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In this paper the three-dimensional finite-time Lyapunov exponent (FTLE) field of
a direct numerical simulation of a flat-plate turbulent boundary layer is analysed in
several wall-parallel sections. The data consider a case at a low subsonic Mach number
with a moderate positive pressure gradient in the streamwise direction. In contrast to
other studies mainly focusing on the maxima of the FTLE field, particular emphasis is
placed on the regions of minimal stretching between the vortices and shear layers of
the three-dimensional turbulent flow field. These visually appear as contiguous islands
or ‘valleys’ between the ‘ridges’ of the FTLE maxima, both at forward and backward
integration of the flow field in time. To clearly distinguish the structures investigated
from their more common counterparts (e.g. Lagrangian coherent structures, LCS), the
acronym LAMS (Lagrangian areas of minimal stretching) is proposed to denote the
associated cohesive fluid regions. Consistent with intuition, the largest LAMS occur
near the boundary-layer edge, where large regions of homogeneous laminar external
flow coexist with upwelling turbulent structures. Compensating for turbulent regions
pushing upward, they sink from there down toward the wall, becoming smaller and
longer. This process is associated with an increased relative velocity of the LAMS
compared with the mean flow, which is observed over the whole boundary layer in the
range y+ � 10. Furthermore, it is observed that the Q4 (sweep) events contained in the
LAMS clearly dominate over Q2 (ejection) events above y+ ≈ 10. Thereby, local maxima
occur at y+ ≈ 20 and near the boundary-layer edge. Below y+ ≈ 10, the relationship
reverses. Sweeping LAMS from above y+ ≈ 10 and ejecting LAMS from below meet
in the layer where the maximal vortical activity occurs. The latter is caused by mostly
streamwise oriented vortices with maximal vortex stretching in the streamwise direction.
Overall, LAMS are associated with cohesive fluid regions between the surrounding
vortices and shear layers that both drop down from the boundary-layer edge toward the
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wall in the outer region of the boundary layer and lift from the wall in the near-wall
region.

Key words: boundary layer structure, turbulent boundary layers, turbulence simulation

1. Introduction

The notion of ‘coherent structures’ in a turbulent flow goes back to Townsend (1956), Grant
(1958), Kline et al. (1967) and others. It refers to organized motions that can be observed
over time, but occur rather randomly in space and time, at least as long as the mechanisms
behind them are not fully understood. Typical representatives of such ‘coherent structures’
are, for example, ‘eddies’, ‘shear layers’, ‘turbulent spots’, ‘bubbles (slugs)’ or ‘air blasts
(puffs)’. Hussain (1983) suggests that also the phase-correlated portion of the vorticity
be called ‘coherent structure’, representing the largest spatial extent over which coherent
vorticity exists. One of the most important properties of coherent structures is their
Galilean invariance together with the requirement that they do not overlap each other.
Hence, each structure has its own domain and boundary, although the volume or mass of
a ‘coherent structure’ can change over time. A coherent structure can further consist of
coherent substructures (e.g. hairpin vortices) and they can interact with other structures.
The associated processes are nonlinear; see, e.g. Hussain (1983). According to the latter
definition, turbulence can thus be regarded as an unsteady process consisting of both
coherent and phase random (i.e. incoherent) motions; the latter overlap with the former
and generally extend beyond the boundaries of a coherent structure. Jiménez (2018)
describes wall-bounded turbulence as a deterministic high-dimensional dynamical system
of interacting coherent structures defined as vortices with sufficient internal dynamics to
behave relatively independently of any remaining incoherent part of the flow. His central
idea is that randomness is not a property, but a methodological decision about what to
ignore in the flow. Accordingly, a complete understanding of turbulence – including the
possibility of controlling it – requires that this randomness be minimized; see Jiménez
(2018).

Traditionally, methods for detecting ‘coherent structures’ fall into two camps based on
either the Eulerian or Lagrangian description of the flow considered. The first considers
the flow field in a stationary, external coordinate system, while the second considers it
in one that moves with the flow particles. The background of a possible dispute between
the two camps is the demand for Galilean invariance of the results and the conclusions
drawn. Conceptually, this can be most safely achieved with the Lagrangian approach. This
approach offers the possibility of ‘objectively’ identifying structures that arise during
the transport of material by a complex, unsteady flow motion, i.e. independent of the
point of view of any observer. An excellent introduction to the history and current state
of Lagrangian methods is given by Haller (2015). The basis of these methods is the
so-called ‘flow map’, which maps particle positions at different times onto each other.
Since particle-based flow visualizations strongly depend on the chosen starting positions
of the particles in space and time, it is more suitable to consider the flow field deformations
that are contained implicitly in the flow map as the selected initial position then loses its
influence. While the effect of the time interval over which the integration was performed
remains, this effect is considerably mitigated by the fact that motions belonging to coherent
structures have a greater effect on the deformation of the fluid than the small-scale
incoherent ones.
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LAMS in a turbulent boundary layer

Based on the ‘flow map’, often either the finite-size Lyapunov exponent (FSLE)
or the finite-time Lyapunov exponent (FTLE) is utilized to quantify and visualise the
deformation; see Bettencourt, López & Hernández-García (2013) and Haller (2015),
respectively. Both the FSLE and FTLE are practically equivalent and determine the
maximum strain or compression of the fluid based on the maximum or minimum
eigenvalues of the right Cauchy–Green strain tensor derived from the ‘flow map’. The
physical interpretation of the eigenvalues depends on whether one traverses the flow
forward or backward in time. Forward in time, the maximum and minimum eigenvalues
represent the divergence and convergence of the fluid, respectively; see Haller & Sapsis
(2011). For a negative time axis, the association simply reverses. The structures of
maximum values observed in the FTLE fields form ‘barriers’ in the flow field, separating
different regions. This can be observed particularly well in the wake of a two-dimensional
bluff body (v. Kármán’s vortex street), cf. e.g. Kasten et al. (2010), for which a line
system of attracting and repelling attractors sets up, commonly referred to as ‘attracting
Lagrangian coherent structures (LCS)’ and ‘repelling LCS’. Both lines intersect in the
region of a so-called ‘hyperbolic LCS’, owing to the fact that material converging in one
direction has to diverge in another direction (conservation of mass), cf. Haller (2015).

Applied to three-dimensional turbulent flows, the structures visualised in FTLE images
have been associated with vortices in the flow field in numerous works, as shown by
various comparisons between FTLE and Eulerian methods; see, e.g. Green, Rowley &
Haller (2007), Pan, Wang & Zhang (2009), Bettencourt et al. (2013) and Wilson, Tutkun
& Cal (2013). Compared with Eulerian methods, however, the resulting FTLE images have
the aforementioned advantage of being Galilein invariant and revealing finer structures.
Furthermore, they are more robust with respect to background noise or inaccuracies in the
input data as well as in the computational method; compare, e.g. Haller (2015).

Through particle image velocimetry data of a turbulent boundary layer at a low Reynolds
number (Reθ = 481), Pan et al. (2009) identified LCS in a longitudinal section by reducing
the data to their ridge lines. The results showed that the attracting LCS act like projections
of hairpin vortices onto the plane. As a result, their inclination angles and phase velocities
in different wall-normal positions are determined versus normalised wall distance y+.
As in Green et al. (2007), the robustness of the LCS along with its independence from
thresholds and quantitative details that can be extracted from the field is confirmed.

