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Abstract. For any pair M, N of von Neumann algebras such that the algebraic
tensor product M ⊗ N admits more than one C∗-norm, the cardinal of the set of C∗-
norms is at least 2ℵ0 . Moreover, there is a family with cardinality 2ℵ0 of injective tensor
product functors for C∗-algebras in Kirchberg’s sense. Let � = ∏

n Mn. We also show
that, for any non-nuclear von Neumann algebra M ⊂ �(�2), the set of C∗-norms on
� ⊗ M has cardinality equal to 22ℵ0 .
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1. Introduction. A norm α on an involutive algebra A is called a C∗-norm if it
satisfies

∀x ∈ A α(x∗x) = α(x)2

in addition to α(x∗) = α(x) and α(xy) ≤ α(x)α(y) for all x, y ∈ A. After completion,
(A, α) yields a C∗-algebra. While it is well known that C∗-algebras have a unique C∗-
norm, it is not so for involutive algebras before completion. For example, it is well
known that the algebraic tensor product A ⊗ B of two C∗-algebras may admit distinct
C∗-norms, in particular a minimal one and a maximal one denoted respectively by ‖ ‖min

and ‖ ‖max. When two C∗-norms on A ⊗ B are equivalent, they must coincide since
the completion has a unique C∗-norm. The C∗-algebras A such that ‖ ‖min = ‖ ‖max

on A ⊗ B (or equivalently A ⊗ B has a unique C∗-norm) for any other C∗-algebra B
are called nuclear. Since they were introduced in the 1950’s, they have been extensively
studied in the literature, notably in the works of Takesaki, Lance, Effros and Lance,
Choi and Effros, Connes, Kirchberg, and many more. We refer to [16] or to [3] for an
account of these developments.

In his 1976 paper [19], Simon Wassermann proved that �(H) is not nuclear when
H = �2 (or any infinite dimensional Hilbert space H). Here, �(H) denotes the C∗-
algebra formed of all the bounded linear operators on H. This left open the question
(see [9]) whether ‖ ‖min = ‖ ‖max on �(H) ⊗ �(H). The latter was answered negatively in
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[7]. Curiously however, the proofs in [7] only establish the existence of two inequivalent
C∗-norms on �(H) ⊗ �(H), namely the minimal and maximal ones, leaving open the
likely existence of many more, which is the main result of this note.

It follows from [7] that the min and max norms are not equivalent on M ⊗ N for
any pair M, N of von Neumann algebras except if either M or N is nuclear, in which
case, of course, the min and max norms are equal. In [19], S. Wassermann showed
that a von Neumann algebra M is nuclear if and only if it is “finite type I of bounded
degree”. This means that M is (isomorphic to) a finite direct sum of tensor products
of a commutative algebra with a matrix algebra. Equivalently, this means that M does
not contain the von Neumann algebra

∏
n Mn as a C∗-subalgebra.

In the first part of this note, we prove that there is at least a continuum of different
(and hence inequivalent) C∗-norms on the algebraic tensor product �(�2) ⊗ �(�2). As
a corollary, we obtain a continuum of injective tensor product functors for C∗-algebras
in the sense of Kirchberg [10].

Let � = ∏
n Mn. This is the von Neumann algebra the unit ball of which is the

product of the unit balls of the matrix algebras Mn. The assertion that there are at least
two distinct C∗-norms on �(H) ⊗ �(H) (or on M ⊗ N with M, N not nuclear) reduces
to the same assertion on � ⊗ �, and this is used in [7]. It turns out to be immediate to
deduce from [7] (see Lemma 8) that the cardinality of the set of C∗-norms on � ⊗ � is
≥ c. Unfortunately, however, we do not see how to pass from � ⊗ � to �(H) ⊗ �(H)
in the case of more than two C∗-norms. In any case we will show in Section 2 that the
cardinality of the set of C∗-norms on � ⊗ � (or � ⊗ M with M non-nuclear) is 2c with
c denoting the continuum.

We end this introduction with some background remarks.

