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Different astrophysical contexts (e.g. extragalactic jets, star forming 
regions) are related with coUimated ouflows. A n analysis of this phenomenology 
in principle would require a fully numerical treatment, however analytical inves-
tigations are also possible by assuming a suitable behaviour of streamlines. In 
this framework we investigate solutions of the hydrodynamic and M H D equations 
describing hélicoïdal coUimated outflows from a central gravitating object, 
a) CoUimated hydrodynamic ßows. To construct an analytical solution of the 
Navier-Stokes equations 

V-(/>v) = 0 , p(y · V)v = - V P - — ( 1 ) 
rz 

that could represent a coUimated outflow with small mathematical complexity, we 
shall assume that the radial speed Vr, the density p, the azimuthal speed and the 
pressure Ρ are separable in the radial (R = r/rc) and latitudinal (Θ) coordinates: 

P(R,l)) = ±p.V;iQ,{R) + Q,(R),m*lH, < , ( * , » ) = [1 + « s i n ! « ] " ! (2) 

Note that for large ω the flow is strongly coUimated around the polar axis (0 = 0) . 
Substituting Eqs.(2) in the R and θ components of the momentum balance equation, 
the θ dependence is decoupled and the radial dependence of the radial flow speed 
is the solution to the foUowing nonUnear equation (Tsinganos and Trussoni 1989), 

dY Υ ω ι Λ Ε - 6 Α 2 ^ 

dR R2Y2R2 + \*' V0

9 V V0

 ( ) 

with the asymptotic behavior, for R —> oo, Y(R) —*· [y(jR)oo — 1 / i ? ] 1 / 2 . In the region 
R > 1 y i s monotonicaUy increasing: a strong acceleration is found above the base 
R « 1, whfle the asymptotic speed VOo increases with the coUimation parameter 
ω . The topologies of the Mach number, M ( Ä , 0 ) = VR/VSi Vs = ( 5 P / 3 / & ) 1 / 2 , show 
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three families of curves: ( i ) the wind Mach curve, with M(R = 1) < 1 that crosses 
the line M = 1 and increases as R1/2 at large R (the pressure —• 0 like 1/R at 
A —» oo) ; (ü) the breeze curves, that start similarly with M(R = 1) < 1 but for 
large R they drop as 1/R (with the pressure dropping to an asymptotic finite value); 
( i i i ) the terminated Mach curves, that reach asymptotically up to a distance R m a x 

(where the pressure is zero) . The topologies are very different from the classical 
Parker solution: the sonic point is not a singularity of the equations, and the critical 
point is shifted to infinity ( F i g . l ) . This behaviour is related with the heating of 
the plasma consistent with the streamline pattern, as can be seen by analysing the 
radial dependence of the polytropic index Γ = d(mP)/d(lnp) at constant θ (Fig. 
2 ) . Near the base Γ < 1 and the temperature (oc V§) increases with R: here the 
heating is so strong that part of the energy goes to expansion and the remaining 
rises the temperature of the gas. For larger R the temperature declines, after a 
maximum where Γ = 1, and for R —> oo asymtotically Γ —• 3/2. 
b ) Collimated hydromagnetic flows. In oder to solve the M H D equations 

V - (ργ) = V - B = V x ( v x B ) = 0 

^ ( v . V ) v = - V P - P^M-r + J _ ( V χ Β ) χ Β (4) 

the radial flow speed and density are always given by Eqs. ( 2 ) , the radial component 
of the magnetic field is Br = B0/(R

2cos0), and the azimuthal components of Β 
and ν are given by: 

n(ne\- A / ? * ° * l - R 2 l R 3 > V i n n - A F R s ™ e Y ' ~ Y ( * \ 

Βφ(ϋ,θ) - -XB0— χ _ Μ Ι , V*{R,9) - - λ ν . ^ (5) 

where MA is the radial Alfven Mach number, YM = Y(RM), and where i?*, the 
Alfvénic critical point (MA(RM) = 1) , is a singular point of expressions ( 5 ) . By 
substituting Eqs. (2 ) and (5 ) in Eqs. (4 ) we obtain a single equation for Y(R), 

dY f(Y,R,R.,u>v,\,v) V0 

η = TT (7) dR g(y,R,R.twu,\,V)' ' Va a 

that has two critical points: at R = Rm and R = Rx > Rm. The Alfvenic point 
at Rm is mathematically a sink point wherein many solutions with different slopes 
pass through, while the second critical point at Rx is an ordinary X-type critical 
point (Fig 3 ) . There is a unique solution (for fixed parameters) that starts at the 
base with Y(R = 1) = 1 and low VoJ crosses smoothly both critical points at Rm 

and Rx, and finally reaches infinity with a high terminal speed and zero pressure. 
The topologies appear quite différèrent with respect to previous studies: only two 
critical points are found in spite of three, corresponding to the Alfven, Fast and 
Slow M H D waves velocities (Weber and Davis 1967). Again this is related with the 
energy heating of the plasma. 

