we
selected different variables as proxies for the emotional, psycho-
logical and social components. This selection was made according
to the availability of longitudinal measures including baseline data
and similarity to the constructs assessed (Keyes et al., 2020).

Emotional
To assess psychological distress, we used the Patient Health
Questionnaire 4 items (PHQ-4) (Kroenke et al., 2009), a screening
and accurate measurement of core symptoms or signs of depres-
sion (‘be bothered by little interest or pleasure in doing things’, ‘be
bothered by feeling down, depressed, or hopeless’) and anxiety
(‘feeling nervous, anxious or on edge’, ‘be bothered by not
being able to stop or control worrying’). Participants were asked
to indicate how often they have been bothered by four possible

symptoms in the last 2 weeks, rated 0 ‘not at all’, 1 ‘several
days’, 2 ‘more than half the days’, or 3 ‘nearly every day’. A
score of six or higher represent the cut-off point for a potential
case of depression/anxiety (Kroenke et al., 2009). However, in
our analyses, we used the continuous form where higher scores
mean greater psychological distress.

Psychological
This domain was constituted by ‘personal growth’, one of the
positive functioning variables extracted from the Ryff
Psychological wellbeing scale (SPWB) (Ryff, 1995; Ryff and
Keyes, 1995). SPWB measure consists of 39 items, constituted
by six sub-scales evaluating six aspects of positive functioning.
Participants are asked to indicate how accurately each item
describes themselves by rating on a 5-level Likert scale ranging
from 1 ‘least like me’ to 5 ‘most like me’. Higher scores indicate
better positive functioning. In particular, ‘personal growth’, is
constituted by seven items and refers to one’s openness to new
experiences and growth.

Social
Keyes’ social wellbeing definition includes different factors of the
subjective evaluation of personal life circumstances and function-
ing in society, such as social contribution, integration, actualisa-
tion, acceptance and coherence. In the present study, we used
the UCLA 3-Item Loneliness Scale (Rico-Uribe et al., 2016), as
a proxy measure of social well-being. The UCLA items are related
to social integration since refer to the feeling of being excluded or
isolated from others. (Rico-Uribe et al., 2016).In this brief ques-
tionnaire, respondents were asked how often they felt that they:
lacked companionship, were left out, and were isolated from
others, on a 3-level Likert scale coded from 1 ‘hardly ever’, to 3
‘often’. Higher scores indicate greater loneliness.

Exposures

We included other variables, such as sociodemographic, self-
perceived quality of life and health, lifestyles related to health,
among other psychological measures to characterise the mental
health trajectories.

The following sociodemographic variables were considered:
sex (male/female), age (continuous), current marital status (single,
married, divorced, widowed), living alone (yes/no), educational
level (primary or less, secondary, higher education), occupation
(employed, unemployed, retired), monthly family income
(<1000€, 1000–2000€, 2000–5000€, >5000€), and if the person
lives in a town or in a city (town/city).

Furthermore, to evaluate self-perceived general health and cog-
nitive function we used the Patient-Reported Outcomes
Measurement Information System (PROMIS) of global health
(Ader, 2007) and the PROMIS Applied Cognition – General
Concerns scale (Fieo et al., 2016), respectively. The PROMIS
Global Health is composed by ten items representing five
domains (physical function, pain, fatigue, emotional distress,
social health) that are used to assess global physical health.
Concerning the cognitive function scale, is comprised by eight
items assessing self-reported cognitive troubles or deficits. In
both measures, higher scores mean better general health and bet-
ter cognitive functioning.

In addition, we included some variables related to lifestyles, as
sleeping problems and tobacco consumption. Sleeping problems
(i.e., difficulty to fall asleep, wake up at night) were assessed
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through the Jenkins Sleep Evaluation Questionnaire, a 4-item
questionnaire with scores ranging from 0 (no sleep problems)
to 20 (most sleep problems) (Jenkins et al., 1988). Moreover,
tobacco coded as yes/no was included in our analyses.

We also considered the big five personality traits (extraversion,
emotional stability, agreeableness, conscientiousness and open-
ness to experience), assessed via the International Personality
Item Pool (Goldberg, 1992). Resilience and coping strategies

were evaluated with the Brief Resilience and Coping Scale
(BRCS) (Sinclair and Wallston, 2004), where higher scores
mean better resilience and coping ability.

Related to this, we added the Engaged Living Scale to assess an
engaged response style (Trompetter et al., 2013), and three of the
six scales from the SPWB: autonomy (a sense of autonomy in
thought and action), environmental mastery (the ability to man-
age complex environments to suit personal needs and values) and

Figure 1. Timing of data acquisition and periods relative to the
development of the COVID-19 pandemic in Spain.
Note: Timeline showing the periods covered by the present
study, according to the epidemic periods in Spain, as defined
by the national epidemiological surveillance network of the
Carlos III National Health Institute. Questionnaires launching
is presented with orange dots, whereas blue dots represent
relevant highlights of the pandemic.
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positive relations with others (the establishment of quality ties to
other) (Ryff, 1995). For each of these scales, higher scores are
indicative of better functioning.

Furthermore, perceived stress (the Perceived Stress Scale
(Cohen et al., 1983)) was included as a continuous measure. In
this case, higher scores mean worse level of that construct.