REMARK 1. It is easy to see that any unital simple C∗-algebra is what algebraists
call “central simple”. A unital algebra over a field is called central simple (or centrally
simple) if it is simple and its centre is reduced to the field of scalars. It is classical (see
e.g. [4, p. 151]) that the tensor product of two such algebras is again central simple,
and a fortiori simple. The kernel of a C∗-seminorm on (the algebraic tensor product)
A ⊗ B of two C∗-algebras is clearly an ideal. Therefore, if A, B are both simple and
unital, any C∗-seminorm on (the algebraic tensor product) A ⊗ B is a norm as soon as
it induces a norm on each of its two factors.

REMARK 2. Let I be a closed ideal in a C∗-algebra A. It is well known that the
maximal C∗-norm is “projective” in the following sense (see e.g. [3, p. 92] or [11, p. 237]):
for any other C∗-algebra B, I ⊗max B embeds naturally (isometrically) in A ⊗max B and
we have a natural (isometric) identification

(A/I) ⊗max B = (A ⊗max B)/(I ⊗max B). (1)

Let Q(H) = �(H)/K(H) be the Calkin algebra. By Kirchberg’s well-known work
[8, 10] (see [11, p. 289] or [3, p. 105] for more details), a C∗-algebra A is exact if and
only if

Q(H) ⊗min A = (�(H) ⊗min A)/(K(H) ⊗min A). (2)

Note that K(H) ⊗min A = K(H) ⊗max A since K(H) is nuclear. Thus, by (1), if A is not
exact, the minimal and maximal C∗-norms must differ on Q(H) ⊗ A.
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REMARK 3. Let A, B, I be as in the preceding Remark. We can define a C∗-norm
on (A/I) ⊗ B by setting, for any x ∈ (A/I) ⊗ B,

α(x) = ‖x‖(A⊗minB)/(I⊗minB). (3)

More precisely, if y ∈ A ⊗ B is any element lifting x i.e. such that (q ⊗ Id)(y) = x where
q : A → A/I denotes the quotient map, we have

α(x) = inf{‖y + z‖min | z ∈ I ⊗min B}.
Since (I ⊗min B) ∩ (A ⊗ B) = I ⊗ B, this is indeed a norm on (A/I) ⊗ B.

Let G ⊂ B be any finite dimensional subspace. Then, for any x ∈ (A/I) ⊗ G we
have

α(x) = inf{‖y‖min | y ∈ A ⊗min G, (q ⊗ Id)(y) = x}. (4)

Moreover, the infimum is actually attained. See [11, Section 2.4].
Now assume that I is nuclear or merely such that the min and max norms coincide

on I ⊗ B. Then,

(A/I) ⊗min B = (A/I) ⊗max B ⇒ A ⊗min B = A ⊗max B. (5)

More precisely, it suffices to assume that α = ‖ ‖max, i.e. we have

(A ⊗min B)/(I ⊗min B) = (A/I) ⊗max B ⇒ A ⊗min B = A ⊗max B. (6)

Indeed, this follows from (1) and I ⊗min B = I ⊗max B.

2. C∗-norms on M ⊗ N and �(�2) ⊗ �(�2). We recall the operator space duality
which states that F ⊗min E∗ ⊂ CB(E, F) isometrically (see Theorem B.13 in [3] or [11, p.
40]). Namely, for any operator spaces E, F and any tensor z = ∑

k fk ⊗ e∗
k ∈ F ⊗ E∗, the

corresponding map ϕz : E → F given by ϕz(x) = ∑
k e∗

k(x)fk satisfies ‖z‖min = ‖ϕz‖cb.
For a finite dimensional operator space E, we denote by jE the element of E ⊗ E∗ which
goes to the identity map on E under this correspondence. We note that ‖jE‖min = 1
and that ‖z‖min is independent of the (completely isometric) embeddings F ↪→ �(�2)
and E∗ ↪→ �(�2).

For each d ∈ �, let OSd denote the metric space of all d-dimensional operator
spaces, equipped with the cb Banach–Mazur distance. We recall that by [7] the metric
space OSd is non-separable whenever d ≥ 3. Incidentally, the case d = 2 remains an
open problem. If A is a separable C∗-algebra, then the set OSd(A) of all d-dimensional
operator subspaces of A is a separable subset of OSd .