In the work of Bettencourt et al. (2013), the FSLE is used to identify LCS in
three-dimensional flows; a turbulent channel flow and an oceanic flow. The most attracting
or repelling structures are detected based on the ridge lines of the FSLE field. In the
turbulent channel flow the FSLE field is divided into longitudinal structures near the wall,
which evolve into oblique structures away from the wall. Correlations in the streamwise
and spanwise directions show the typical dimensions of these structures. They are found to
resemble Eulerian coherent structures known to occur in the same regions of the turbulent
channel. In particular, these are elongated vortices in the flow direction that move the fluid
away from the wall into the core of the channel at low velocity. Three dimensionally, the
LCSs appear as mushroom-shaped extensions of near-wall, layered structures whose size
is comparable to the channel width. They separate the channel into an inner region, where
the FSLE reaches high values, and an outer region with low FSLE values. The distribution
of LCS in the turbulent channel resembles the commonly accepted picture where upward
protrusions of near-wall fluid coexist with downward, rotation-free flows in the centre of
the channel. Nevertheless, Bettencourt et al. (2013) concluded that further work is needed
to clarify the relationships between LCS and fluid transport in this type of flow; not least
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because visualisation of three-dimensional structures and transport in turbulent flows is a
complex and time-consuming topic.

However, regarding the notion of attracting and repelling LCS, it is to be mentioned
that not every ridge line in an FTLE field automatically represents an LCS, as shown by
some generic examples in, e.g. Haller (2015) or Farazmand & Haller (2012). A typical
example is the strain of the fluid generated by pure shear, which does not lead to any
local divergence or convergence of the fluid particles, despite representing a possible
FTLE extreme value. In consequence, Farazmand & Haller (2012) developed a refined
method for the detection of LCS in two-dimensional flows. This method has been used by
Wilson et al. (2013) to analyse their data in a wall-parallel slice of a flat-plate turbulent
boundary layer after demonstrating that the third velocity component perpendicular to the
slice can be considered negligible. The investigations were performed at Reθ = 9800 and
y+ = 50. By comparison of the instantaneous flow field (minus mean flow in Eulerian
terms) with the lines of repelling and attracting LCS, it is confirmed that the LCS
segment the flow field. Furthermore, hyperbolic regions near the intersections of the two
are illustrated and confirmed and local phenomena described as ‘spurts’, ‘swirls’ and
‘stagnations’ are tracked in time. In this way a more detailed insight into the instantaneous
flow field is provided, going beyond the mere confirmation of the presence of vortices
(see above). However, a connection of ‘spurts’ and ‘swirls’ to parabolic or elliptic LCS is
not established. Interestingly, several groups of smaller adjacent segments were identified
in the study, which form larger structures when viewed together – in the sense of the
idea of coherent substructures described at the beginning – which do not overlap but
complement each other. This gives hope that LCS or FTLE analyses could also contribute
to the identification of turbulent large-scale structures.

Next to the ‘hyperbolic LCS’ that have been the focus so far, regions other than attracting
and repelling LCS typically catch the eye in two-dimensional flows. These exhibit an FTLE
minimum around which another type of transport barrier may exist. Haller (2015) and
Farazmand, Blazevski & Haller (2014) call these regions ‘elliptic LCS’ and ‘parabolic
LCS’. The former involve the fluid in the core region of a vortex rotating about a central
axis in a manner similar to a solid. Since adjacent fluid particles remain together when
rotating about a common axis, an FTLE minimum is present here and the FTLE value
then increases with distance from the axis as frictional effects increase. Haller (2015),
Haller et al. (2016), etc. succeed in determining an invariant line for the objective boundary
of the elliptic LCS. A comparison of different methods for segmenting two-dimensional
flow fields is presented in Hadjighasem et al. (2017). ‘Parabolic LCS’, in contrast, are
found in the core of free jets; see, e.g. Haller (2015), Farazmand et al. (2014). These
are associated with a minimum of shear and, thus, a minimal FTLE value, implying that
particles stay together longer in the centre than at the edge of the jet or parabolic region.
Phenomenologically, a connection to the ‘spurts’ in Wilson et al. (2013) is conceivable,
although this has not been examined in depth. Beron-Vera et al. (2010) and Beron-Vera
et al. (2012) identify the associated transport barriers in the minima of the forward and
backward-integrated FTLE fields. However, they refer to them by the problem-specific
term of an inertial torus, which fits their geophysical application but is not applicable to
more general cases. It is obvious that this is the more general phenomenon of a parabolic
LCS.

In a very recent study, Huang, Borthwick & Lin (2022) presented an investigation of
LCS in two-dimensional unsteady CFD data of the flow past a backward facing step.
A new feature in their work is a so-called ‘flow pathway’ with minimal FTLE values
between vortices that is periodically opened and closed by FTLE ridges associated with
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LAMS in a turbulent boundary layer

the shedding of vortices. This flow pathway is identified by minimal FTLE values and due
to this fact, the distances between neighbouring fluid particles within it only vary slighty.

2. Objectives of this study

As outlined above, the FTLE has become a commonly used tool in turbulent flow analysis
in recent years. However, in the investigation of three-dimensional problems – and in
contrast to two-dimensional ones – it is noticeable that the FTLE field has mostly been used
for identification/illustration purposes of turbulent structures contained in the unsteady
turbulent flow field. An exception is provided by the study of Wilson et al. (2013), where
one wall-parallel plane of a flat-plate turbulent boundary layer obtained from a wind
tunnel experiment is investigated, motivating their suggestion that similar studies based on
direct numerical simulation (DNS) should be performed with the full three-dimensional
flow field. Thus, although the FTLE propagated by Haller (2001) allows the objective
detection of structures in unsteady flow fields, cf. Haller (2015), it has not yet been used
extensively to present in-depth analyses of three-dimensional turbulent boundary-layer
flows. Consequently, proceeding from the present state, it is the main objective of this
work to apply a Lagrangian method to high-resolution DNS data of a spatially evolving
wall-bounded turbulent boundary layer – in contrast to previous channel flows – and, thus,
to complement existing studies focusing on the maxima of the FTLE field. Hereby, the
main objectives are: (i) to clearly characterise the dependence of the FTLE field from
the wall-normal distance, (ii) to associate the structures observed in the FTLE field with
turbulent motions within the unsteady turbulent field, (iii) by also looking at the minima
in the FTLE field, to work out the meaningfulness of the usually less discussed regions
of minimal FTLE values for the turbulent field. The starting point for this study are the
DNS data of Wenzel et al. (2019) of self-similar turbulent boundary layers with a moderate
adverse pressure gradient (APG) in the streamwise direction, which noticeably increases
the Reynolds number range under consideration compared with data without a pressure
gradient. Note that a comparison between studies of cases with and without pressure
gradients did not show a substantial influence of the pressure gradient, which is why all
the results shown apply in a comparable way to cases with and without pressure gradients;
further details will be given at an appropriate position.

The reader interested in the influence of an APG on the statistical and kinematic
characteristics of turbulent boundary layers may have a look at Houra, Tsuji & Nagano
(2000) for instance. Their study did not yet deliver a significant influence of the adverse
pressure for a Clauser parameter similar to the one used here. Readers interested in the
influence on coherent structures in APGs may consult (Lee et al. 2010), where vortices
have been traced by Eulerian and statistical methods for zero and two APGs, one weaker
and the other stronger than the one used here.

This paper is organized as follows. Section 3 presents the method used to calculate the
three-dimensional FTLE field, § 4 presents the DNS data used and § 5 presents the results
obtained. Conclusions are summarised in § 6.

3. Method

The FTLE quantifies the maximum separation rate between initially closely spaced
particles after they have moved through the flow field over a finite-time interval. Its
computation is based on the so-called ‘flow map’, where all particle positions x =
[x, y, z]T of a flow field u = [u, v, w]T at consecutive time steps are contained in a selected
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time interval t,

F t
t0(x0) := x(t, t0, x0), x ∈ D ⊂ R

3, t ∈ [t0, t1], (3.1)

where D denotes the flow domain. For time steps other than t0, the particle positions
x(t, t0, x0) are calculated by integrating the differential equation

dx
dt

= u(t, x). (3.2)

The flow map F t
t0(x0) is then used to compute the deformation gradient ∇F t

t0(x0) by
a finite difference approximation using the particle positions at the beginning and end
of the integration period; see Haller (2015). The resulting stretching of the particles is
represented by the right Cauchy–Green strain tensor Ct

t0(x0), which is the matrix product
of the transposed deformation gradient and the deformation gradient itself, i.e.

