
S. Itatsu
Nagoya Math. J.
Vol. 114 (1989), 143-163

ERGODIC PROPERTIES OF THE STEPPING STONE MODEL

SEIICHI ITATSU

§ 1. Introduction

The purpose of this paper is to discuss some ergodic properties of
the stepping stone model proposed by Kimura, M. [4] and developed by
Weiss, G.H. and Kimura, M. [12]. Our model to be discussed in this
paper involves selection in addition to mutation and migration which are
dealt with in [4], [12]. Because of the additional factor selection, the
stochastic process describing our model becomes complicated and presents
particularly interesting profound structure of the random phenomena in
question.

To describe the model mathematically, basic terminologies and nota-
tions are now introduced. The d-dimensional integer lattice Zd is denoted
by X, which is considered as the set of colonies. We assume that all
the colonies have the same population size N. The set of possible states
of gene frequency is therefore given by G = {k/(2N); k = 0,1, , 2N}. Set

S= Gx,

which is the set of sequences of gene frequencies. The Markov process
{p(ή); n > 0} on S describing our model is defined by the transition prob-
abilities Q(p, A), prescribed below, in the following manner:

We consider the alleles Au A2, and by the gene frequency we mean
frequency of genes of the allele Ax. We assume that the allele Ax

mutates to the allele A2 and A2 mutates to Ax with rates u, v (0 < u,
v < 1), respectively, and that migration into x occurs from colony z with
rates λxzQZz λxz = 1, λyz > 0), and that selection occurs in any colony x,
in which relative fitness of Ax and A2 are 1 + sJ2 and 1 — sxj2 (— 2 <
sx < 2), respectively. Then we can define a map H from S into [0, l]x by

(11) H(ϋ) = (1 + sJ2){(l -u-v)Σz KzPz + v]
KP;x sx{(l -u-υ)Σz λ*.P. + v} + l- sJ2 '

xeX, for p = {px}xexeS.
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Given a finite subset Y of X and integers kx, xeY, let A be the cylinder
subset of S determined by them; namely A = {p = {px}x e S; px ~ kJ(2N);
x e Y}. Define a transition probability Q(p, A) by

Q(/7, A) = Π GDH(p)*Λl - H(p)x)™-k*.

The Markov process {p(ή) n > 0} is defined by an initial probability
measure μ and the transition probability Q(ρ, A). Then we have

Pμ(p(n + 1) e A \p(n) = p) = Q(p, A).

This means that for a given sequence of the gene frequencies p the genes
of the next generation are randomly chosen with the probability H(p)x

from the colony x. The probability is one of the important character-
istics of the model. The model involving selection has been investigated
by Nagylaki, T. [9], [10], Maruyama, T. [7], Itatsu, S. [3], and Shiga, T.
and Uchiyama, K. [11], in which the properties of the measures are
treated, in terms of Markov process.

We are particularly interested in the case where u > 0, v = 0, {λxz}
is homogeneous, λxz = λQ)Z_x, and sx = s for some constant s. In the fol-
lowing only this case will be considered.

Our first aim is to investigate the asymptotic properties of the right
and left extremes of linearly ordered colonies, where Ax genes survive,
starting from some special initial states. First of all, our problem of
obtaining limit theorems for the Markov chain {p(n) = {px(n)} n > 0}
is paraphrased to limit theorems for the spin system on state space
{0, ijί^ .aivjx̂  which has been discussed in the author's paper [3]. After
that, we introduce a generalized percolation process defined by inde-
pendent random variables, which has the same law as the spin system.
The process plays an essential role in the proofs of Theorems 1 and 2.
In particular, the subadditive ergodic theorem discussed in [1] is ready
to be applied with the help of the generalized percolation process.

Our second aim is to investigate the ergodic properties of the step-
ping stone model, which have been partially discussed in [3]. We will
obtain much finer results than in the author's previous paper [3]. The
convergence theorem for ρ(n) with translation invariant initial distribu-
tions is clarified and the limit distribution is shown to be a convex
combination of two extremal invariant measures.
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§ 2. Theorems

Our main results can be summarized in the following theorem: Theo-

rems 1-3. We assume d = 1 in Theorems 1 and 2. Set rn = &\x${x\px(n)

Φ 0} and £n = inf {x;p(n) φ 0}. We tacitly understand that rn = — oo

and in = + oo if {x;px(n) Φ 0} = 0 . Denote the indicator function of a

set / b y Z7. Then we have

THEOREM 1. Assume that

(2.1) the number of {x; λ0x Φ 0} > 2

(2.2) Σχ*o*\x?< + oo.