Let M, N be any pair of non-nuclear von Neumann algebras, and let α be a C∗-
norm on M ⊗ N. Since � embeds in both M and N, any E ∈ OSd admits a completely
isometric embedding in both. We denote by Mα

d the subset of OSd that consists of
all E ∈ OSd admitting (completely isometric) realizations E ⊂ M and E∗ ⊂ N with
respect to which ‖jE‖α = 1.
For example, one has Mmax

d = OSd(C∗(�∞)) (see [7]).

THEOREM 4. Let M, N be any pair of von Neumann algebras such that M ⊗min N �=
M ⊗max N. For every d ∈ � and every countable subset L ⊂ OSd , there is a C∗-norm α
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on M ⊗ N such that Mα
d is separable and contains L. Consequently, there is a family of

C∗-norms on M ⊗ N with the cardinality of the continuum.

Proof. First note that our assumption ensures that M, N are not nuclear and hence
(by [19]) contain a copy of �. For each E ∈ L, we may assume E ⊂ M and E∗ ⊂ N
completely isometrically. Let AE ⊂ M be a separable unital C∗-subalgebra containing
E completely isometrically. Let � be a large enough free group so that M is a quotient
of C∗(�). Consider the C∗-algebraic free product

A = ∗
E∈L

AE ∗C∗(�).

Let Q : A → M denote the free product of the inclusions AE ⊂ M and the quotient
map C∗(�) → M, and let I = ker(Q), so that we have M � A/I . Let α be the C∗-norm
defined in (3) with B = N. Using M � A/I we view α as a norm on M ⊗ N. Then for
any E ∈ L, we have α(jE) = 1. Indeed, the inclusion map E → AE → A has cb norm 1
and hence defines an element z ∈ A ⊗ E∗ with ‖z‖min = 1 such that (Q ⊗ I)(z) = jE .
In the converse direction, let F ⊂ M be any d-dimensional subspace such that, viewing
F∗ ⊂ N we have α(jF ) = 1. Then, by (4) (applied to G = F∗) jF admits a lifting z ∈
A ⊗ F∗ with ‖z‖min = 1. This yields a completely isometric mapping F → A, showing
that F is completely isometric to a subspace of A, equivalently F ∈ OSd(A). But it is
easy to check that, for any d, the latter set is separable, since any F ∈ OSd(A) is also
a subspace of ∗E∈L AE ∗C∗(�∞) which is separable (since we assume L countable).
Thus, we have L ⊂ Mα

d and Mα
d is separable.

For any d-dimensional E ⊂ M, let αE be the C∗-norm associated to the singleton
L = {E}, and let CE = MαE

d , so that E ∈ CE . Let d ′(E, F) = max{dcb(E, CF ), dcb(F, CE)},
where dcb(E, CF ) = inf{dcb(E, G) | G ∈ CF }. By what precedes, if d ′(E, F) > 1 then
necessarily αE �= αF since αE(jF ) = αF (jE) = 1 implies d ′(E, F) = 1.

By [7], for some ε > 0, there is a subset F ⊂ OSd with cardinality 2ℵ0 such that
dcb(E, F) > 1 + ε for any E �= F ∈ F . Fix ξ such that 1 < ξ < (1 + ε)1/2. Since all the
CE ’s are separable, we claim that there is a subset F ′ ⊂ F still with cardinality 2ℵ0 such
that d ′(E, F) > ξ for any E �= F ∈ F ′, and hence the set of C∗-norms {αE | E ∈ F ′}
has cardinality 2ℵ0 .

Indeed, let F ′ ⊂ F be maximal with this property. Then, for any E ∈ F there is
F ∈ F ′ such that d ′(E, F) ≤ ξ . Now for any E let DE ⊂ CE be a dense countable subset.
Let F ′′ = ∪E∈F ′DE . For any E ∈ F ′, there is G = f (E) ∈ F ′′ such that dcb(E, G) <

(1 + ε)1/2. This defines a function f : F → F ′′. Assume by contradiction that |F ′| <

|F | = 2ℵ0 , then also |F ′′| < |F |, and hence the function cannot be injective (“pigeon
hole”). Therefore, there are E �= F ∈ F such that f (E) = f (F) and hence dcb(E, F) ≤
dcb(E, f (E))dcb(F, f (E)) < 1 + ε and we reach a contradiction, proving the claim. Thus,
we obtain a family of C∗-norms {αE | E ∈ F ′} with cardinality 2ℵ0 . �

We now turn to admissible norms on �(�2) ⊗ �(�2).
We say a C∗-norm ‖ · ‖α on �(�2) ⊗ �(�2) is admissible if it is invariant under

the flip and tensorizes unital completely positive maps (i.e., for every unital completely
positive maps ϕ : �(�2) → �(�2) the corresponding map ϕ ⊗ id extends to a completely
positive map on the C∗-algebra �(�2) ⊗α �(�2)). Let an admissible C∗-norm ‖ · ‖α be
given. We note that for every completely bounded map ψ on �(�2) one has

‖ψ ⊗ id : �(�2) ⊗α �(�2) → �(�2) ⊗α �(�2)‖cb = ‖ψ‖cb

https://doi.org/10.1017/S0017089515000257 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089515000257


A CONTINUUM OF C∗-NORMS ON �(H) ⊗ �(H) 437

(and likewise for id ⊗ψ), since ψ can be written as ‖ψ‖cbS∗
1ϕ(S1 · S∗

2)S2 for some
unital completely positive map ϕ on �(�2) and isometries S1, S2 on �2 (see Theorem
1.6 in [11]).

We recall that the density character of a metric space X is the smallest cardinality
of a dense subset. Let c denote the cardinality of the continuum.

LEMMA 5. Let H be the Hilbert space with density character c and consider �2 ⊂ H.
Accordingly, let �(�2) ⊂ �(H) (non-unital embedding) and θ : �(H) → �(�2) be the
compression. Then, for every unital completely positive map ϕ : �(�2) → �(�2), there are
a ∗-homomorphism π : �(H) → �(H) and an isometry V ∈ �(�2,H) such that ϕ(θ (a)) =
V∗π (a)V for every a ∈ �(H).

Proof. By Stinespring’s Dilation Theorem (see [11, p. 24] or [3, p. 10]), there are
a ∗-representation π of �(H) on a Hilbert space K and an isometry V ∈ �(�2,K)
such that ϕ(θ (a)) = V∗π (a)V for every a ∈ �(H). We may assume that π (�(H))V�2

is dense in K. Since ϕ(θ (P�2 )) = 1, one has π (�(H))V�2 = π (�(�2,H))V�2. We claim
that the density character of �(�2,H) is c. Indeed, if we write H = �2(I) with |I| = c,
then �(�2,H) = ⋃

J∈[I ]� �(�2, �2(J)), where [I ]� is the family of countable subsets of I .
Since |[I ]�| = c and �(�2) has density character c, our claim follows. It follows that K
has density character c and hence we may identify K with H. �

Note that, when α is admissible, Mα
d is a closed subset of OSd .

THEOREM 6. For every d ∈ � and every separable subset L ⊂ OSd , there is an
admissible C∗-norm α on �(�2) ⊗ �(�2) such that Mα

d is separable and contains L.
Consequently, there is a family of admissible C∗-norms on �(�2) ⊗ �(�2) with the
cardinality of the continuum.

Proof. Let L∗ = {E∗ : E ∈ L} and take a separable unital C∗-algebra A0 such that
OSd(A0) contains a dense subset of L ∪ L∗. Let A = C∗(�∞) ∗∗� A0 be the unital
full free product of the full free group algebra C∗(�∞) and countably many copies
of A0. Let {σi} be the set of all unital ∗-homomorphisms from A into �(H) and
σ = ∗i σi be the ∗-homomorphism from Ã = ∗i A to �(H), which is surjective. Note
that OSd(Ã) = OSd(A) and hence it is separable. Denote J = ker σ . As in (3), we
induce the C∗-norm β on �(H) ⊗ �(�2) from Ã ⊗min �(�2) through σ ⊗ id, i.e., for
every z ∈ �(H) ⊗ �(�2) one defines

‖z‖β = inf{‖z̃‖Ã⊗min�(�2) : (σ ⊗ id)(z̃) = z}.