Ct
t0(x0) = [∇F t

t0(x0)]T · [∇F t
t0(x0)]. (3.3)

In three dimensions, this yields a 3 × 3 tensor with three eigenvalues (λmax, λint, λmin);
the FTLE is computed using the maximal eigenvalue

FTLE = 1
|t1 − t0| ln(

√
λmax). (3.4)

The FTLE calculated from the maximum eigenvalues of the strain tensor λmax are greater
than zero in all points of the flow field, FTLE values calculated from the minimum
eigenvalue λmin instead of λmax would always be negative, and FTLE values calculated
from the mean eigenvalue λint can have both signs. Note that all three eigenvalues are
coupled to each other by continuity. Thus, if a fluid element is stretched in one direction
(positive FTLE), it has to shrink in at least one other direction (negative FTLE), or, if
two of the FTLE values approach zero, the third FTLE value must also approach zero.
Simultaneous expansion or compression in all spatial directions is conceivable only due
to strong compressibility effects. At Mach number M = 0.5 such effects have not been
observed in the available data. A more detailed description of the method including the
finite difference approximation of ∇F t

t0(x0) can be found in Haller (2015) for instance.

4. The DNS data base

For the present study, the DNS data presented in Wenzel et al. (2019) for a flat-plate
turbulent boundary layer with an APG in the streamwise direction are utilized. The inflow
Mach number is in the middle of the subsonic region at M = 0.5. A moderate pressure
gradient with constant kinematic Rotta-Clauser parameter βK = (δ∗

K τ̄w)/(dpe/dx) ≈ 1.0
is used, implying a self-similar boundary-layer evolution in the streamwise direction;
see Gibis et al. (2019). Here δ∗

K represents the incompressible, kinematic displacement
thickness, τ̄w the wall shear stress and dpe/dx the pressure gradient evaluated at the
boundary-layer edge. Both the data itself, its statistics and its scaling in terms of Reynolds
number, Mach number and pressure gradient are discussed in detail in Wenzel et al.
(2019); more insight into the numerical set-up is given in Wenzel et al. (2018). The
choice of a positive pressure gradient in the flow direction is motivated by the goal of a
faster thickening boundary layer imitating some sort of high-Reynolds-number behaviour
already at smaller computational domains, e.g. a second peak in the spectra of the
root-mean-square values of the streamwise velocity fluctuations.
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LAMS in a turbulent boundary layer

In the following, the velocity vector u = [u, v, w]T represents the velocity components
in the streamwise, wall-normal and spanwise directions x, y and z, respectively. The origin
of the Cartesian coordinate system is located at the inflow of the numerical domain
(Reθ ≈ 300), where the initial boundary-layer thickness is denoted as δ99,0. The flow field
is periodic in the spanwise direction with period length λz/δ99,0 = 8π. This corresponds
to 2267 wall units at Reθ = 2000. Within this region, 900, 200 and 256 numerical grid
points are located in the x, y and z directions of this region of interest, respectively. For post
processing, 200 snapshots are available with a period spacing of ΔtU∞/δ99,0 = 1, ranging
in the flow direction from x/δ99,0 ≈ 150 to 330, corresponding to 1925 ≤ Reθ ≤ 3209
or 499 ≤ Reτ ≤ 766. All FTLE fields shown in the results section are computed on the
complete numerical domain contained between these borders, although often only a subset
of the resulting FTLE fields are depicted. Note that statistical results were collected over
100 snapshots to ensure statistical convergence. In Weinschenk, Rist & Wenzel (2020) the
data have already been used to detect convection velocities of different flow field variables,
with larger contiguous regions of constant flow velocity observed in all convection velocity
components, largely consistent with the known high- and low-speed streaks in the u
velocity component.

For all results discussed in the following, the flow map is computed for assumed
massless particles placed on each numerical grid point of the computational domain in
wall-parallel planes (y = const.) over the entire y range of the boundary layer. Around
each particle (grid point), six auxiliary particles are placed in the positive and negative
x, y and z directions, respectively, with a spacing of δx = 0.2·10−5δ99,0. Compared with
the computation of the two-dimensional double gyre in Farazmand & Haller (2012), our
distances are approximately 100 times smaller. The temporal integration is performed
using the standard four-step fourth-order Runge–Kutta method. The integration interval
is 14 time steps for both forward and backward integration (t1 − t0 = 14Δt), where Δt is
the time-step difference between subsequent DNS data fields. This allows each particle
to travel about one local boundary-layer thickness downstream or upstream on average
within the chosen time interval. This was found to be a robust compromise between
too short (attracting regions have not yet been formed) and too long integration times
(results are smoothed out). All particles can move in all three spatial directions. To only
consider particles that do not leave the integration region in the streamwise direction (at
the inflow for backward integration or at the outflow for forward integration), particles
are initially only set in a reduced subdomain with 400 data points in the x direction,
covering a Reynolds number range 2212 ≤ Reθ ≤ 2853 and 558 ≤ Reτ ≤ 690. Due to
the periodic boundary condition in the z direction, the solid wall and the homogeneous,
laminar free-stream flow in the far field, the entire data range is used in the remaining y
and z directions.

Moreover, the regions of minimal stretching are almost independent of whether the
FTLE field is determined by forward or backward integration of the flow field in time;
see the Appendix. This behaviour is consistent with the observations of Beron-Vera et al.
(2010) and Beron-Vera et al. (2012) in geophysical flows, where the valleys of the FTLE
fields are associated with transport boundaries running around the globe in the form of
shear-free zonal jet cores. Haller (2015) calls such regions parabolic LCS and relates them
to the shear layer minimum in free jets. Beron-Vera et al. (2010) use the good agreement
of the forward- and backward-integrated FTLE fields to increase the robustness of their
algorithm by identifying the local minima in the sum of the two. This could have been
done in the present case as well, but it does not seem strictly necessary since all fields are
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redundant to each other, as shown in the Appendix. Therefore, only backward-integrated
data will be used in the following figures and analyses.

5. Results

To provide an intuitive approach to the results discussed below, a relationship between
the FTLE field and the vorticity field is established in § 5.1 first. To this end, data are
extracted in streamwise and wall-parallel sections at various wall distances and the regions
containing local FTLE minima are connected to the already known elliptic and parabolic
LCS, for which the new superordinate term ‘Lagrangian areas of minimal stretching
(LAMS)’ is suggested here. Since LAMS, in contrast to FTLE, is a hitherto undescribed
term we would like to develop it step by step for the reader in the context of illustrations.
Therefore, our introduction of LAMS, its characterisation and finally our attempts at
definition extend over several pages. A summary of this characterisation is provided at
the end.

This leads to the following structure of the present section: in § 5.2 the y dependence
of the FTLE fields and, thus, the LAMS is investigated in more detail; furthermore, a
connection of the LAMS to the laminar external flow is established. An association of the
LAMS with the underlying flow map is presented in § 5.3. The association of the LAMS
with the Eulerian representation of the flow field is discussed in §§ 5.4 and 5.5, whereas
the present findings are confirmed by using the temperature field and the statistics of the
wall-normal velocity component v in § 5.6.