Statistical analysis

We performed a descriptive analysis of the exposures at baseline.
Continuous variables were described by mean ± S.D. values, while
categorical variables were presented by the absolute number of
individuals and its corresponding percentage (%) within the sam-
ple. We considered the information extracted from the annual
questionnaires before the COVID-19 pandemic as the baseline.
In the case of the variables ‘resilience and coping strategies’ and
‘perceived stress’, no pre-pandemic data were available. These
two variables were collected in different assessments and to
increase the sample size, we considered as baseline the first avail-
able observation of each subject on each of these two variables.

To identify mental health trajectories, we first fitted multiple
general mixed effects models for each outcome (psychological
distress, personal growth and feelings of loneliness), to explore
the extent of between-individual heterogeneities (as also recom-
mended in (Herle et al., 2020)). These models separately can
allow the estimation of random intercepts, random slopes or
both. In this line, these models were compared using a
Chi-squared test to find the best design option and do model
selection (i.e., the one with the lowest residual sum of squares)
(online Supplementary material, Table 2). Second and guided
by the results in the previous step, we fitted a GMM with random
intercepts and slopes for each outcome to classify individuals into
latent trajectories based on their score on the outcome variables
without covariates (Nagin and Tremblay, 2005; Berlin et al.,
2014; Nagin, 2014). The number of trajectories was determined
by analysing group models from 1 to 5 trajectories. According
to the Bayesian information criterion (BIC) and the Akaike infor-
mation criterion (AIC), where the lowest value indicates the better
fit, the optimal model was selected (Schwarz, 1978; Akaike, 1998).
Moreover, average posterior probabilities above 0.70 were consid-
ered as indicators of optimal fit (Tein et al., 2013; Nylund-Gibson
and Choi, 2018). Trajectories sample size was also considered
since inadequate sample size (lower than 5% can lead to conver-
gence problems, insufficient power to identify classes and chan-
ging solutions) (Nylund-Gibson and Choi, 2018). The time
variable within the GMM was ‘months of the study’, although
for a clearer presentation of the results, we used the pandemic
periods established by the national epidemiological surveillance
network of the Carlos III National Health Institute when plotting
these.

Then, multiple imputation by chained equations was used to
deal with missing data in some of the exposures (online
Supplementary Table 3), assuming missing-at-random (MAR),
which can handle variables of varying types (Lepkowski et al.,
2001; van Buuren, 2007). The imputation model included the out-
come (i.e., trajectories membership) and all the variables
described in the exposures section, generating 20 imputed datasets
(He, 2010). To check imputation quality, we compared imputed
and observed data using density and stripplots of van Buuren
and Greenacre (van Buren and Greenacre, 2018) (online
Supplementary Figs 1 and 2, respectively).

To study the relationship between latent trajectory member-
ship and the described exposures, we first fitted univariable mod-
els for each outcome variable (online Supplementary Table 4). We
aimed to explore interactions or possible confounding effects to
avoid misinterpretations. Then, we conducted a multinomial
regression model for each outcome considering class membership
as the independent variable to assess the association with several
exposures. For each model, the most stable-resilient trajectory was
considered the reference category. These multivariable models
were additionally adjusted for sex, age, living alone, monthly fam-
ily income and educational level. Due to potential multicollinear-
ity between some of the exposures we checked the significance
and magnitude of correlations through a correlation matrix before
running the model (online Supplementary Fig. 3). Regression
models were run in 20 imputed datasets and results combined
using Rubin’s rules (Little and Rubin, 2002).

Additional tests were performed to ensure internal consistency
(Cronbach’s alpha) and intraclass reliability (intraclass correlation
coefficient, ICC) of all the scales in the study, since these were
administered in their translated version (Spanish and Catalan).
ICC was only calculated for longitudinal assessments (i.e.,
PHQ-4, UCLA-3 and ‘personal growth’ from SPWB) and limited
to pre-pandemic observations.

All statistical analyses were performed in R version 3.6.2 (R
Core Team, 2019), and run in RStudio, version 1.3.1093
(RStudio Team, 2020).

Results

In Table 1 are presented the main characteristics of the total sam-
ple (N = 5536) at baseline. Our analytical sample was charac-
terised by higher number of females than males (67.39% vs.
32.60%) and by a high proportion of persons with high education
(70.82%). The mean age was 51.17 (S.D. = 6.93). From the total
sample, 14.43% were living alone, 8.83% were unemployed and
4.11% had a monthly household income lower than 1000€,
whereas in 15.93% it was more than 5000€. Moreover, most of
the sample (73.80%) was living in an urban area. All scales
showed high internal consistencies (Cronbach’s alpha ranging
from 0.75 to 0.95) and good intraclass reliability (UCLA-3: ICC
= 0.75, PHQ-4: ICC = 0.75, ‘personal growth’ from SPWD: ICC
= 0.79).

Mental health trajectories

The first step was to determine the optimal number of latent tra-
jectories according to the fit indices (online Supplementary
material Tables from 5 to 7). Although in most outcomes the
information criteria (BIC and AIC) pointed to the five- and four-
class solutions, the size of the latent classes (<5.00%) and the pos-
terior probabilities (<0.70), lead these solutions to be discarded.
Consequently, the 3-class solution provided the best fit. In the
case of ‘personal growth’, one of the posterior probabilities was
slightly lower than 0.70, but the three-class solution was selected
to allow comparability with the other outcomes and to explore
this sub-sample characteristics.