Since the infimum is attained, there is a lift z̃ ∈ A ⊗ F such that ‖z̃‖min = ‖z‖β .
Consider �2 ↪→ H and restrict β to �(�2) ⊗ �(�2), which is still denoted by β. We

claim that for every unital completely positive ϕ on �(�2), the corresponding maps
ϕ ⊗ id and id ⊗ϕ are completely positive on �(�2) ⊗β �(�2). The latter is trivial. For
the former, we use the above lemma. The ∗-homomorphism π on �(H) induces a map
on {σi} and thus a ∗-homomorphism π̃ from Ã into Ã such that σ ◦ π̃ = π ◦ σ . It
follows that π ⊗ id is a continuous ∗-homomorphism on �(H) ⊗β �(�2) and hence
that ϕ ⊗ id is completely positive.

We note that β = min on E ⊗ �(�2) for any E ∈ OSd(A). Let E ⊂ �(�2) ⊂
�(H) and consider the element jE ∈ E ⊗ E∗ ⊂ �(H) ⊗ �(�2). If ‖jE‖β = 1, then
idE : E → �(�2) has a completely contractive lift into Ã. Indeed, an isometric
lifting j̃E ∈ Ã ⊗min E∗ corresponds to a complete contraction θ : E → Ã for which
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σ ◦ θ = idE : E ↪→ �(H). It follows that Mβ
d ⊂ OSd(A). Finally, take the flip βop of β

and let α = max{β, βop}. �

We recall that a tensor product functor is a bifunctor (A, B) �→ A ⊗α B which
assigns in a functorial way a C∗-completion of each algebraic tensor product A ⊗ B of
C∗-algebras A and B. It is said to be injective if A0 ↪→ A1 and B0 ↪→ B1 gives rise to
a faithful embedding A0 ⊗α B0 ↪→ A1 ⊗α B1. See [10]. For example, the spatial tensor
product functor min is injective, while the maximal one max is not.

COROLLARY 7. There is a family with cardinality 2ℵ0 of different injective tensor
product functors.

Proof. Let α be an admissible C∗-norm ‖ · ‖α on �(�2) ⊗ �(�2). We extend it to
a tensor product functor. For every finite dimensional operator spaces E and F , the
norm ‖ · ‖α is unambiguously defined via embeddings E ↪→ �(�2) and F ↪→ �(�2).
For every C∗-algebras A and B and z ∈ A ⊗ B, we find finite dimensional operator
subspaces E and F such that z ∈ E ⊗ F and define ‖z‖α to be the α-norm of z in
E ⊗ F . �

3. C∗-norms on � ⊗ �(�2) or � ⊗ M. Let (N(m)) be any sequence of positive
integers tending to ∞ and let

B =
∏

m

MN(m).

Actually, the existence of a continuum of distinct C∗-norms on B ⊗ B can be proved
very simply, as a consequence of [7].

LEMMA 8. Let M be any C∗-algebra such that B ⊗min M �= B ⊗max M. Then, there
is a continuum of distinct C∗-norms on B ⊗ M.

Proof. For any infinite subset s ⊂ �, we can define a C∗-norm γs on B ⊗ M by
setting

γs(x) = max{‖x‖min, ‖(qs ⊗ Id)(x)‖Bs⊗maxB},

where Bs = ∏
m∈s MN(m) and where qs : B → Bs denotes the canonical projection

(which is a ∗-homomorphism). Let B̂s = Bs ⊕ {0} ⊂ B be the corresponding ideal in
B. We claim that if s′ ⊂ � is another infinite subset such that s ∩ s′ = φ, or merely
such that t = s \ s′ is infinite, then γs �= γs′ . Indeed, otherwise we would find that the
minimal and maximal norms coincide on B̂t ⊗ M, and hence (since B embeds in B̂t

and is the range of a unital completely positive projection) on B ⊗ M, contradicting
our assumption. �

By [7], this gives a continuum (γs) of distinct C∗-norms on B ⊗ B or on B ⊗ M
whenever M is not nuclear. Apparently, producing a family of cardinality 22ℵ0 requires
a bit more.

