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Consecutive Integers with Close Kernels

Jean-Marie De Koninck and Florian Luca

Abstract. Let k be an arbitrary positive integer and let γ(n) stand for the product of the distinct prime
factors of n. For each integer n ⩾ 2, let an and bn stand respectively for themaximum and themini-
mum of the k integers γ(n+ 1), γ(n+ 2), . . . , γ(n+ k). We show that lim infn→∞ an/bn = 1. We also
prove that the same result holds in the case of the Euler function and the sum of the divisors function,
as well as the functions ω(n) and Ω(n), which stand respectively for the number of distinct prime
factors of n and the total number of prime factors of n counting their multiplicity.

1 Introduction

he local behavior of arithmetic functions has been the focus of various studies. One
of these involves comparing the values of an arithmetic function at its consecutive
arguments. For instance, we were able to show (see our recent book [2, Proposi-
tion 8.9]) that, given any integer k ≥ 2 and letting ϕ stand for the Euler function,
ϕ(n+ 1) < ϕ(n+2) < ⋅ ⋅ ⋅ < ϕ(n+ k) holds for inûnitelymany positive integers n. he
same type of statement can be made for the sum of divisors function σ(n). Besides
these and other multiplicative functions, similar statements can bemade for additive
functions. For instance, De Koninck, Friedlander and Luca [1] proved that, given any
integer k ≥ 2, if g(n) = ω(n) ∶= ∑p∣n 1 or g(n) = Ω(n) ∶= ∑pα∥n α, then

g(n + 1) < g(n + 2) < ⋅ ⋅ ⋅ < g(n + k) holds inûnitely o�en.

See also [3]. However, such results do not provide suõcient information to conclude
that, in the above string of inequalities, g(n + k)/g(n + 1) can be arbitrarily close
to 1 on an inûnite sequence of integers n. Here, we ûll this gap for several arithmetic
functions, in particular for the kernel function γ(n) ∶= ∏p∣n p. More precisely, let
f ∶N → R+ be an arithmetic function with values in the positive reals. For each posi-
tive integer k, let

fk = lim inf
n→∞

max{ f (n + 1), . . . , f (n + k)}
min{ f (n + 1), . . . , f (n + k)}

.

We show that fk = 1 for all k ≥ 1 for a variety of classical arithmetic functions, such as
f (n) = γ(n), ϕ(n), σ(n),ω(n),Ω(n).
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2 The construction for ω(n) and Ω(n)
For f (n) = ω(n),Ω(n), this is easy. By the Turán–Kubilius inequality, for each ε > 0,
the number of positive integers n ≤ x with the property that ω(n) ∉ ((1− ε) log log x ,
(1 + ε) log log x) is O(x/ log log x). Doing this for n + 1, . . . , n + k, it follows that for

x + O(kx/ log log x) = ( 1 + o(1))x

positive integers n ≤ x as x →∞, we have that

ω(n + i) ∈ ((1 − ε) log log x , (1 + ε) log log x)) , i = 1, . . . , k.

hus, for such n we have that
max{ f (n + 1), . . . , f (n + k)}
min{ f (n + 1), . . . , f (n + k)}

∈ [ 1,
1 + ε
1 − ε

] .

Making ε tend to zero we get the desired assertion. Of course, the same works for
Ω(n).

3 The construction for γ(n)
Let k ≥ 2, K = (2k + 1)!. Let n ≡ K (mod K2). hen n = K + K2m for some
nonnegative integer m. Write

n + i = in i , where n i = ( 1 +
K
i
) + (

K2

i
)m for i = 1, . . . , k.