In the case of psychological distress (N = 5530, see Fig. 2a), we
identified a trajectory composed by individuals with PHQ-4
scores above the clinical cut-off pre and during the pandemic.
This sub-group was termed ‘chronic’ trajectory (1: n = 518
(9.36%)) and showed some fluctuations across periods (e.g.,
there was a significant increase of psychological distress when
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the de-escalation plan took place (period 2 > period 1: t = 2.383 p
= 0.017) and with the notification of a new variant of
SARS-CoV-2 (VOC B.1.1.7 -Alpha)) (period 4 > period 3: t =
2.869 p = 0.004). Conversely, most individuals showed stable tra-
jectories (2: n = 1940 (35.08%) and 3: n = 3072 (55.55%)) across
the follow-up period. These trajectories differed essentially in
the intercept, but we considered them as ‘resilient’ trajectories
according to Bonanno’s (2004) definition and were named as
‘resilient’ and ‘moderately resilient’, respectively.

From the three-trajectories of ‘personal growth’ (N = 5,535, see
Fig. 2b), one group (3: n = 1996 (36.06%)) was characterised by
higher levels of this construct (meaning better perception of per-
sonal growth), that was sustained over time, so we termed the
‘resilient’ trajectory. Conversely, we identified another group
(‘worsening’ trajectory, 1: n = 423 (7.64%)) that had higher scores
before the pandemic and that decreased significantly at the first
period of the pandemic (i.e., when the Spanish Government
declared the state of emergency; period 1 > pre: t = 8.885 p <
0.001) and reported a steady and sustained decline over the
follow-up. Finally, most of the sample (2: n = 3116 (56.29%))
was classified into a group (‘progressively ascending’ trajectory)
characterised by lower scores at baseline with a slight increase
during the studied period. However, this change was not signifi-
cant and its name was merely descriptive.

Finally, of the three trajectories of loneliness (N = 4,066, see
Fig. 2c), two of them (2: ‘chronic – high loneliness’, n = 468
(11.51%), and 3: ‘chronic – medium loneliness’, n = 828
(20.36%)) showed a similar pattern, such that those with higher
scores of perceived loneliness before the pandemic showed a
decrease at the beginning of the pandemic (i.e., when Spanish
Government declared the state of emergency and lockdown was
implemented; period 1 > pre: 2 t = 4.331 p < 0.001, 3 t = 10.329
p < 0.001), which increased again in period 2 (when the
de-escalation plan began; period 2 > period 1: 2 t =−4.699 p <
0.001, 3 t = −1.975 p = 0.048). From the third period on, there
was a decrease until the sixth period, where there was newly an
increase in perceived loneliness. Conversely, most of the sample
(1: ‘resilient – no loneliness’, n = 2770 (68.12%)) had low and
stable scores during the study-period, meaning low perceived
loneliness.

In addition, we calculated the proportions of participants clas-
sified in the resilient trajectories of each mental health outcome
and the overlap among them. We aimed to see whether those
individuals who were resilient in one mental health component
were also resilient in the others. Of these results, it should be
noted that 65.91% of the participants classified in the trajectory
‘resilient - no loneliness’ were the same individuals as those clas-
sified in the trajectories ‘resilient’ and ‘ moderately resilient’ of the
psychological distress variable.

Association between mental health trajectories and exposures

To explore possible interactions or confounding effects among the
exposure variables, we performed univariable regression models
for each mental health component (online Supplementary
Table 4). From these results, highlight the significant associations
found in some socio-demographic variables, such as living alone,
occupation, household income and educational level, smoking, sleep-
ing problems and some personality traits. These associations largely
disappear in the multivariable models when we adjusted for sex, age,
living alone, monthly family income and educational level.

Table 1. Main characteristics of the sample at baseline

Characteristics N = 5536

Sex, n (%)

Male 1805 (32.60)

Female 3731 (67.39)

Age, mean (S.D.) 51.17 (6.93)

Marital status, n (%)

Married 3358 (60.65)

Single 1015 (18.33)

Divorced 1029 (18.58)

Widowed 134 (2.42)

Living alone (yes), n (%) 799 (14.43)

Educational level, n (%)

Primary education or less 248 (4.49)

Secondary education 1367 (24.69)

Higher education 3921 (70.82)

Occupation, n (%)

Employed 4492 (81.14)

Unemployed 489 (8.83)

Retired 555 (10.02)

Household income, n (%)

<1000€ 228 (4.11)

1000–2000€ 1238 (22.36)

2000–5000€ 3188 (57.58)

>5000€ 882 (15.93)

Living in a city (yes), n (%) 4086 (73.80)

Smoking (yes), n (%) 753 (13.60) Cronbach’s
α

Global health, mean (S.D.) 37.96 (5.62) 0.84

Cognitive function, mean (S.D.) 49.23 (8.97) 0.95

Sleeping problems, mean (S.D.) 8.69 (4.01) 0.68

Personality traits, mean (S.D.)