THEOREM 9. There is a family of cardinality 22ℵ0 of mutually distinct (and hence
inequivalent) C∗-norms on M ⊗ B for any von Neumann algebra M that is not nuclear.
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REMARK 10. Assuming M ⊂ �(�2) non-nuclear, we note that the cardinality of
�(�2) and hence of M ⊗ �(�2) is c = 2ℵ0 , so the set of all real valued functions of
M ⊗ �(�2) into � has the same cardinal 22ℵ0 as the set of C∗-tensor norms.

REMARK 11. In the sequel, the complex conjugate ā of a matrix a in MN is meant
in the usual way, i.e. (ā)ij = aij. In general, we will need to consider the conjugate Ā of a
C∗-algebra A. This is the same object but with the complex multiplication changed to
(λ, a) → λ̄a, so that Ā is anti-isomorphic to A. For any a ∈ A, we denote by ā the same
element viewed as an element of Ā. Note that Ā can also be identified with the opposite
C∗-algebra Aop which is defined as the same object but with the product changed to
(a, b) → ba. It is easy to check that the mapping ā → a∗ is a (linear) ∗-isomorphism
from Ā to Aop. The distinction between A and Ā is necessary in general, but not when
A = �(H) since in that case, using H � H, we have �(H) � �(H) � �(H), and in
particular MN � MN . Note however that H � H depends on the choice of a basis so
the isomorphism �(H) � �(H) is not canonical.

As in [7, 12] (see also [17]), our main ingredient will be the fact that the numbers
C(n) defined below are smaller than n. More precisely, it was proved in [6] that C(n) =
2
√

n − 1 for any n. However, it suffices to know for our present purpose that C(n) < n
for infinitely many n’s or even merely for some n. This can be proved in several ways
for which we refer the reader to [7] or [11]. See also [13] for a more recent-somewhat
more refined-approach.

For any integer n ≥ 1, the constant C(n) is defined as follows: C(n) is the smallest
constant C such that for each m ≥ 1, there is Nm ≥ 1 and an n-tuple [u1(m), . . . , un(m)]
of unitary Nm × Nm matrices such that

sup
m�=m′

∥∥∥∥∥
n∑

i=1

uk(m) ⊗ uk(m′)

∥∥∥∥∥
min

≤ C. (7)

Throughout the rest of this note, we fix n > 2 and a constant C < n and we assume
given a sequence of n-tuples [u1(m), . . . , un(m)] of unitary Nm × Nm matrices satisfying
(7).
By compactness (see e.g. [12]), we may assume (after passing to a subsequence) that the
n-tuples [u1(m), . . . , un(m)] converge in distribution (i.e. in moments in the sense of [18])
to an n-tuple [u1, . . . , un] of unitaries in a von Neumann algebra M equipped with a
faithful normal trace τ . In fact, if ω is any ultrafilter refining the selected subsequence,
we can take for M, τ the associated ultraproduct Mω of the family {MN(m)} (m → ∞)
equipped with normalized traces.

For any subset s ⊂ � and any 1 ≤ k ≤ n, we denote by uk(s) = ⊕muk(s)(m) the
element of B defined by uk(s)(m) = uk(m) if m ∈ s and uk(m) = 0 otherwise.

Let τN denote the normalized trace on MN . To any free ultrafilter ω on � is
associated a tracial state on B defined for any x = (xm) ∈ B by ϕω(x) = limω τN(m)(xm).
The GNS construction applied to that state produces a representation

πω : B → �(Hω).

It is classical (see [1]) that Mω = πω(B) is a II1-factor and that ϕω allows to define a
trace τω on Mω such that τω(πω(b)) = ϕω(b) for any b ∈ B.

https://doi.org/10.1017/S0017089515000257 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089515000257


440 NARUTAKA OZAWA AND GILLES PISIER

REMARK 12. Let M be a finite von Neumann algebra. Then for any n-tuple
(u1, . . . , un) of unitaries in M

∥∥∥∑n

1
uk ⊗ ūk

∥∥∥
M⊗maxM

=
∥∥∥∑n

1
uk ⊗ u∗

k

∥∥∥
M⊗maxMop

= n. (8)

This is a well-known fact. See e.g. [3] or [11].