(a) If pM = X(-oo,o](*) /or ίΛe initial state p(0) = {̂ ,(0)},., ίΛerc

ists α e [ - oo, oo) such that

lim r j n = a a.s .
n-*oo

If Px(Q) = X[o,oo)(#), ^ e ^ ί Λ β r e β x i s / s βe(— o o , o o ]

l i m ΰjn = j3 α . s .
W-»oo

(b) Write #(s) = α, αnc? β(s) = jS, expressing the dependence on s.

, /or any compact set K c [0, 2), ZΛere exists cκ > 0 sz/cΛ

cx(s - sf) and - β(s) + β(s') >cκ(s- s')

for 8, s' e K satisfying s > s'. There exists s0 e (0, 2) such that

a(s) > β(s) for s> s0,

Λf(s) < β(s) for s <sQ, and a(s0) > β(s0).

If the assumption (2.2) is replcaced by

(2.3) Σ*\x\*+%* < ° ° f°r some θ > 0 >

then

a(s) = — oo and /3(s) = oo for s < s0.

Remark 1. The assumption (2.1) is not an essential restriction, be-

cause the case where the number of {x; λ0x Φ 0} = 1 is trivial.
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Remark 2. Let pc be the critical value of the oriented bond percola-
tion. Precisely speaking, p> pc implies that there exists an infinite open
path starting the origin 0 with positive probability and p < pc implies
that, with probability 1, there is not any infinite open path starting 0.
Using this constant pc, we can get an estimate on the constant s0 in
Theorem 1 as follows. Let xγ < x2 be arbitrary distinct elements of the
set {x; λ0x Φ 0}. Then

sQ < 2(2pc - pi - b)l{2pc - pi - (1 - 4pc + 2p^b)

where b = (1 - u)(ll(2N)) min {λOXί, λ0X2}.

Remark 3. The constants a(s), β(s) can be estimated as follows.

a(s) > {(x2 - xd

β(s) <{-(x2-

when

s > 2(2p - p2 - b)l{2p - p 2 - (1 -

Here, xu x2 are the same as in Remark 2, and ao(p) will be explained in
the proof of Theorem 1.

Remark 4. Suppose that the migration matrix {λxz} is symmetric.
Then we see that

β(s) = - a(έ).

Hence, the inequality

a(s) > β(s)

is equivalent to a(s) > 0, and the inequality

a(s) < β(s)

holds if a(s) = — oo.

If (2.2) is strengthened by (2.3), then

a(s) < β(s)

holds if and only if a(s) = — oo.

THEOREM 2. Under the assumption of Theorem 1, let the initial state
p(0) be given by px(0) = (l/(2iV))X{0}(x). Set

ΩQ = {lira inf rjn > lim sup IJn} .
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Then there exists sx e [s0,2) such that ΩQ has a positive probability for

s > sί9 and probability zero for s < s^

Let d > 1, and let Sf be all translation invariant measures on S.

Let 0 and 1 be elements of S defined by px(0) = 1 for all xe X and

px(0) = 1 for xe X, respectively. Then we have

THEOREM 3. Suppose the random walk on Zd with transition prob-

abilities {λxy} is irreducible and aperiodic. Then for any μeS?,

lim μQn = aδ0 + (1 — a)v

where a = μ{0} and v is the invariant measure given by

In particular {μ; μQ — μ] Π £f are the convex combinations of do and v.

Theorem 3 does not exclude the possibility v = <50 in general. How-

ever the case v Φ δ0 which seems to be of main interest has been

discussed in [3]. We have now obtained limit theorems which bear char-

acteristic features of each case. Now we pause to review the result in

[3].

Let

as mentioned above. Assume that the matrix {λχg} is given by

i f | * - 2 : | = l

if x = z

otherwise,

where 0 < m < l/(2d). Then, there exists sc e [2u(2 — u)~\ 2) such that

the stepping stone model is ergodic for s < sc and not ergodic for s > sc.