Extraversion 31.72 (7.08) 0.85

Emotional stability 33.64 (7.82) 0.88

Agreeableness 41.08 (5.20) 0.78

Conscientiousness 38.31 (6.01) 0.78

Openness to experience 36.23 (6.03) 0.79

Engaged living scale, mean (S.D.) 60.74 (9.35) 0.93

Autonomy, mean (S.D.) 47.35 (1.79) 0.75

Environmental mastery, mean (S.D.) 36.17 (2.28) 0.75

Positive relations with others, mean
(S.D.)

27.83 (6.45) 0.84

Brief resilience and coping scale,
mean (S.D.)

15.52 (2.38) 0.75

Perceived stress, mean (S.D.) 17.63 (7.25) 0.88

Note. The analyses were performed after the multiple imputation, combining 20 imputed
datasets using Rubin’s rules as described in the ‘Statistical Analysis’ section.
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In Table 2 the significant results from the multinomial regres-
sion models performed for each of the mental health outcomes
are presented, expressed as relative risk ratios with 95% confi-
dence intervals (CI). We excluded marital status from the analyses
due to a high collinearity (0.72) with the variable living alone
(online Supplementary Fig. 3).

For psychological distress, females, former smokers, having
sleeping problems and higher perceived stress, were risk factors
to be classified into the ‘chronic’ trajectory but also for the ‘mod-
erately resilient’ trajectory, compared to those in the ‘resilient’
one. Conversely, higher age, better global health and cognitive
function, higher emotional stability (personality trait and coping
strategies (BRCS), were protective factors for the ‘chronic’ and
‘moderately resilient’ trajectories, taking as a reference the ‘resili-
ent’ class.

In the case of ‘personal growth’, in addition to some similar-
ities, we observed differences in the risk and protective factors
of the ‘worsening’ and ‘progressively ascending’ trajectories, com-
pared to the ‘resilient’ class. Regarding similarities, we observed
that older age was a risk factor, and that variables such as person-
ality trait ‘openness to experience’ and higher scores on the BRCS
(i.e., better resilience and coping strategies) were protective fac-
tors. Concerning the differences, those with lower scores in ‘per-
sonal growth’ and who experienced a small increase during
follow-up (‘progressively ascending’ trajectory), also have as pro-
tective factors a better health status, better cognitive function and
higher scores in the SPWB scales of ‘positive relations with others’
and ‘environmental mastery’. Conversely, higher and secondary
education were risk factors for those classified in the ‘worsening’
trajectory, compared to primary education or less.

As for the loneliness results, we observed similarities between
the two trajectories with high scores (‘chronic – high loneliness’
and ‘chronic – medium loneliness’). In both trajectories, variables
such as being a female, living alone, and higher perceived stress

were risk factors for being classified in these trajectories.
Among the protective factors, we found better health status,
higher scores on the ‘engagement with life’ and the SPWB ‘posi-
tive relations with others’ scales, and in the case of those classified
into the ‘chronic – high loneliness’, higher scores on the resilience
and coping strategies scale (BRCS), compared to those classified
in the ‘resilient – no loneliness’ class.

Discussion

Mental health during the COVID-19 pandemic attracted much
attention, and numerous studies on this topic have been con-
ducted (Salari et al., 2020; Prati and Mancini, 2021; Wu et al.,
2021). However, the vast majority focused on psychological dis-
tress as a measure of mental health (Ahrens et al., 2021;
Batterham et al., 2021; Ellwardt and Präg, 2021; Joshi et al.,
2021; Pellerin et al., 2021; Pierce et al., 2021; Saunders et al.,
2021; Shilton et al., 2021), which is a conjunction of emotional,
psychological and social components (Keyes et al., 2020). Our
objective was to identify mental health trajectories considering
these components as indicators of mental health and to determine
whether they were affected in the same way during the different
stages of the pandemic. Moreover, we aimed to investigate if the
associated variables differed or coincided among the different
trajectories.

For the three outcomes studied (psychological distress, per-
sonal growth and feelings of loneliness), we identified three latent
trajectories. Of these, we differentiated two major trends, a large
proportion of people who were in ‘resilient’ trajectories (i.e., better
previous functioning with stable trajectories during the follow-up
period), and a smaller proportion of participants who were part of
‘chronic-worsening’ trajectories (i.e., low functioning and/or with
changes during follow-up). For the ‘resilient’ trajectories, we also
observed a lower susceptibility to the changes that occurred in

Figure 2. Latent trajectories of different components of mental health.
Note: The different trajectories were termed as follow: psychological distress (1: ‘chronic’ (n = 518), 2: ‘resilient’ (n = 1,940), and 3: ‘moderately resilient’ (n = 3,072)),
personal growth (1: ‘worsening’ (n = 423), 2: ‘progressively ascending’ (n = 3,116), and 3: ‘resilient’ (n = 1,996)), and loneliness (1: ‘resilient – no loneliness’ (n = 2,770),
2: ‘chronic – high loneliness’ (n = 468), and 3: ‘chronic – medium loneliness’ (n = 828)). *Trajectories used as the reference category when multinomial regression
models were performed. Blue dots indicate significant changes along the trajectories according to relevant highlights of the pandemic. In particular, we found
significant changes in the following periods: period 1 (Spanish Government declared state of emergency), period 2 (beginning of the de-escalation plan), period
3 (Spanish Government declared a new state of emergency), period 4 (notification of a new variant of SARSCoV-2 (VOC B.1.1.7 – Alpha), and started COVID-19
vaccination in Spain), and period 5 (end of the second state of emergency).
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Table 2. Results from the multivariable models to explore the association between latent trajectory membership and exposures in the mental health constructs