Since i2 ∣ (k!)2 ∣ K, it follows that n i is coprime to all primes p ≤ k for i = 1, . . . , k.
Moreover, since K/i is amultiple of all primes p ∈ [k+ 1, 2k+ 1] for all i ≤ k, it follows
that n i is coprime to all primes p ∈ [k + 1, 2k + 1] as well. hus, n i is coprime to all
primes p ≤ 2k + 1. By multiplicativity, f (n + i) = f (i) f (n i) for all i = 1, . . . , k. Let
ε > 0 be ûxed. Let us put g(i) = f (i)/i. Choose a prime p1 > 2k + 1 suõciently large
so that each of the intervals

(
g(i)
g(1)

p1 ,
g(i)
g(1)

p1(1 + ε)) , i = 1, . . . , k,

contains a prime p i > 2k + 1 such that p1 , . . . , pk are distinct primes. his is possible
if

p1 > (2k + 1)g(1)max{g(i)−1
∶ 1 ≤ i ≤ k}

and

π(
g(i)
g(1)

p1(1 + ε)) − π(
g(i)
g(1)

p1) > k for all i = 1, . . . , k,

which holds for large p1 by the Prime Number heorem. Impose that

n + i ≡ p2
i (mod p3

i ), i = 1, . . . , k.

hisputs n into a certain progressionmoduloM ∶= K2(∏
k
i=1 p i)

3. Say theprogression
is n = N0 +Mℓ, where N0 is the smallest positive integer in that progression. Let x be
suõciently large that

log x > 12P log P, where P ∶= max{p1 , p2 , . . . , pk}.
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Note that

M = K2
(

k

∏
i=1

p i)
3
< (2k + 1)4k+2

(p1 ⋅ ⋅ ⋅ pk)
3
< P2P

⋅ P3k
< P4P

< x 1/3 .

hus, the number of such n ≤ x is at least ⌊x/M⌋− 1. We claim that a positive propor-
tion of them have n i/p2

i square-free. Indeed, if not, n i cannot be divisible by squares
of primes p ≤ 2k + 1, so it must be the case that p2 ∣ n i for some p > 2k + 1 and
p ≠ p i . Clearly, p ≠ p j for some j ≠ i, otherwise p divides both n + i and n + j, so
their diòerence 0 < ∣ j − i∣ < k < p, a contradiction. If p ≤

√
x/M, this puts n into an

arithmetic progression of ratio Mp2 < x, so the number of such n ≤ x is at most

(3.1)
x

Mp2 + O(1).

If p >
√
x/M, then this puts N0 + i +Mℓ into an arithmetic progression modulo p2,

and the number of such possibilities is O(1). hus, the number of such possibilities
is at most what is shown in (3.1) independently of p, and only p > 2k + 1 is possible.
Summing this up over all p ≤ x 1/2, and over all i = 1, . . . , k, we get that the number of
such possibilities is

≤
kx
M
∑

p≥2k+3

1
p2 + O(k

√
x).

he ûrst sum is at most
kx
M

∑
m≥2k+3

1
m2 <

kx
M

∑
m≥2k+3

1
m(m − 1)

=
kx

2M(k + 1)
.

Since M ≪ x 1/3, it follows that x/M ≫ x2/3, so that k
√
x = o(x/M). hus, for large

x the number of such n ≤ x is at most
x
M

(
k

2k + 2
+ o(1)) <

x
2M

.

It follows that for large x there are

⌊
x
M

⌋ − 1 −
x

2M
>

x
3M

such positive integers n for which n i/p2
i is squarefree. Now if f = γ, we have that

f (n + i) = f (i) f (n i) = f (i)p i(
n + i
ip2

i
) =

f (i)
ip i

n( 1 + o(1)) =
g(i)
p i

n( 1 + o(1))

as x →∞ for i = 1, . . . , k. Since

g(i)
p i

∈ [
g(1)
p1

(1 + ε)−1 ,
g(1)
p1

] ,

it follows that
max{ f (n + 1), . . . , f (n + k)}
min{ f (n + 1), . . . , f (n + k)}