The main consequence of this analytical investigation is that, both in the 
hydrodynamic and M H D cases, the collimation is strictly related with the energy 
processes which accelerate the flow. 
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Figure 1. Topology of the Mach number for λ = 0.5, ν = 120, ω = 4 and θ = 0. 

Figure 2. Radial dependence of Γ (dotted Une) and Vs (full Une) for θ = 0 

Figure 3. Topology of the radial velocity for the same parameters of Fig. 1, with 
η = 0.01. The cross indicates the position of the sonic point. 
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PUDRITZ: Could y o u f u r t h e r c l a r i f y y o u r t r e a t m e n t : ( 1 ) how d o e s y o u r ω 
r e l a t e t o t h e W e b e r - D a v i s p a r a m e t e r ( 1 - D f l o w s ) w h i c h c h a r a c t e r i z e s t h e 
f o c u s s i n g o f f l o w s , ( 2 ) a g a i n us ing W e b e r - D a v i s l a n g u a g e , a r e y o u r h y d r o -
m a g n e t i c p o l y t r o p e mode l s s l o w or f a s t m a g n e t i c r o t a t o r s ? 

T S I N G A N O S : T h e W e b e r - D a v i s ( 1 9 6 7 , A s t r o p h y s . J. 148, 2 1 7 ) a n a l y s i s 
a p p l i e s t o t h e e q u a t o r i a l p l a n e and assumes a p o l y t r o p i c r e l a t i o n s h i p 
w i t h c o n s t a n t γ . Our s t u d y has y * c o n s t a n t and a p p l i e s t o 0 < θ < π /2 . 
Some o f t h e r e s u l t s in W e b e r - D a v i s ( 1 9 6 7 ) a r e r e c o v e r e d , fo r e x a m p l e t h e 
r e l a t i v e c o n t r i b u t i o n o f t h e f l u i d and m a g n e t i c c o m p o n e n t s t o t h e t o t a l 
a n g u l a r momentum c a r r i e d a w a y b y t h e s ta r . We a r e p r e s e n t l y i n v e s t i -
g a t i n g t h e r a n g e o f v a l u e s o f t h e p a r a m e t e r s f o r w h i c h w e o b t a i n w i n d -
t y p e s o l u t i o n s . T h i s i s t h e c a s e f o r e x a m p l e w i t h λ = V < ^ ( R = 1 ) / V R ( R = 1 ) . 

LOW: I l i k e t o make a c l a r i f y i n g comment on t h e i s sue o f t h e c r i t i c a l 
p o i n t s o f t h e s t e a d y w i n d e q u a t i o n s . I b e l i e v e t h e s p e a k e r has c l o s e d h i s 
MHD e q u a t i o n s b y p r e s c r i b i n g t h e m a g n e t i c f i e l d in p l a c e o f an e n e r g y 
e q u a t i o n l i k e t h e p o l y t r o p i c l a w . E n e r g y c o n s e r v a t i o n i s t h e n imposed b y 
i n t r o d u c i n g e x t e r n a l l y a d d e d h e a t , d e f i n e d a posteriori, t o b a l a n c e e n e r g y 
e v e r y w h e r e . T h i s p r o c e d u r e d o e s n o t i n t r o d u c e c r i t i c a l p o i n t s i n t o t h e 
g o v e r n i n g e q u a t i o n s e x p l i c i t l y . 

T S I N G A N O S : L e t me c l a r i f y t h r e e p o i n t s . F i r s t , w e p r e s c r i b e t h e a n g u l a r 
d e p e n d e n c e o f t h e f i e l d l i n e s , w h i l e t h e r a d i a l d e p e n d e n c e comes ou t o f 
t h e c o n s e r v a t i o n l a w s . Second , w e o b t a i n t h e A l f v é n i c c r i t i c a l , bu t n o t 
t h e f a s t and s low mode c r i t i c a l p o i n t s . T h e s e son ic p o i n t s e x i s t , bu t t h e y 
a r e not c r i t i c a l , i . e . s i n g u l a r i t i e s in t h e e q u a t i o n s . A n d t h i r d , t h e 
s o l u t i o n is s e l f - c o n s i s t e n t , i . e . s a t i s f y i n g a l l c o n s e r v a t i o n l a w s , s o m e t h i n g 
u n a v a i l a b l e w i t h p r e v i o u s s t u d i e s . F o r e x a m p l e , y o u h a v e f o r c e b a l a n c e 
b o t h ac ros s and a l o n g t h e s t r e a m l i n e s . 
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