LEMMA 13. Let ω �= ω′. Consider disjoint subsets s ⊂ � and s′ ⊂ � with s ∈ ω and
s′ ∈ ω′, and let

t(s, s′) =
∑n

k=1
uk(s) ⊗ uk(s′) ∈ B ⊗ B̄.

Then

‖t(s, s′)‖B⊗minB ≤ C and ‖[πω ⊗ πω′ ](t(s, s′))‖Mω⊗maxMω′ = n.

Proof. We have obviously

‖t‖min = sup
(m,m′)∈s×s′

∥∥∥∑
uk(m) ⊗ uk(m′)

∥∥∥

hence ‖t‖min ≤ C. We now turn to the max tensor product. We follow [12].
Let uk = πω(uk(s)) and vk = πω′(uk(s′)) so that we have

‖[πω ⊗ πω′ ](t(s, s′))‖Mω⊗maxMω′ =
∥∥∥∑

uk ⊗ v̄k

∥∥∥
Mω⊗maxMω′

.

Now, since we assume that [u1(m), . . . , un(m)] converges in distribution, (u1, . . . , un) and
(v1, . . . , vn) must have the same distribution relative respectively to τω and τω′ . But this
implies that there is a ∗-isomorphism π from the von Neumann algebra M(v) ⊂ Mω′

generated by (v1, . . . , vn) to the one M(u) ⊂ Mω generated by (u1, . . . , un), defined
simply by π (vk) = uk. Moreover, since we are dealing here with finite traces, there is a
conditional expectation P from Mω′ onto M(v). Therefore, the composition Q = πP
is a unital completely positive map from Mω′ to M(u) such that Q(vk) = uk. Since such
maps preserve the max tensor products (see e.g. [3] or [11]), we have

∥∥∥∑
uk ⊗ v̄k

∥∥∥
max

≥
∥∥∥∑

uk ⊗ Q(vk)
∥∥∥

M(u)⊗maxM(u)
=

∥∥∥∑
uk ⊗ ūk

∥∥∥
M(u)⊗maxM(u)

.

But then by (8), we conclude that ‖t(s, s′)‖max = n. �
For any free ultrafilter ω on �, we denote by αω the norm defined on B ⊗ B̄ by

∀t ∈ B ⊗ B̄ αω(t) = max{‖t‖B⊗minB̄, ‖[πω ⊗ Id](t)‖Mω⊗maxB}.

THEOREM 14. There is a family of cardinality 22ℵ0 of mutually distinct (and hence
inequivalent) C∗-norms on B ⊗ B̄. More precisely, the family {αω} indexed by free
ultrafilters on � is such a family on B ⊗ B̄.

Proof. Let (ω,ω′) be two distinct free ultrafilters on �. Let s ⊂ � and s′ ⊂ � be
disjoint subsets such that s ∈ ω and s′ ∈ ω′. By Lemma 13, we have

αω(t(s, s′)) ≥ ‖[πω ⊗ πω′ ](t(s, s′))‖Mω⊗maxMω′ = n
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but since (πω′ ⊗ Id)(t(s, s′)) = 0 we have αω′(t(s, s′)) ≤ C < n. This shows αω and
αω′ are different, and hence (automatically for C∗-norms) inequivalent. Lastly, it is
well known (see e.g. [5, p. 146]) that the cardinality of the set of free ultrafilters on
� is 22ℵ0 . �

Proof of Theorem 9 . If M is not nuclear, by [19, Corollary 1.9] there is an embedding
B ⊂ M. Moreover, since B is injective, there is a conditional expectation from M to B,
which guarantees that, for any A, the max norm on A ⊗ B̄ coincides with the restriction
of the max norm on A ⊗ M̄. Thus, we can extend αω to a C∗-norm α̃ω on B ⊗ M̄ by
setting

∀t ∈ B ⊗ M̄ α̃ω(t) = max{‖t‖B⊗minM̄, ‖[πω ⊗ Id](t)‖Mω⊗maxM̄}.

Of course, we can replace M by M̄. �
REMARK 15. It is easy to see that Theorem 9 remains valid for any choice of the

sequence (N(m)) and in particular it holds if N(m) = m for all m, i.e. for B = �.