5.1. Overview and terminology
Depicted in figure 1, the FTLE field extracted at a spanwise location of z/δ99,0 = 12.57 is
compared with the corresponding magnitude of vorticity ω in a xy plane through the flow
field. We have chosen a grey-scale map to be consistent with earlier representations in
literature. Thus, the brightest areas correspond to minima and the darkest areas to maxima
in the depicted data (cf. grey-scale bar). To demonstrate that sufficient individual structures
have been collected to ensure statistical convergence, the whole subdomain used in the
quantitative analyses later on is depicted. Essentially, this figure illustrates the well-known
picture: towards the wall, the turbulent structures become finer and finer, and laminar
inclusions from the undisturbed external flow are present in the outer, intermittent region
of the boundary layer. The two (arbitrarily) chosen close-ups provide a more detailed
comparison between the levels of detail provided by the FTLE-based and vorticity-based
visualisations.

Qualitatively, both panels (a) and (b) share great similarities with representations
available in the literature in which FTLE maxima or ridge lines were associated with
vortices in the flow field; see, e.g. Green et al. (2007) and Pan et al. (2009), to mention
only two. A comparison between panels (a) and (b) illustrates the already reported
phenomenological similarities between the FTLE and vorticity structures, although most
structures appear less sharply defined for the vorticity in panel (b) compared with the
FTLE in panel (a). However, it is not readily evident from the literature how far-reaching
these benefits could be. Note that the vorticity in panel (b) has the advantage of being much
faster to compute and being Galilean invariant as well, as long as the reference frame is
not rotating. However, shear layers and vortices cannot be distinguished, which led (among
others) to the development of other methods based on the Eulerian view (Q, λ2, swirling
strength, etc.; see Chong, Perry & Cantwell 1990; Jeong & Hussain 1995; Chakraborty,
Balachandar & Adrian 2005).
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Figure 1. Comparison of the FTLE field (a) and vorticity magnitude (b) in a xy plane.

To complement the insight given in figure 1 and allow for an assessment of the
data’s three dimensionality, figure 2 shows three wall-parallel slices at different wall
distances y = const. As the wall distance expressed in inner units y+ changes over
the streamwise direction, it is given as an averaged value y+ over the entire x range
for each slice. Three y+ values are chosen, one close to the wall at y+ = 21, one at
about 50 % of the averaged boundary-layer thickness at y+ = 315 and one at about
112 % of the averaged boundary-layer thickness at y+ = 706. Again, close-ups are
given for a more detailed comparison: panel (d) focuses on an ‘eruption’ event near
the boundary-layer edge, panels (e) and ( f ) focus on regions containing local FTLE
minima.

In contrast to other studies in the literature, it should be noted that figures 1 and 2
show a much larger data range, especially in the streamwise direction. Moreover, due
to the strongly three-dimensional nature of the flow field considered (which contains
mass transfer perpendicular to the cutting planes), the present visualisations substantially
differ from studies of two-dimensional isotropic turbulence, e.g. Farazmand & Haller
(2012). It is further mentioned that – owing to the fact that three eigenvalues occur in the
three-dimensional case compared with only two in the two-dimensional case – methods
and findings developed for two-dimensional flows usually cannot be simply adopted and
applied.

As motivated in § 2, it is a primary goal of this paper to investigate the usually less
discussed bright regions of the FTLE fields in figures 1 and 2 (in contrast to the dark
regions there), to line out their physical relevance and to associate them with known
processes within the turbulent boundary layer. According to the definition of the FTLE,
these regions correspond to regions of very little stretching/compression. It is recalled that
all three eigenvalues λmin, λint and λmax tend towards one when the maximum eigenvalue
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Figure 2. The FTLE fields in different wall-parallel planes: (a) y+ ≈ 706, (b) y+ ≈ 315, (c) y+ ≈ 21,
(d), (e), ( f ) zoom in corresponding to (a), (b), (c), respectively.

tends towards one, implying that the corresponding FTLE values computed for λmin, λint
and λmax tend towards zero.

In its physical association, minimal divergence or compression over a period of
time means that fluid regions involved remain together over the period of time under
consideration, implying this motion to be ‘coherent’. To avoid confusion with the variety
of structures already associated with the term of a ‘coherent structure’ (e.g. vortices,
shear layers, LCS, etc.), it seems reasonable to distinguish these structures from others
by calling them ‘LAMS’ in the following. ‘Lagrangian’ as they are obtained from a
Lagrangian point of view, and ‘areas of minimal stretching’ due to the mathematical
background of their detection method. Furthermore, for a clear distinction from the term of
a ‘coherent structure’, the related structures will be termed to be ‘cohesive’. By definition,
the LAMS lie between the ridges of the FTLE field and, thus, between neighbouring
attracting and repelling LCS; whether each FTLE ridge represents an LCS on closer
analysis or not; compare § 1 and Farazmand & Haller (2012). A single LAMS thus could
be described as a cohesive, quiet island in the turbulent flow, which is embedded in the
turbulent flow similar to a colour blob transported with the flow without being rapidly
diffused.

Note that the LAMS term proposed is a kind of superordinate term with respect to the
classification of LCS made by Haller (2015) and others, as LAMS can contain both elliptic
and parabolic LCS. In comparison with the mathematical criteria that must be fulfilled to
unambiguously identify elliptic or parabolic LCS, LAMS are less precisely defined, but
much easier to identify visually.
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Figure 3. (a) Probability density functions (PDFs) of FTLE at different wall distances and (b) mean value,
median of the FTLE and arg max of the PDF of the FTLE versus wall distance.

5.2. Detection and interpretation of LAMS in the flow field
In the following, the general behaviour of LAMS is characterised. As already seen in
figure 2, these findings depend on the wall-normal position investigated due to the three
dimensionality of the flow problem considered. In the plane near the boundary-layer edge
at y+ = 706 (y/δ̄99 ≈ 1.12, y/δ99,0 ≈ 8.68) in figure 2(a), the FTLE field contains large
regions of laminar external flow with interspersed ‘islands’ of increased turbulent activity
rising locally upward into the laminar outer flow; see also figure 1. In the plane at y+ ≈ 315
(y/δ̄99 ≈ 0.50, y/δ99,0 ≈ 3.88) in figure 2(b), the proportion of bright regions (LAMS)
in the overall image is much smaller. Nevertheless, connected areas with small FTLE
values (LAMS) still clearly stand out as isolated bright regions. The minimal FTLE values
are close to zero and located in shallow ‘valleys’ surrounded by steeply rising FTLE
‘flanks’, compare the detail in figure 2(e). A comparison with the longitudinal section
in figure 1(a) indicates that most of the affected regions have clear connections to the
laminar external flow. Therefore, the majority of bright regions (LAMS) are expected
to be simply associated with laminar regions of the outer flow sinking downward in
compensation for the turbulent zones rising from below at this wall-normal position. In the
lowest wall-parallel plane at y+ ≈ 21, the arrangement of LAMS becomes rather streaky
in the flow direction, matching the structures known from visualisations of the velocity
or vorticity field. Due to the complexity of the three-dimensional FTLE field, it is by
far not obvious anymore whether these regions still continue to have clear connections
to the laminar external flow or not. However, the underlying flow map identifies LAMS
that descend a significant distance toward the wall over the time period considered.
This indication is further supported by the fact that the prevailing wall-normal velocity
component is negative for a large number of LAMS until near the wall; a more detailed
discussion will be provided in § 5.4.

To complete the overview over the obtained three-dimensional FTLE field, the
wall-normal variation of the FTLE values is presented in the form of histograms and
wall-normal distributions of characteristic data values in figure 3. For this purpose,
histograms of the FTLE distributions are determined and plotted for every available
wall-parallel slice as probability density distributions P. With 400 × 256 grid points per
slice and time step, each curve in figure 3(a) contains a total of 102 400 × 100 data points.
The associated histograms are predominantly in the form of skewed Gaussian distributions
evolving toward a Gaussian normal distribution with decreasing wall distance. Near the
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boundary-layer edge at y+ ≈ 706, very low FTLE values dominate the distribution due
to the laminar free-stream flow that exhibits minimal stretching. In the next four curves
towards the wall, the probability density function (PDF) maximum successively shifts to
larger FTLE values, the distribution flattens out and less data points with small FTLE
values near zero occur. No second maximum occurs with small FTLEs, which would be a
welcome criterion for the detection of LAMS, because a local minimum between low and
high FTLE values could be used as a threshold. In the direct vicinity of the wall at y+ = 2,
the maximum shifts to about 0.25 and virtually no data points with FTLE values smaller
than 0.15 are detected anymore.