Combining this with Theorem 3, we obtain the next statement: If

s < scy then for any probability measure μ on S

while, if s > sc, then the invariant measure v is distinct from do and, for

any μβ^,

lim μQn = aδ0 + (1 - a)v,
Π-* oo

where a = μ{0}.
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Furthermore, the relation between the critical values s0 and sc is

So < Sc ,

because the inequality a(s) < 0 obviously implies the equality

lim μQn == δ0.
n-*<χ>

§ 3. Ergodic theorems on discrete time spin systems

For the proofs of Theorems 1, 2 we need to introduce the discrete time

spin systems defined by Liggett, T [5] and app]y the ergodic theorems

for them to the stepping stone model. Suppose that W is a countable

set and let pjjj) be a function on W X {0,1}W and satisfy 0 < pw{η) < 1.

The spin system ηn on {0,1}^ corresponding to {pw(η)} is the discrete time

Markov chain defined by the transition law

P'[Vl(w) =l,weT]= Π pJLη) for T c W.
weT

Then the next comparison theorem follows (see Lemma 1 in [3]).

LEMMA 1. Let η\9 rfn be spin systems η\, ηl on {0,1}W corresponding to

{pl(v)}> {pl(v)} Assume

Pl(v)< pi(0 forv<ζ,

and

Then there exists a spin system Tn — (ηni ζn) on {0,1}^ X {0,1}W such

that ηn and ζn have the same law as η\ and η2

n9 respectively, and that

η>n<ζ>n for rc > 0 .

Set W = {1, , 2N} X X, and put

Pij9t)(η) = H(ΣZi V(k, )I(2N))X , for ( , x) e W and η e {0,1}^ ,

where H is the probability given by (1.1). Define the spin system ηn on

{0,1}W with transition law corresponding to p. Then by [3], ξn(x) =

Σ?ΐi Vn(j, x)l(2N) is a Markov process with the same law as our stepping

stone model px(n).

In order to prove the Theorem 1 we need to use the theory of ori-

ented percolation processes. The next Lemma 2 asserts the subadditive

ergodic theorem (see [1], [6]) for such processes.
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LEMMA 2. Suppose that {Xm,n, m < ή\ are random variables which

satisfy the following properties:

(a) XOjO = 0, XOtn < X0,m + Xmtn for 0 < m < n.

(b) {X(n-i)k,nk, n> 1} is a stationary process for each k > 1.

(c) {Xm>m+fc, k>0} and {Im+1,m+fc+1, k > 0} are the same distribution

for each m.

(d) EXίA < + oo (X+tl = max (XOtl, 0)).

Let an = EX0A < + °°> which is well defined by (a), (b), and (d). Then

a = lim -^- = inf -^- e [- oo, oo) and X, = lim Xp,n

exists a.s., with — oo < X^ < oo. Furthermore, EX^ = a. If a > — oo,

lim JB = 0 .

1/ ί/ie stationary process in (b) are ergodic, then X^ — a a.s.

Let ηo(j, x) = %(_oo>0](̂ ). For ^n put

rπ = sup {x; η(j, x) Φ 0 for some ;} ,

then we have

LEMMA 3. Suppose ΣχλOX\xf < oo. Let an = J5rn < + oo,

(a) a = l i m ^ (αn/λi) = infn>0 (an/n) e [— oo, oo),

(b) lim^e. (rn/ή) = a α.s., and

(c) if a> — oo, then l i m ^ E\(rjή) — a\ = 0.

Proo/. Let the function of

to express the expansion of power series of 1 — η,

(3.1) i-Pu,Av) = Σfu,AB) Π (i-Φ,y))

where the coefficients fu,x)(B) are expressed in the form

(1 - s/2)(l + a/2) λ
(1 + s(i/2 - u)f V i,,...,^,...,,. ^ "

X (22V)""(1 - »)*[β/{l + «(l/2 - u)}]"-1 for BΦ 0 ,

and
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Q - Sl2)u f o r ΰ = 0 .
1 + s(l/2 - u)

Here the above sum is taken over the all n > 1, il9 , ίn9 zx , zn such

that {ft, ^ ) , , (in9 zn)} = £. Then {fu,x)(B)} satisfies /(ifX)(B) > 0 for every