Psychological distress Personal growth Loneliness

Variables ‘Chronic’
‘Moderately
resilient’ ‘Worsening’

‘Progressively
ascending’

‘Chronic – high
loneliness’

‘Chronic – medium
loneliness’

Sex

Male (ref.) – – – – – –

Female 2.59 (1.91–3.51) 1.71 (1.48–1.99) 1.07 (0.14–2.45) 0.82 (0.71–0.95) 1.36 (1.02–1.81) 1.29 (1.06–1.56)

Age 0.95 (0.93–0.97) 0.97 (0.96–0.98) 1.02 (0.83–1.37) 1.02 (1.01–1.04) 1.00 (0.98–1.02) 0.99 (0.98–1.00)

Living alone

No (ref.) – – – – – –

Yes 1.32 (0.91–1.91) 0.95 (0.77–1.17) 1.06 (0.77–1.46) 0.91 (0.74–1.11) 3.15 (2.33–4.28) 2.06 (1.63–2.61)

Occupation

Employed (ref.) – – – – – –

Unemployed 1.06 (0.68–1.65) 0.96 (0.74–1.25) 1.40 (0.95–2.07) 1.07 (0.83–1.38) 1.09 (0.71–1.67) 1.12 (0.82–1.52)

Retired 0.88 (0.52–1.50) 1.00 (0.77–1.29) 0.95 (0.62–1.45) 0.98 (0.76–1.11) 0.94 (0.59–1.48) 1.27 (0.95–1.72)

Household income

<1000€ (ref.) – – – – – –

1000–2000€ 0.65 (0.35–1.21) 1.15 (0.77–1.71) 1.40 (0.77–2.57) 1.42 (0.99–2.04) 0.91 (0.53–1.57) 1.02 (0.66–1.58)

2000–5000€ 0.62 (0.34–1.15) 0.92 (0.62–1.36) 1.35 (0.74–2.46) 1.52 (1.06–2.17) 0.56 (0.31–0.98) 0.85 (0.54–1.32)

>5000€ 0.73 (0.36–1.46) 0.85 (0.56–1.30) 1.03 (0.53–1.99) 1.40 (0.95–2.07) 0.63 (0.33–1.20) 0.75 (0.46–1.22)

Living in a city

No (ref.) – – – – – –

Yes 1.17 (0.87–1.57) 1.07 (0.92–1.25) 0.88 (0.69–1.12) 1.05 (0.91–1.22) 1.08 (0.82–1.41) 2.06 (0.84–1.22)

Educational level

Primary education or
less (ref.)

– – – – – –

Secondary education 0.76 (0.42–1.40) 0.94 (0.65–1.37) 2.79 (1.11–7.02) 0.62 (0.43–0.90) 0.93 (0.52–1.65) 0.99 (0.61–1.62)

Higher education 0.81 (0.45–1.45) 1.14 (0.79–1.64) 2.55 (1.02–6.36) 0.45 (0.32–0.65) 1.16 (0.66–2.06) 1.09 (0.69–1.74)

Global health 0.88 (0.85–0.90) 0.94 (0.92–0.96) 1.00 (0.98–1.03) 0.97 (0.95–0.98) 0.95 (0.92–0.97) 0.96 (0.94–0.98)

Cognitive function 0.90 (0.89–0.92) 0.94 (0.93–0.95) 1.00 (0.98–1.02) 0.98 (0.97–0.99) 0.97 (0.96–0.99) 0.99 (0.98–1.00)

Smoking

No (ref.) – – – – – –

Yes 1.96 (1.38–2.79) 1.27 (1.03–1.56) 1.07 (0.78–1.47) 1.06 (0.87–1.29) 1.35 (0.99–1.84) 1.02 (0.80–1.30)

Sleeping problems 1.15 (1.11–1.19) 1.07 (1.05–1.10) 0.97 (0.94–1.00) 0.98 (0.96–1.00) 1.01 (0.98–1.04) 1.01 (0.98–1.03)

Personality traits

Extraversion 1.00 (0.97–1.02) 0.99 (0.98–1.01) 0.99 (0.97–1.01) 0.98 (0.97–0.99) 0.99 (0.97–1.01) 0.99 (0.98–1.01)

Emotional stability 0.92 (0.89–0.94) 0.95 (0.93–0.96) 0.98 (0.96–1.00) 0.99 (0.98–1.01) 0.95 (0.93–0.97) 0.97 (0.95–0.98)

Agreeableness 1.02 (0.99–1.06) 1.01 (1.00–1.03) 1.00 (0.97–1.03) 0.98 (0.96–1.00) 1.00 (0.97–1.03) 1.00 (0.98–1.02)

Conscientiousness 1.00 (0.97–1.03) 0.99 (0.98–1.01) 0.99 (0.97–1.01) 0.99 (0.98–1.01) 0.99 (0.97–1.02) 0.99 (0.97–1.00)

