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Different astrophysical contexts (e.g. extragalactic jets, star forming
regions) are related with collimated ouflows. An analysis of this phenomenology
in principle would require a fully numerical treatment, however analytical inves-
tigations are also possible by assuming a suitable behaviour of streamlines. In
this framework we investigate solutions of the hydrodynamic and MHD equations
describing helicoidal collimated outflows from a central gravitating object.

a) Collimated hydrodynamic flows. To construct an analytical solution of the
Navier-Stokes equations
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that could represent a collimated outflow with small mathematical complexity, we
shall assume that the radial speed Vg, the density p, the azimuthal speed V and the

pressure P are separable in the radial (R = r/r,) and latitudinal (8) coordinates:

cos @ Po

Va(R,60) = VY(R) o=y, p(R:6) = yipipas V, sinb

2 -1
(w,0), Vu(R,0)= R g9(w,9)
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Note that for large w the flow is strongly collimated around the polar axis (¢ = 0).
Substituting Eqs.(2) in the R and 6 components of the momentum balance equation,
the 6 dependence is decoupled and the radial dependence of the radial flow speed
is the solution to the following nonlinear equation (Tsinganos and Trussoni 1989),
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with the asymptotic behavior, for R — 00, Y(R) — [Y(R)eo—1/R]*/2. In the region

R > 1 Yis monotonically increasing: a strong acceleration is found above the base

R =~ 1, while the asymptotic speed V, increases with the collimation parameter

w. The topologies of the Mach number, M(R, ) = Vr/Vs, Vs = (5P/3p)'/?, show
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three families of curves: (i) the wind Mach curve, with M(R = 1) < 1 that crosses
the line M = 1 and increases as R'/2 at large R (the pressure — 0 like 1/R at
R — o0); (ii) the breeze curves, that start similarly with M(R = 1) < 1 but for
large R they drop as 1/R (with the pressure dropping to an asymptotic finite value);
(iii) the terminated Mach curves, that reach asymptotically up to a distance Rmqz
(where the pressure is zero). The topologies are very different from the classical
Parker solution: the sonic point is not a singularity of the equations, and the critical
point is shifted to infinity (Fig.1). This behaviour is related with the heating of
the plasma consistent with the streamline pattern, as can be seen by analysing the
radial dependence of the polytropic index I' = 9(InP)/8(Inp) at constant 8 (Fig.
2). Near the base I' < 1 and the temperature (ox V2) increases with R: here the
heating is so strong that part of the energy goes to expansion and the remaining
rises the temperature of the gas. For larger R the temperature declines, after a
maximum where I' = 1, and for R — oo asymtotically I' — 3/2.

b) Collimated hydromagnetic flows. In oder to solve the MHD equations

V-(pv) =V-B=Vx(vxB)=0
pPGM
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the radial flow speed and density are always given by Egs. (2), the radial component
of the magnetic field is Bg = B,/(R%cosf), and the azimuthal components of B
and v are given by:
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where M, is the radial Alfven Mach number, Y, = Y(R.), and where R., the
Alfvenic critical point (M,(R.) = 1), is a singular point of expressions (5). By
substituting Eqs. (2) and (5) in Eqgs. (4) we obtain a single equation for Y(R),
ﬂ_f(Y’RaR-""’V’A’") __‘é
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that has two critical points: at R = R. and R = R, > R.. The Alfvenic point
at R, is mathematically a sink point wherein many solutions with different slopes
pass through, while the second critical point at R, is an ordinary X-type critical

point (Fig 3). There is a unique solution (for fixed parameters) that starts at the
base with Y(R = 1) = 1 and low V,, crosses smoothly both critical points at R,
and Rx, and finally reaches infinity with a high terminal speed and zero pressure.
The topologies appear quite differerent with respect to previous studies: only two
critical points are found in spite of three, corresponding to the Alfven, Fast and
Slow MHD waves velocities (Weber and Davis 1967). Again this is related with the
energy heating of the plasma.

The main consequence of this analytical investigation is that, both in the
hydrodynamic and MHD cases, the collimation is strictly related with the energy
processes which accelerate the flow.
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Figure 2. Radial dependence of I' (dotted line) and Vs (full line) for § =0

Y(R)

Figure 3. Topology of the radial velocity for the same parameters of Fig. 1, with
7 = 0.01. The cross indicates the position of the sonic point.
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PUDRITZ: Could you further clarify your treatment: (1) how does your w
relate to the Weber—Davis parameter (1-D flows) which characterizes the
focussing of flows, (2) again using Weber—Davis language, are your hydro-
magnetic polytrope models slow or fast magnetic rotators?

TSINGANOS: The Weber—Davis (1967, Astrophys. J. 148, 217) analysis
applies to the equatorial plane and assumes a polytropic relationship
with constant Y. Our study has Y # constant and applies to 0 < @ < m/2.
Some of the results in Weber—-Davis (1967) are recovered, for example the
relative contribution of the fluid and magnetic components to the total
angular momentum carried away by the star. We are presently investi-
gating the range of values of the parameters for which we obtain wind-
type solutions. This is the case for example with A = V&(R=1)/Vg(R=1).

LOW: I like to make a clarifying comment on the issue of the critical
points of the steady wind equations. I believe the speaker has closed his
MHD equations by prescribing the magnetic field in place of an energy
equation like the polytropic law. Energy conservation is then imposed by
introducing externally added heat, defined a posteriori, to balance energy
everywhere. This procedure does not introduce critical points into the
governing equations explicitly.

TSINGANOS: Let me clarify three points. First, we prescribe the angular
dependence of the field lines, while the radial dependence comes out of
the conservation laws. Second, we obtain the Alfvénic critical, but not
the fast and slow mode critical points. These sonic points exist, but they
are not critical, i.e. singularities in the equations. And third, the
solution is self-consistent, i.e. satisfying all conservation laws, something
unavailable with previous studies. For example, you have force balance
both across and along the stream lines.
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