Figure 3(b) quantifies the dependence of FTLE maximum, median and mean values on
wall-normal position. Note that all these values differ only marginally. As expected, the
mean value is slightly larger than the median. Qualitatively, this increase of FTLE towards
the wall is in line with the visualisations in figure 2, where bright FTLE regions (LAMS)
become smaller and rarer as one moves closer to the wall. Another plausible cause is the
strongly increasing streamwise shear in the mean flow that leads to increasingly stronger
stretching of the fluid near the wall.

5.3. Association with the flowmap
Although figures 1 and 2 allow for a first qualitative assessment of the FTLE fields
discussed, their interpretability is somewhat limited due to the scalar nature of the
FTLE values depicted as well as their two-dimensional representation. Thus, to more
clearly illustrate the property of Lagrangian regions of minimal stretching, a snapshot
view on particles that have been used to compute the FTLE field is depicted in
figure 4. Therein, particle positions are depicted after fourteen (backward) integration
steps, which initially have been uniformly distributed on the numerical grid points at
t0 and y+ ≈ 315 with constant distances Δx and Δz (Δx > Δz). The top view of the
integration domain is depicted in panel (d), three representative close-ups are depicted
in panels (a–c), and the respective side views illustrating the wall-normal position of
the particles are depicted in panels (e–f ). As can be seen, the amount of integration
steps is high enough to allow for a significant redistribution of the particles initially set,
qualitatively revealing regions of high particle density in the flow map where particles
are accumulated. Note, however, that not all of these regions are real attractors, as also
regions where particles are displaced in the vertical direction such that they ‘pile up’
above each other appear as regions of high particle density in the top view. To allow
for a connection with the previous illustrations of the FTLE field, particles with low
FTLE and low stretching (FTLE < 0.053, corresponding to 20 % of the data points)
are coloured red, while particles with high FTLE and high stretching (FTLE > 0.104,
corresponding to 30 % of the data points) are coloured blue. Conceptually, at least three
different types of structures should be observable in figure 4, all satisfying the criteria of
less stretched regions: (I) regions of laminar external flow sinking to the wall, (II) flow
regions that have erected over the integration time containing particles remaining at an
almost constant distance from each other, (III) the cores of vortices with solid-body-like
rotation.

Visually, the flow field depicted in figure 4 contains large connected regions of red
particles (see, e.g. panel a), that can easily be attributed to the first mentioned structures
(I). These regions clearly exhibit a time-line structure in the top view, implying that their
relative distance to each other has only slightly been changed over the considered time
interval. In consequence, these regions have to be characterised by an almost homogeneous
velocity, which causes these areas to move in their entirety as a ‘cohesive’ patch of fluid;
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Figure 4. Particle positions in a wall-parallel plane at y+ ≈ 315 (d). (a–c) The x − z cutaways corresponding
to (d). (e–g) The corresponding x − y side views of the cutaways in (d).

see the red plateau in, e.g. panel (e). As will be elaborated in more detail below, most of
these regions move upward when tracked in backward time (see, e.g. panel e), implying
that they are characterised by a negative wall-normal velocity component when tracked in
forward time; for the blue coloured particles, the opposite holds. Thus, for the wall-normal
distance of y+ ≈ 315 selected, it is more likely that the large red coloured cohesive regions
of minimal stretching can be associated with regions connected to the laminar free-stream
flow.

However, a large number of red particles are also located in regions of high particle
concentration and in close proximity to blue particles with high stretching when viewed
in top view. These particles can be associated with the second type of structures (II)
mentioned and are located in flow regions that have erected nearly perpendicular to the
wall over the integration time while maintaining a constant distance from each other. Thus,
these regions form parts of flanks in the flow field only appearing as pseudo attractors in
the present backward integration. An example are the red particles in the middle left region
of panel (b), which are almost horizontally stacked in the side view in panel ( f ). Note that
the third type of structure (III) mentioned above will be discussed later in connection with
a spanwise cut.

To graphically underline these statements, figure 5 presents a three-dimensional detailed
view on the LAMS already selected in figure 4(b) along with its surrounding instantaneous
vortices; the latter have been identified by an isosurface λ2 = const., see Jeong & Hussain
(1995), and coloured by wall distance. In figure 5 the red time-line blob ‘floats’ in an area
with little vortical activity. On the contrary, looking at areas of maximal stretching, blue
particles appear much closer to the vortices.
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Figure 5. Comparison of particle positions from enlargement (a) in figure 4 with instantaneous vortices
(λ2 = const.).

5.4. Association with the Eulerian representation of the flow field
Previous investigations, like Green et al. (2007), Pan et al. (2009) or Wilson et al.
(2013) for instance, have already shown that detailed comparisons of FTLE with Eulerian
representations of instantaneous flow fields have several beneficial effects: corroboration
and consolidation of observations and interpretations, as well as additional insight.
Figure 6 serves this purpose in addition to providing a cross-stream cut through the
data to complement the previous illustrations. A superposition of FTLE (using a red
pseudo-colour scale, see legend), the in-plane velocity directions in grey (using the
line integral convolution (LIC) algorithm, see Cabral & Leedom 1993), and green
semi-transparent areas with negative λ2, see Jeong & Hussain (1995), are shown. To
separate high from low FTLE areas (LAMS), the median isoline of the FTLE field is
included as a grey contour line. The dashed horizontal line is at y+ = 20 for reference.
Exemplary hand-drawn vectors illustrate the flow direction belonging to the LIC field,
such that upward and downward motions can be identified. The latter is especially useful
to confirm the presence of vortices in case that a vortex has been cut normal to its axis.
Two such examples appear at y/δ99,0 ≈ 7, z/δ99,0 ≈ 10 and y/δ99,0 ≈ 5, z/δ99,0 ≈ 14.
Due to the complicated three-dimensional nature of the data (cf. figure 5) vortices are
only occasionally cut normal to their axes. However, in the lowest level around y+ ≈ 20
many streamwise oriented small vortices are intersected. These vortices belong to the
well-known ‘legs’ of the lowest layer of hairpins in the log layer. A majority of these
contain small FTLE values, i.e. LAMS. With respect to the expectation (III) of observing
LAMS in the cores of vortices formulated above, this figure proves that the cores of several
vortices indeed contain LAMS. Thus, as expected, LAMS can be viewed as a superordinate
term for parabolic and elliptic LCS.

In addition, figure 6 yields insight into the dynamics of the turbulent boundary layer.
Mushroom-like eruptions near the boundary-layer edge contain areas of high FTLE and
vortices with local upward and downward motions. Interspersed in the spanwise direction
are quieter areas with LAMS character sinking towards the wall and discernible down to
y/δ99,0 ≈ 5, especially at z/δ99,0 ≈ 5 → 9 and z/δ99,0 ≈ 13. The whole ‘middle layer’ of
the boundary layer contains a mixture of high and low FTLE regions that appear entangled
by the many vortices. It is clear that the view of LAMS as mere laminar inclusions coming
from the free stream is not viable in such an environment. Nevertheless, it seems evident
that the vortices act like a three-dimensional ‘gear’ that transports and mixes the flow. In
this process new areas of high and low FTLE can be created due to shear layers in between
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Figure 6. Superposition of different fields in the yz plane at x/δ99,0 ≈ 210: (a) FTLE and LIC, (b) FTLE and
λ2. Dashed horizontal line is at y+ ≈ 20; arrows indicate flow direction.

neighbouring vortices. Thus, the effects observed in figure 6 can be understood as a mix
of two effects: (i) engulfment and transport of laminar patches (LAMS) from the free
stream towards the wall, and (ii) generation of new LAMS by vortex interactions. Newly
generated LAMS will have a finite minimal strength when they are formed in an area of
high three-dimensional stretching. Therefore, the interpretation of LAMS as quasi-laminar
patches coming from the free stream must be successively extended to an interpretation
also considering newly produced LAMS the smaller the distance to the wall becomes.
Especially, the latter effect should be dominant also in the outer layer in a channel flow
or a pipe flow where no laminar free stream exists. Despite this interpretation LAMS still
catch the eye very close to the wall until y+ ≈ 20. Only below this value, the FTLE minima
increase to discernibly higher (redder) values; see figure 3. On closer inspection these are
entrained by the streamwise vortices next to the wall.