Openness to
experience

1.03 (1.00–1.06) 1.00 (0.99–1.02) 0.96 (0.93–0.98) 0.95 (0.94–0.97) 1.04 (1.01–1.06) 1.02 (1.00–1.04)

Engaged living scale 0.96 (0.94–0.98) 0.98 (0.97–0.99) 0.99 (0.97–1.00) 0.96 (0.95–0.97) 0.97 (0.96–0.99) 0.98 (0.96–0.99)

Autonomy 0.98 (0.92–1.04) 0.98 (0.95–1.02) 1.03 (0.98–1.08) 1.00 (0.96–1.04) 1.03 (0.97–1.11) 0.99 (0.94–1.04)

Environmental mastery 0.98 (0.92–1.05) 1.00 (0.96–1.04) 0.96 (0.90–1.02) 0.88 (0.84–0.92) 1.00 (0.94–1.07) 1.03 (0.98–1.08)

Positive relationships
with others

0.94 (0.92–0.97) 0.98 (0.97–1.00) 0.99 (0.97–1.01) 0.98 (0.96–0.99) 0.86 (0.84–0.88) 0.93 (0.91–0.94)

(Continued )
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each period of the pandemic, reaffirming Bonanno’s (2004) model
and the results of research conducted on mental health trajector-
ies during the COVID-19 pandemic (Ahrens et al., 2021;
Batterham et al., 2021; Ellwardt and Präg, 2021; Joshi et al.,
2021; Pellerin et al., 2021; Pierce et al., 2021; Saunders et al.,
2021; Shilton et al., 2021). In the case of the so-called ‘chronic-
worsening’ trajectories, we observed greater heterogeneity and
susceptibility to different periods of the pandemic. For example,
regarding psychological distress (emotional component), those
participants classified in the ‘chronic’ trajectory had higher scores
at baseline than when the state of alarm was declared (period 1),
and these scores increased at later points in the pandemic (e.g.,
period 2, when the de-escalation plan was initiated (‘new normal-
ity’); or period 4, when the Alpha variant was reported). However,
in the social component (loneliness variable), those people who
felt lonelier before the pandemic (chronic - high loneliness),
reduced their scores when the state of alarm was decreed (period
1) and home confinement was imposed, returning to their previ-
ous scores when the de-escalation and the period of new normal-
ity began (period 2).

With respect to psychological distress, one possible explan-
ation for the results obtained is that people classified within this
trajectory already had levels of anxious-depressive symptoms
above the cut-off point before the pandemic, predisposing them
to higher vulnerability. This explanation is further supported by
the results of the multinomial regression models, where we
observed higher perceived stress as a risk factor and a negative
association with higher scores in resilience and coping strategies,
and with the personality trait ‘emotional stability’. Our results
were in line with previous research. For instance, higher perceived
stress during COVID-19 lockdown was found to be a predictor
for worse mental health (based on GHQ-28 scores) in a longitu-
dinal study conducted in Germany (Ahrens et al., 2021). In
the same way, previous mental health diagnosis has been consist-
ently associated to ‘chronic’ or ‘worsening’ trajectories (Pierce
et al., 2021; Saunders et al., 2021), which could be extrapolated
to the scores above the PHQ-4 cut-off at baseline in our
study. Furthermore, in the investigation conducted by Saunders
et al. (2021), personality traits such as ‘emotional stability’ was
also associated with trajectories with worse anxiety scores
(based on the GAD-7), in particular trajectories called ‘moder-
ate/moderately-severe symptoms that become severe over time’
and ‘severe initial anxiety that decreases to normal range, pre-
dominantly during lockdown’ (Saunders et al., 2021). Taken
together, all these factors may be acting synergistically posing
these individuals in a more vulnerable situation.

Regarding loneliness, the decrease in scores in the initial per-
iod of the pandemic (period 1), was also observed in a previous
report by our group, attributing this initial change to the spirit

of togetherness that was generated to deal with stay-at-home
orders, such as video calls to family and friends or the ‘20:00 h
applause’, where thousands of people applauded frontline health
professionals from windows or balconies acknowledging them
their work and commitment. All these aspects may have helped
to intensify social bounds, cooperation and a sense of belonging
in the initial stages of the pandemic outbreak. However, in the
present study including a much-extended follow-up assessment,
indicated that this initial effect declined after the end of home
confinement until the initial levels of loneliness were reached
(Bartrés-Faz et al., 2021). When we characterised these groups
of individuals (i.e., ‘chronic – high loneliness’ and ‘chronic –
medium loneliness’), we observed that they were mostly females,
people who were living alone and individuals with high perceived
stress. Unlike for psychological distress, fewer studies have been
carried out on loneliness. In much of the research, it has been
used as a predictor of mental health and rarely as an outcome
(Ahrens et al., 2021; Shevlin et al., 2023). Studies performed in
different countries, that have focused on loneliness during the
pandemic, have found somewhat controversial results. Some
research found an increase of loneliness during the acute phase
of the outbreak (Bu et al., 2020; Luchetti et al., 2020), whereas
other reported a reduction in perceived loneliness in this phase
(Bartrés-Faz et al., 2021). These findings suggest that the results
need to be contextualised, as the effect of the pandemic on lone-
liness may depend on contextual aspects, such as the restrictions
applied in each country.