∈ [1 + o(1), 1 + ε + o(1)]

as x →∞. Now wemake ε go to zero and x go to inûnity and get the desired result.
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4 The construction for ϕ(n), σ(n)
For this,we use the fact that ϕ(a)/a is dense in [0, 1] and the same is true for a/σ(a).
To adapt the previous construction we again choose n ≡ K (mod K2) and such that
additionally n + i ≡ a i (mod a2

i ), where a1 , . . . , ak are mutually coprime positive
integers, divisible only by primes > 2k + 1 and such that, for each i = 1, . . . , k,

(4.1) g(i)
f (a i)

a i
∈ ( g(1)

f (a1)
a1

, g(1)(
f (a1)
a1

)(1 + ε)) .

his is possible by the denseness of ϕ(a)/a and a/σ(a) in [0, 1], even if a is required
to be coprime to primes from a ûxed ûnite set. To ûnd such numbers we can start
with a1 = 1, then use the denseness of ϕ(a)/a or a/σ(a) to ûnd a suitable a2 coprime
to K with the property (4.1), then use the denseness of ϕ(a)/a or a/σ(a) to ûnd a3
coprime toKa2 with property (4.1), and so on. hen the proof goes as in the preceding
case except that instead of taking n + i ≡ p2

i (mod p3
i ), we take n + i ≡ a i (mod a2

i ).
Furthermore, take Q = max{P(a i) ∶ 1 ≤ i ≤ k}. We set P = 0.1 log x/ log log x and
require x to be such that P > Q. hen the inequality x > 9P log P is satisûed for
large x. We also let Q be the set of primes ≤ P not dividing K∏k

i=1 a i and require all
p ∈ Q to divide n. hus, the progression for our Chinese Remainder heorem has
modulus

M = K2
(

k

∏
i=1
a i)

2
∏
q∈Q

q ≤ K2
( ∏

2k+1≤q≤P
q)

2
< P2P e2.5P < P3P

< x

for large x. Here, we used the Prime Number heorem under the form

(4.2) ∏
p≤y

p = e(1+o(1))y as y →∞.

By multiplicativity,

f (n + i) = f (i) f (a i) f (
n + i
ia i

) .

We can show that

(4.3) f (
n + i
ia i

) =
n
ia i

( 1 + o(1))

as x →∞. Indeed, this is due to the fact that (n + i)/(ia i) ∶= m i is a number of size
at most x having no prime factors below P = 0.1 log x/ log log x. Since n ≤ x, n has at
most 2 log x/ log log x distinct prime primes in total for large x (again by the Prime
Number heorem (4.2)) and so

f (m i)

m i
= ∏

p∣m i

( 1 + O(
1
p
)) = exp(O( ∑

p∣m i

1
p
))

= exp(O( ∑
c1 log x/ log log x<p<c2 log x/ log log x

1
p
))

= exp(o(1)) = 1 + o(1),

472

https://doi.org/10.4153/S0008439518000085 Published online by Cambridge University Press

https://doi.org/10.4153/S0008439518000085


Consecutive Integers with Close Kernels

as
∑

c1 log x/ log log x<p<c2 log x/ log log x

1
p
= o(1) for x →∞.

Here, c1 = 0.1 < c2 = 2. We have thus proved (4.3) and therefore established that
max{ f (n), . . . , f (n + k − 1)}
min{ f (n), . . . , f (n + k − 1)}

∈ [1 + o(1), 1 + ε + o(1)],

which completes the proof of this case bymaking ε tend to zero and x tend to inûnity.

Added after acceptance. We have just realized that in the case f (n) = γ(n), the fact
that the associated fk satisûes fk = 1 for all k ≥ 1 is actually a consequence of themain
result in a 12-year-old paper by F. Luca and I. Shparlinski, “Approximating positive
reals by ratios of consecutive integers”, inDiophantine analysis and related ûelds 2006,
Sem. Math. Sci. 35, Keio University, Yokohama, 2006, 141–149. heir proof follows a
diòerent approach and applies only to the γ(n) function.
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