To connect the LAMS observed in the FTLE field with the unsteady velocity field of the
streamwise velocity component, the u′ field of the wall-parallel section located at y+ = 315
is depicted in figure 7(a) first. Regions with positive u′ are coloured red, with negative u′
blue and isolines with u′ = 0 are depicted as black solid lines. To allow for a simpler
assessment of the correlation between the LAMS and u′, the isolines from figure 7(a) are
overlayed in panel (b) with the FTLE field repeated; figure 7(c) depicts the u′ field from
panel (a) filtered by FTLE < 0.06. By comparison between panels (a) and (b), a strikingly
high correlation between areas of minimal stretching (FTLE → 0) and the red coloured
high-speed streaks can be observed. This impression is confirmed in panel (c), where at
least the largest (or more contiguous) LAMS are characterised by positive u′ values and,
thus, travel downstream faster than the mean flow. This is consistent with the findings from
figure 4(e–g), where a majority of LAMS have been identified to sink down towards the
wall and, thus, carry fluid being faster than the mean flow.

When extending this study to other wall-parallel planes, the exact choice of the threshold
value εFTLE for extracting areas belonging to LAMS becomes crucial. While this could be
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Figure 7. Snapshots in a wall-parallel plane at y+ ≈ 315 of (a) streamwise velocity fluctuations u′, (b) the
FTLE field corresponding to (a), (c) streamwise velocity fluctuations u′ filtered by FTLE < 0.06 corresponding
to (a) and (b).

chosen rather arbitrarily so far, the interpretation of trends in the wall-normal direction
is only reasonable if it takes into account the dependence of the FTLE value on the
wall distance already noted in figure 3, where all FTLE values, including the minimum,
increase towards the wall. While the median (50 % percentiles) depicted in figure 3(b)
could be a meaningful choice to separate the data points into two halves – those with small
FTLE values containing LAMS and the rest – smaller percentiles of the data have been
shown to be more advantageous as they more clearly extract the ‘cores’ of the LAMS in
the unsteady field. Further note that the usage of percentiles makes the explicit definition
of an FTLE threshold obsolete. Thus, only data points which belong to a specific percentile
of all available ones (per y+ location) are evaluated in the following.

Depicted in figure 8 and in direct extension to figure 7, panel (a) gives the ratio of
data points of a respective percentile with positive u′ components to those with negative
components, R(u′>0)/(u′<0). To allow for an assessment of the robustness and, thus, the
reliability of the trends observed, the percentiles were successively reduced from 50 %
to 5 % of all the total data points, resulting in y-independent ratios between filtered and
unfiltered data points; see figure 8(c).

From panel (a), it is clearly confirmed that the data points with positive u′ dominate
over those with negative u′ for all percentiles between y+ ≈ 10 and 600, which verifies
the red shift already observed in figure 7(c). In general, the ratio R(u′>0)/(u′<0) shows two
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for
different FTLE thresholds.

peaks, one at about y+ ≈ 10 to 20 and one near the boundary-layer edge (y+ ≈ Reτ ). For
wall distances greater than about y+ ≈ 5 to 10, depending on the percentile considered,
the ratio R(u′>0)/(u′<0) is always greater than one, below, it becomes smaller than one.
Although the dominance of faster regions increases sharply as the threshold value is
reduced (especially for the two maxima), the qualitative results stay the same for all
percentiles. As smaller threshold values emphasise more the centres of the LAMS, this
implies a stronger dominance of positive u fluctuations in the centres of the LAMS
compared with their edges, further implying that the regions identified as LAMS are
predominantly faster than the mean flow and, therefore, belong to high-speed streaks.
The peak at the boundary-layer edge stems from the fact that the large sinking regions
of largely undisturbed far-field flow are initially very uniform without being penetrated by
the turbulence surrounding them. Below this peak, a process of ‘consuming’ the LAMS
then begins, whereby they become increasingly smaller and slower. In this process, the
ratio of fast to slow subregions decreases, but always remains greater than one, however.
Interestingly, the ratio rises again to strikingly high values in the range y+ ≈ 10–20, before
falling to values less than one in the direct vicinity of the wall. As will be discussed in
more detail further down, the latter means that the wall-closest LAMS are dominated by
low-speed streaks; compare also the blueish figure 10(c) depicted further down. Note that
the minimum smaller than one in the uppermost data level (i.e. outside the boundary layer)
should be taken with caution, as regions of minimal stretching are very large and extend
over more than the specified percentile of the data points. If the FTLE values generally
or predominantly approach zero, then restricting them to a specific percentile will lead to
results that are no longer representative at the top data level.

To complement the picture drawn from panel (a) – that LAMS above roughly y+ ≈
10 predominantly belong to (kind of laminar) high-speed streaks sinking down towards
the wall (negative R(v′>0)/(v′<0)) and below roughly y+ ≈ 10 predominantly belong to
low-speed streaks lifting up from the wall (positive R(v′>0)/(v′<0)) – the ratio of data points

970 A31-17

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

63
5 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.635


U. Rist, M. Weinschenk and C. Wenzel

103 103

102 102

101 101

100 100

y+ 
—

y+ 
—

103

102

101

100

0 0.2 0.4 0.6 0.8

103

102

101

100

10–2 10–1

R(sw)/(ej)
101 0 0.25 0.50100

10–2 10–1

R(sw)/(ej)

101 102100

R(ejswf )/(u′all)

R(ejswf )/(u′f )

FTLE < P50.0
FTLE < P25.0
FTLE < P17.5
FTLE < P12.5
FTLE < P5.0

(b)(a)

(c) (d )

Figure 9. (a) Ratio of sweep event data points to ejection event data points R(sw)/(ej) for different FTLE
thresholds. (b) Ratio of filtered data points to all data points of the ejection and sweep events R(ejswf )/(u′

all)

for different FTLE thresholds. (c) Ratio of data points of the ejection and sweep events to data points of the
fluctuations of the streamwise velocity component R(ejswf )/(u′

f )
for different FTLE thresholds. (d) Ratio of sweep

event data points to ejection event data points R(sw)/(ej) for different FTLE thresholds for the ZPG case.

with positive v′ components to those with negative components, R(v′>0)/(v′<0), is depicted
in figure 8(b). Essentially, the trends in panel (b) are reversed to that in panel (a), but show
a qualitatively identical behaviour, which confirms the above-mentioned interpretation.
Note that a linear scaling is more appropriate in panel (b) compared with panel (a).