In the case of the psychological dimension of mental health
(‘personal growth’), we identified fewer changes during follow-up,
yet some aspects deserve to be mentioned. According to our
results, we found that more than half of the sample (those classi-
fied in the ‘progressively ascending’ class) had low scores in ‘per-
sonal growth’, being people with a feeling of personal stagnation
or lack of a sense of improvement or expansion in life. These par-
ticipants experienced an improvement at follow-up, although not
statistically significant. In contrast, a small proportion of the sam-
ple (‘worsening’ trajectory) presented a large decrease in scores
from the onset of the pandemic (period 1) compared to their
baseline scores. Faced with both scenarios, we wondered what
variables would be associated with these trajectories to character-
ise them. In both cases, older age was a risk factor compared to
the ‘resilient’ class. This differed from what was found in the lit-
erature in studies on emotional distress variables during the pan-
demic, where younger subjects were more vulnerable (Ellwardt
and Präg, 2021; Pierce et al., 2021; Saunders et al., 2021;
Shilton et al., 2021). Nevertheless, a review concerning the impact
of age on mental health changes during the pandemic found het-
erogeneous findings in the literature, suggesting that the effect of
age may depend on contextual variables but also on the mental

Table 2. (Continued.)

Psychological distress Personal growth Loneliness

Variables ‘Chronic’
‘Moderately
resilient’ ‘Worsening’

‘Progressively
ascending’

‘Chronic – high
loneliness’

‘Chronic – medium
loneliness’

Brief resilience and
coping scale

0.87 (0.81–0.93) 0.96 (0.92–1.00) 0.88 (0.83–0.95) 0.89 (0.85–0.93) 0.91 (0.86–0.97) 0.98 (0.94–1.03)

Perceived stress 1.12 (1.09–1.15) 1.06 (1.04–1.07) 1.01 (0.99–1.03) 1.00 (0.99–1.01) 1.07 (1.05–1.10) 1.04 (1.02–1.05)

Note. Relative risk ratios (95% CI) from multinomial logistic regression models. Models were run in 20 imputed datasets and results combined using Rubin’s rules. Models were adjusted for
sex, age, living alone, monthly family income, and educational level. Boldface indicates statistically significant results.
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health outcome studied (Lebrasseur et al., 2021). Our study allows
to contextualise these findings in terms of a particular age group
(40 to 65 years) and one of the domains of mental health. In add-
ition, both trajectories (‘worsening’ and ‘progressively ascending’),
had in common higher resilience and coping strategies, and the
personality trait ‘openness to experience’ as positive factors asso-
ciated to these trajectories. This could be translated into a lower
adaptive capacity as well as a tendency towards conservativeness
and less openness to experience. However, they differed in a
lower risk of being classified in the ‘progressively ascending’
class in the case of better self-reported health, better cognition
and higher scores in ‘positive relations with others’ and ‘environ-
mental mastery’, i.e., quality ties to others and the ability to man-
age complex situations, respectively.

Given these results, and with the calculation of the overlapping
of individuals classified in trajectories considered ‘resilient’, we
reaffirm our initial hypothesis that the different components of
mental health should be analysed separately. We found that
within so-called ‘resilience’ there was also heterogeneity, as the
proportion of overlapping in the ‘resilient’ individuals among out-
comes was only above 50% for psychological distress and loneli-
ness, while for ‘personal growth’ and loneliness it was 26.29%.
The greatest overlap, that was found between loneliness and emo-
tional distress, was consistent with that reported in the literature,
where both variables have been consistently related (Bu et al.,
2020; Ahrens et al., 2021). Moreover, each outcome was suscep-
tible to different stages of the pandemic and the variables asso-
ciated with the trajectories presented some differences. These
variations included that living alone was only a significant risk
factor for loneliness (‘chronic-high/medium loneliness’ trajector-
ies), but not for the other outcomes. Likewise, monthly household
income was only related to one of the trajectories of ‘personal
growth’ in the adjusted models. Furthermore, lifestyles such as
smoking behaviour and sleeping problems were associated with
the ‘chronic’ class of the psychological distress measure, which
could be related to a maladaptive strategy and a consequence of
experienced distress, respectively. For the same class, predictors
as ‘emotional stability’ and perceived stress, well-known distress-
related variables, were found to be risk factors also for the
‘chronic’ trajectories of loneliness, but not for ‘personal growth’.
In addition, from the analysis of the variables associated with
the different trajectories, we also observed some similarities.
Predictors such as better overall health and better cognitive
function were protective factors in all of the studied variables.
The relationship between physical and mental health status has
been commonly reported in the literature, suggesting a bidirec-
tional relationship (Druss and Walker, 2011). Likewise, anxious-
depressive symptomatology has been widely recognised as a risk
factor for cognitive impairment (Chodosh et al., 2010;
Zaninotto et al., 2018). Similarly, the personality trait ‘openness
to experience’, and some SPWB scales (‘engaged living scale’
and ‘positive relations with others’) were positively associated
with better mental health outcomes (i.e., ‘resilient’ trajectories).
Finally, emphasise the role of coping strategies, as it was positively
associated with those trajectories with better functioning in all the
analysed outcomes. Previous research found frequent use of dys-
functional coping strategies and less frequent use of emotion-
focused coping strategies in those participants classified into the
trajectory ‘high-increasing depressive symptoms’ (Joshi et al.,
2021). The role of coping strategies is of particular interest as it
is a modifiable factor, which can be trained and serve as a pre-
ventive strategy for future crises.