4. Additional remarks. REMARK 16. Let G be a discrete group such that its
reduced C∗-algebra A is simple. We can associate to any unitary representation π : G →
�(Hπ ) a C∗-norm απ on A ⊗ A as follows. Let λ : A → �(�2(G)) and ρ : A → �(�2(G))
be the left and right regular representations of G linearly extended to A. This gives us
a pair of commuting representations of A on �2(G). By the Fell absorption principle
(see e.g. [3, p. 44] or [11, p. 149]), the representation π ⊗ λ : G → �(Hπ ⊗ �2(G))
is unitarily equivalent to I ⊗ λ, and hence (since A is assumed simple) it extends to
a faithful representation on A. Similarly, I ⊗ ρ : G → �(Hπ ⊗ �2(G)) extends to a
faithful representation on A. We define

∀a, b ∈ A × A π̃ (a ⊗ b) = (π ⊗ λ)(a).(I ⊗ ρ)(b),

and we denote by π̃ the canonical extension to A ⊗ A. Then, for any x ∈ A ⊗ A we set

απ (x) = ‖π̃ (x)‖.

By Remark 1, this is a C∗-norm on A ⊗ A. However, if we restrict it to the
diagonal subalgebra D ⊂ A ⊗ A spanned by {λ(t) ⊗ λ(t) | t ∈ G}, we find for any
x = ∑

x(t)λ(t) ⊗ λ(t)

‖π̃ (x)‖ = ‖
∑

x(t)π (t) ⊗ σ (t)‖

where σ (t)δs = δtst−1 .
Now, if G is any non-Abelian free group, σ is weakly equivalent to 1 ⊕ λ (see [2]),

so we have for any such diagonal x (using again π ⊗ λ � I ⊗ λ)

‖π̃ (x)‖ = max{‖
∑

x(t)π (t)‖, ‖
∑

x(t)λ(t)‖}. (9)

But it is known (see [14, 15]) that there is a continuum of unitary representations
on a non-Abelian free group G that are “intermediate” between λ and the universal
unitary representation of G. More precisely, let G = �k be the free group with k > 1
generators g1, . . . , gk. Let Sk = ∑k

1 δgj + δg−1
j

. By [15, Theorem 5], for any number
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r ∈ ((2k − 1)−1/2, 1), G admits a unitary representation πr such that

‖πr(Sk)‖ = (2k − 1)r + 1/r > 2
√

2k − 1.

By (9), we have

‖π̃r(Sk)‖ = (2k − 1)r + 1/r,

and hence if we define xk = ∑
λ(gk) ⊗ λ(gk) ∈ A ⊗ A we find

απr (xk) = (2k − 1)r + 1/r

which shows that the family of C∗-norms {απr | (2k − 1)−1/2 < r < 1} are mutually
distinct. Thus, we obtain in this case a continuum of distinct C∗-norms on A ⊗ A.
Let M denote the von Neumann algebra generated by A in �(�2(G)). Since G is
i.c.c. M is a finite factor and hence (see [16, p. 349]) is a simple C∗-algebra, thus
again automatically central simple. The representation π̃ clearly extends to a ∗-
homomorphism on M ⊗ M which is isometric when restricted either to M ⊗ 1 or
1 ⊗ M. Thus, we also obtain a continuum of distinct C∗-norms on M ⊗ M, extending
the preceding ones on A ⊗ A.

REMARK 17. Let I ⊂ A and J ⊂ B be (closed two-sided) ideals in two arbitrary
C∗-algebras A, B. Assume that there is only one C∗-norm both on I ⊗ B and on A ⊗ J.
Let K = I ⊗min B + A ⊗min J. Then, for any pair α, β of distinct C∗-norms on A ⊗ B,
the quotient spaces (A ⊗α B)/K must be different (note that I ⊗min B, A ⊗min J and
hence also K are closed in both A ⊗α B and A ⊗β B). Therefore, the C∗-norms naturally
induced on (A/I) ⊗ (B/J) are also distinct.

For instance, for the Calkin algebra Q(H), we deduce that there are at least 2ℵ0

C∗-norms on Q(H) ⊗ �(H) or on Q(H) ⊗ Q(H).
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