To further characterise the combined motion of LAMS in the streamwise and
wall-normal direction, it is common to define ‘ejection’ and ‘sweep’ events by
simultaneously considering the perturbation velocities in the flow direction and normal
to the wall; see Willmarth & Lu (1972). If u′ > 0 and v′ < 0, then the region under
consideration descends with simultaneous overspeed, which is usually called a ‘sweep
event’. Since this state lies in the fourth quadrant of the u′–v′ plane, occasionally also the
term Q4 event is used for it. Accordingly, ‘ejections’ with u′ < 0 and v′ > 0 are located
in the second quadrant (Q2). Both criteria were applied to the present data after they were
previously filtered according to the percentiles shown in figure 8. Subsequently, the ratio
of Q4 to Q2 events was formed and plotted against the wall distance in figure 9(a), which
results in a distribution almost identical to that of R(u′>0)/(u′<0) plotted in figure 8(a).
However, a quantitative comparison shows that the ratio of sweeps to ejections R(sw)/(ej) is
slightly larger than the ratio of high-speed to low-speed streaks R(u′>0)/(u′<0).
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As a control, in figure 9(b), comparable to figure 8(c), the ratio of the remaining
data points to the total data points per level is plotted for different percentiles. In direct
comparison with figure 8(c), one can see a reduction in the remaining data points with
slight maxima at y+ ≈ 300 and y+ ≈ 10. The difference is due to data points where Q1
and Q3 events occur.

For figure 9(c), the ratio of the remaining data points from figure 9(b) and figure 8(c)
was computed. Here it is noticeable that consistently 60 to 80 % of the data points of each
percentile belong to ejections and sweeps. Only at the boundary-layer edge and below
y+ ≈ 10 a dependence on the FTLE threshold can be seen, in the way that the values
increase when the threshold is reduced. The increase is monotonic. Since one gets closer
to the core of the LAMS with reduction of the FTLE value, this observation means that
the dominance of sweeps is higher in the centres of the LAMS than at their edges. The
physical consequence of these results is that LAMS are to a large extent associated with
sweep events. Only immediately at the wall, in the viscous sublayer, the ratio reverses and
ejections increasingly dominate over sweeps.

Figure 9(d) presents results for the zero-pressure gradient (ZPG) case from Wenzel et al.
(2019) for comparison with the APG case considered throughout this paper. It can be
directly compared with figure 9(a). In contrast to the APG case the ZPG analysis has
been performed for one arbitrarily chosen data time step only instead of hundreds. As
the number of time steps had already no influence on the statistics in the APG case, we
can consider this safe. Figure 9(d) proofs that the streamwise pressure gradient has no
significant influence on the present observations such that we can say that the latter are not
specific for the chosen pressure gradient.

It is interesting to note that Houra et al. (2000), using quadrant splitting and trajectory
analyses, reveal that in their strongest APG flow, marked transfers of high momentum
fluid toward the wall (Q4) occur frequently with a short duration time. On the other
hand, the contributions from other coherent motions, especially the ejection motions (Q2),
significantly decrease and their duration becomes longer. Compared with ZPG, they also
find that fluid motions from the outer to inner layers predominate in the APG flow. Thus, it
seems that we observe similar effects in our FTLE analysis but not yet a similar influence
of the APG, because their observations are taken from a case with a five times stronger
Clauser parameter.

Figure 10 serves as a graphical illustration of the observations previously described. For
this purpose, instantaneous data of the u′-velocity component are filtered with the P12.5
percentile of the FTLE distribution for three wall-parallel planes, such that only 12.5 %
of all data points with the lowest FTLE values are shown in each plane. Whereas the two
wall-distant planes in panels (a) and (b) exhibit a clear red shift, the wall-closest plane
in panel (c) is characterised by almost only blue structures, which visually underlines the
statements made above. Furthermore, the LAMS structures become smaller and smaller
from y+ = 315 to y+ = 124. At y+ = 2, nearly all of the LAMS appear as elongated blue
streaks in the direction of flow, which implies that the interpretation/association of the
LAMS structures detected has to significantly change for different wall-normal positions.

5.5. About the peak at y+ ≈ 20
As observed in figures 8(a) and 9(a), the LAMS in the unsteady turbulent flow field are
dominated by high-speed streaks or sweeps, in particular, at y+ = 10 − 20, suggesting
a closer look at the possible causes for this behaviour in that region. To this end,
the distribution of the λ2 minimum (Jeong & Hussain 1995) is plotted versus y in
figure 11, which is known to correlate with vortex strength (compare, e.g. Rist, Muller &

970 A31-19

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

63
5 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.635


U. Rist, M. Weinschenk and C. Wenzel

25

20

15

10

5

0

25

20

15

10

5

0

25

20

15

10

0.200

0.150

0.100

–0.100

0.050

–0.050

0

5

0

z/
δ 9

9
,0

z/
δ 9

9
,0

z/
δ 9

9
,0

200 220 240 260

200 220 240 260

200 220 240 260

x/δ99,0

u′

(b)

(a)

(c)

Figure 10. Wall-parallel snapshots of the streamwise velocity component filtered by FTLE (12.5 %
percentile) at different wall distances: (a) y+ ≈ 315, (b) y+ ≈ 21, (c) y+ ≈ 2.

Wagner 1998). The smaller the λ2 value, the stronger the associated vortex. As depicted in
figure 11, the λ2 minimum and, thus, a maximum of vortex activity is located at y+ ≈ 20,
which correlates well with the lower maxima seen in figures 8 and 9. For the upper
maximum near the boundary-layer edge, conversely, the intensity of the vortex activity
does not peak and continuously tends towards zero. However, it should be noted that
vortices occur intermittently at the boundary-layer edge, so that the magnitudes of the
associated averaged λ2 values are reduced in magnitude by containing also vortex-free
regions.

Referring to the lower minimum, the vortices located in the buffer layer at about y+ ≈ 20
are created by the fact that the ‘legs’ of all vortices further above are stretched here in
the direction of the flow, as illustrated in the work by, e.g. Robinson (1991) or Adrian
(2007). In this process these vortices must undergo very strong stretching in the streamwise
direction due to the mean velocity gradient normal to the wall, which causes the x vorticity
to be continuously formed here. This interpretation can be confirmed by calculating the
vortex stretching in the present data, for which the dominant x component is shown in
figure 12, also peaking at y+ ≈ 20. Below y+ ≈ 10, the vortex stretching has a damping
effect. Thus, here the processes reverse compared with the region farther from the wall,
consistent with the observations made above when considering LAMS-based ejections and
sweeps.

From this discussion, it becomes obvious that the LAMS detected in the direct vicinity
of the wall are substantially different to those observed in the outer layer. Whereas
the LAMS in the outer region have been found to be associated with large regions
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Figure 11. Mean value of λ2.
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Figure 12. Mean of vortex stretching Dωx/Dt in the streamwise direction.

of free-stream flow slowly sinking down towards the wall while increasingly becoming
smaller and more ‘turbulent’, the near-wall LAMS have to be much more associated
with vortex-related structures. This observation is already contained in the cut through
the instantaneous flow field in figure 6, where a dashed horizontal line indicates the wall
distance of y+ ≈ 20. The underlying LIC (grey) and FTLE fields (red) show the mixing of
areas of high and low FTLE values. From this visualisation, a majority of LAMS can be
attributed to streamwise oriented vortices that are cut approximately perpendicular to their
axes in the chosen representation. Areas of low and high stretching thus either get attracted
towards the vortex centres or expelled from these. In between the vortices, alternating areas
of upward and downward motions occur, which partly also contain LAMS. It is interesting
to note that these turn into the horizontal direction at almost exactly y+ = 20 due to the
proximity of the wall.
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Figure 13. Ratio of positive data points to negative data points of the fluctuations of the temperature
R(T ′>0)/(T ′<0) for different FTLE thresholds.