From the perspective of practice and policy, our study provides
useful information for risk identification. Our research allows to
identify and characterise groups of more resilient people and
others who are in a situation of chronicity or vulnerability.
Furthermore, the fact that we have separated different aspects of
mental health (psychological distress, personal growth and feel-
ings of loneliness) and contextualised the fluctuations by consid-
ering the relevant events of the pandemic, makes our study of
potential great value. In this sense, it allows for the detection of
key temporal moments in which to target interventions to stra-
tegically prevent to promote a better emotional, psychological
and social status. This knowledge could be extrapolated to the
current situation, where other social and economic threats have
increased, such as the rising price of basic needs (electricity, gas
and food), inflation and eventual recession. Exposure to these fac-
tors could affect people’s health, and the results of these studies
could be used to guide preventive strategies.

Strengths and limitations

The strengths of the present work include a two-year follow-up
from the start of the COVID-19 pandemic and the inclusion of
baseline information. To the best of our knowledge, no previous
study has carried out such a long follow-up (Ahrens et al.,
2021; Batterham et al., 2021; Ellwardt and Präg, 2021; Joshi
et al., 2021; Pellerin et al., 2021; Pierce et al., 2021; Saunders
et al., 2021; Shilton et al., 2021). In our study, we analysed data
considering the previous two years as the baseline, until
February 2022, when the large expansion of the Omicron variant
occurred. This is particularly important because, according to
Taylor, pandemics are dynamic events and therefore changes in
mental health outcomes are expected to occur over time, includ-
ing a return to baseline levels (Taylor, 2019). This could be
observed with a long follow-up and not just at the beginning of
the pandemic when lockdown and other covid measures were
implemented. Furthermore, we interpreted the fluctuations in
the trajectories in terms of the periods of greatest interest for
the pandemic, contextualising the changes in the analysed mental
health outcomes, suggesting that certain changes might be related
to the events taking place in each covid period. This made our
study a richer investigation as it was not limited to two major per-
iods (e.g., pre-covid/covid or lockdown/new normality), but
allowed us to observe the evolution of psychological, emotional
and social outcomes at different points and to identify the most
critical moments of the pandemic. Moreover, as we mentioned
earlier, we identified trajectories based on proxy measures of
different components of mental health, not just psychological dis-
tress, since mental health is more than the absence of anxious-
depressive symptoms. Therefore, the approach of our study was
under Keyes et al.’s (2020) definition of mental health and consid-
ered emotional, psychological and social elements as indicators of
mental health (Keyes et al., 2020). The fact that we found differ-
ences in trajectories and associated variables among mental health
outcomes reinforces our hypothesis and the need for more holistic
studies on mental health. Finally, the inclusion of several predic-
tors, such as socio-demographic variables, personality traits, some
lifestyles and variables regarding subjective well-being and coping
strategies, provided a good overview of the risk and protective
factors that characterise each of the trajectories.

However, some limitations deserve to be mentioned. First, we
did not use a random sample and it could have introduced some
bias limiting the sample representativeness and result
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generalisability. For example, there was an oversampling of
females and participants with higher education. Ideally, we should
have fitted the models in a randomised design, but such design is
not possible to pursue in the current context. Future research
could use post-randomisation techniques based on matching or
weighting-based random sampling methods that specifically
target potentially varying background characteristics. Secondly,
there were differences in the number of observations among
periods and variables collected. This fact, although inherent to a
longitudinal study, entailed a large number of missingness in
most of the predictors, so multiple imputation procedures were
performed. In our case the complete case analysis could not be
considered due to a drastic reduction of the sample size.
Nevertheless, the use of multiple imputation procedures is widely
advocated when missing data occur in one or more covariates in a
regression model and under an MAR assumption, and in order to
ensure the quality of the imputed data, all necessary diagnostics
were performed (Sterne et al., 2009; White and Carlin, 2010).
Thirdly, despite having longitudinal information on some of the
exposure variables, multinomial regression models included
only baseline scores. Some of these variables, such as occupation,
sleep problems, resilience and coping strategies and perceived
stress, might have changed during follow-up. Due to differences
in the number of observations and the period of collection of
each variable, longitudinal analysis was discarded. However,
future studies should consider analysing the exposure variables
longitudinally, as their possible changes could explain part of
the results found. Finally, the identification of trajectories in
two of the mental health components was based on screening
measures, such as the PHQ-4 and the UCLA-3. While much of
the research in this field has used these or similar measures (Bu
et al., 2020; Fancourt et al., 2021; Pierce et al., 2021; Saunders
et al., 2021; Shevlin et al., 2023), researchers and policymakers
should be aware of the accuracy limitations with such tools, and
interpret the results with caution.

Supplementary material. The supplementary material for this article can
be found at https://doi.org/10.1017/S2045796023000136
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