5.6. Corroboration of the results by other means
In summary, the LAMS detected so far have been attributed to originally laminar areas
sinking down from the outer flow towards the wall in the outer region, and to vortex-bound
structures in the direct vicinity of the wall. To allow for an assessment, to which degree the
LAMS of the outer layer actually stay together on their way to the wall and how close they
can actually reach to the wall, essentially two methods are conceivable. Firstly, fluid areas
of predefined LAMS could be marked to be traced in their temporal evolution; secondly, by
weakly heating the wall, a passive scalar field could be introduced; see Warhaft (2000). As
the present compressible turbulent boundary layer is treated with an adiabatic, and thus,
compared with the free-stream temperature, slightly hotter wall, the temperature field can
serve as a direct indicator to trace the LAMS motions. To this end, the analysis from
figures 8 and 9 is repeated in figure 13 for the temperature fluctuation T ′. For obvious
reasons, a high qualitative agreement with the result for the v component is observed,
however, under the additional advantage that cold spots can be undoubtedly interpreted as
structures sunk down from further outside.

As can be seen from figure 14 and known from the literature, the temperature field shows
individual cold regions in each snapshot (associated with LAMS) that indeed succeed in
descending from the outer region down to y+ ≈ 20. Prominent examples can be found in
panel (a) at the left edge, in the middle and at x/δ99,0 ≈ 255. To more easily allow for
an assessment about the time evolution of these structures, two representative regions are
marked in all time instances.

To further quantify the strength of the LAMS’s wall-normal movement, the wall-normal
velocity component v = v̄ + v′ for all data points remaining for successively smaller
percentiles of the FTLE distribution were determined in each level y = const. and plotted
in figure 15; this method is analogous to the procedure above, e.g. in figure 8. Besides,
the time-averaged mean flow v̄ is shown for the case where no filtering is applied for
comparison. Note that in figure 8(b) merely the ratio between data points with negative to
positive v′ components has been evaluated. In figure 15, outside the boundary layer, the
LAMS move away from the wall at the mean velocity. Below, a rapid drop to a minimum
follows as the local downward motion is stronger than the mean upward motion. Between
y+ ≈ 200 and 100, the downward motion is reduced before a renewed strengthening takes
place in the y+ ≈ 20 region. As observed earlier, a reduction of the percentiles brings

970 A31-22

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

63
5 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.635


LAMS in a turbulent boundary layer

10

5

0
y/

δ 9
9
,0

10

1.052

1.042
T

1.033

1.024

5

0

y/
δ 9

9
,0

10

5

0

y/
δ 9

9
,0

10

5

0

y/
δ 9

9
,0

10

5

0

y/
δ 9

9
,0

200 220 240 260

200 220 240 260

200 220 240 260

200 220 240 260

200 220 240 260

x/δ99,0

(e)

(b)

(a)

(c)

(d )

Figure 14. Snapshots of the instantaneous temperature field at different times: (a) t = 26802, (b) t = 26809,
(c) t = 26816, (d) t = 26823, (e) t = 26830.
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Figure 15. Percentile-averaged wall-normal velocity component versus wall distance.

one closer to the centres of the involved LAMS and the associated mean downward
velocity intensifies, meaning that the centres of the LAMS are sinking strongest. The
upward motion below y+ ≈ 3 remains very small compared with the rest. When compared
with v̄, the downward motion in the individual LAMS is many times larger than the
mean-flow value. To illustrate this behaviour, exemplary histograms at y+ ≈ 315 are shown
in figure 16 as the probability density distribution P for the different thresholds from
figure 15. The colour coding of the individual cases is identical in both figures. Here, a very
clear shift of the PDF maximum to negative v is present with decreasing FTLE threshold.
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Figure 16. Probability density functions of the wall-normal velocity component v filtered for different FTLE
percentiles in a wall-parallel plane at y+ ≈ 315.

However, about one third of all values are still positive, pulling the mean towards zero. It is
also interesting to observe that the strongest downward movement reaches close to −0.1,
which is about ten times larger than the mean value in figure 15. This indicates that the
downward motion in individual LAMS can be very violent, matching the observations in
the temperature field in figure 14.

6. Conclusions

The purpose of the present contribution was to study the FTLE in a complex,
three-dimensional and turbulent boundary-layer flow obtained via DNS. The FTLE field
was computed in wall-parallel slices, spaced fine enough to fill the whole domain. The
results were qualitatively compared with available studies in the literature as well as
the according vorticity field that yielded general agreement. Technically, the present
contribution is one of a few in the area considering the complete three-dimensional flow
field.

Within the present investigations, the focus was directed towards the eye-catching bright
regions in the FTLE field that have not yet been considered further in the turbulent
boundary-layer literature. As these are detected by a Lagrangian technique and exhibit
minimal local stretching in the Cauchy–Green tensor, the term of LAMS has been
proposed. The physical significance of these lies in the fact that they track cohesive fluid
regions over finite time, which was found to be an equally relevant phenomenon of the
turbulent boundary layer compared with areas of mixing and vortices.

The present analysis shows that LAMS are to a large extent linked to so-called sweep
events in the outer part of the boundary layer down to the beginning of the log layer at y+ ≈
10. In the viscous sublayer LAMS rise from the wall as ejections. The ratio of sweeps to
ejections related to LAMS in wall-parallel planes peaks at y+ ≈ 20. This peak is attributed
to a maximum in streamwise vorticity production by streamwise vortex stretching in this
plane. Ejections of vortical motions from there that are associated with areas of high FTLE
stretching lift away from the wall, which makes room for sweeps of LAMS from higher
regions of the boundary layer. This process continues until the outer edge of the boundary
layer where areas of turbulent flow erupt into the laminar free-stream flow. To compensate,
this LAMS coming from the laminar free stream sink down towards the wall.
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Figure 17. The FTLE fields in a wall-parallel plane at y+ = 315 of (a–c) the FTLE computed from the
maximum, middle and smallest eigenvalue, respectively.

Viewed in this way the turbulent boundary layer is embedded between two large sources
of LAMS: the laminar free-stream and turbulence free flow in the viscous sublayer at
the wall. The difference between the two lies in different FTLE values: zero in the free
stream due to the absence of stretching and higher, but smooth values at the wall due
to the stretching caused by the wall friction. The according processes and motions have
been identified in particle traces, cuts through the flow field, filtered data statistics and the
instantaneous temperature that acts like a passive scalar that tracks hotter fluid rising from
the wall and colder fluid sinking towards the latter.

Funding. The present work has been supported by the Deutsche Forschungsgemeinschaft (DFG) under grants
RI 680/34-1 and RI 680/44-1. The necessary supercomputer resources have been provided by the Federal High
Performance Computing Center Stuttgart (HLRS) under grant GCS-Lamt ID=44026.

Declaration of interests. The authors report no conflict of interest.

Author ORCIDs.
Ulrich Rist https://orcid.org/0000-0001-9743-3125;
Matthias Weinschenk https://orcid.org/0000-0003-4847-9009;
Christoph Wenzel https://orcid.org/0000-0002-2526-952X.

Appendix

Here FTLE values based on the maximum eigenvalue from figure 2(b) are compared with
FTLE values of the middle and smallest eigenvalue; see figure 17. As expected, the FTLE
field of the middle one has both signs and is smaller in magnitude (see legend) than the
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Figure 18. The FTLE fields in a wall-parallel plane at y+ = 315 of (a) the FTLE computed by backward
integration, (b) the FTLE computed by forward integration.

other two. Also, the larger bright regions (LAMS) occur in all three images at the same
locations.

If the analysis is done with the forward-integrated FTLE field rather than the FTLE
field calculated by backward integration, the data in figure 18(b) are obtained. The dark
structures shown in figure 18(a) should be interpreted as accumulating the material in them
(attracting LCS). With forward integration in figure 18(b), the dark structures represent the
contrary effect, i.e. the material moves away from them (repelling LCS). It should be noted
that the regions of minimal change occur in almost the same locations here compared with
figure 18(a). Small differences are due to the fact that in the case of backward integration,
time steps were used that lie before the one shown, and in the case of forward integration,
later ones. So the integration is done over different time steps of the simulation leading to
slightly different structures.
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