B. Evaluate both sides of (3.1) at η = 0. Then Σ*/o,*)CB) = !> because

pUfk){ϋ) = 0. Let us define the probability space (£?, P) and the inde-

pendent random variables {βw,n}wew,n^i with values on finite subsets of W,

by P(βw,n = B) = fw(B) for any finite subset B of W. For n> 0, z, we W

we define the bond (w, n — 1) to (2, rc) is open by we βZt7l. We define the

oriented percolation on W X [0, 00) by the method which is familiar in

the theory of the percolation processes ([1]). For ξ0 6 {0,1}W, ξn e {0,1}^

is defined by ξn(w) = 1 if there exists a path of open bonds from (z, 0)

to (w, n) for some z with ξo(z) = 1 and ξn(w) = 0 otherwise. Then ξn is

the Markov process with transition probabilities

P(ξn+M - i|f») = Σ/,(B)(i - Π (i - £»(">))) = p.(ξn).
B wGB

Therefore ξn is subject to the same law as the one with the spin system

Ύ)n. We call ξn the generalized percolation process (g.p.p., see [2]).

Define r0>n = max {xeZ; there exists a path of open bonds from

((hy),O) to ((j,x),n) for some y<0 and ij} for 0 < n and rm,n =

max {xeZ; there exists a path of open bonds from ((£, y), m) to ((j, x), n)

for some 3/ < rOtW and £,;} — ro,m for 0 < m < n. Then r0>m = rm, and

XTO>n = rm,n satisfies (a), (b), (c) of Lemma 2. The assumption of (d) is

satisfied by following:

H
Λ _ (i + 8/2x1 - u)

V - s/2 + s(l - it)

< 2 i v | ( i u ) Σ Λ y < + ,
1 — s/2 »<-i 2

Since rn is the same law with r0>w, Lemma is proved. Q.E.D.

Set rξ — m a x ^ e Z 1 ; there exists a path of open bonds from ((ί,y), 0)

to (0*, x), n) for some (/, y) e B and j}, where B a W. Then we have

LEMMA 4. Suppose B a A, where the number of {x > 0; (i, x)eA for

some ί) < + 00, emd /βί C 6β απ-y /ϊmίβ seί. Then
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Q <- rAΌC __ rA <- rBUC __ rB

In particular, for B c {1, , 2N} X (— oo, — 1],

JEf(ΓjBU{(l,O)} _ Γ ? f ) > l / ( 2 i V ) .

Proo/. Denote the g.p.p. with the initial state ξ by ξζ

n, then

where for f, ? e {0,1}^, ί V37 e {0,1}TF is defined by (ξ V rj){w) = max {f(u ),

^(α;)}. This implies the first relations of Lemma by the same proof as

that of Lemma 2.21 of [6]. For B c {1, , 2N} X ( - 00, - 1], we have

WrSU{(l,0)} _ j.B\ -> W r ^l, ,2Λ0X(-oo,-l]U{(l,0)} r^'"^N] X (-oo,-l]\

_ r{l,...,2iV}X(r-oo,-l]U{l, ,ί}X{0}\
' n /

The last term is nonincreasing in i and

2jYy.{l,---,22V}X(-co,0] __ Γ{l, . .,2iV}X(-oo1-l3\ __ -Ĵ

holds by the translation invariance. Therefore we have

E(r*w»-r*)^-± Q.E.D.

LEMMA 5. For the spin system ηn with ηo(j, x) = %(_co,0](̂ ) put a = a(s),

and suppose the number of {x; λQx Φ 0} > 2. Then

a(s) - a(s') > c(t)(s - s') 0 < s' < s < t < 2 ,

whenever a(s') > — 00, where

c(t) = inf co(l - s /2Γ- 1 + ^) f c exp ( - ) ,
— s/2/

c0, Cj are positive constants, and k is a positive integer.

Proof. We will prove the Lemma similarly to the proof of the theo-

rem (3.14) in [1]. Set an = an(s), then if s > s', for any initial states

(v> V') with η > rf we can construct spin systems ^n, r[n on the same space

of the probability measure Pη'v' with parameters s, s' respectively such

that ηn > η'm and set rn, r'n as each rightmost points respectively. Then

rn > r'n. Let

τ = inί{n;rn> r'n).

By Lemma 4
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E(rn - r'n) > E(rn - r'n; τ < n) > (l/(22V))P(r < n).

By Markov property

P(τ >ή)^ sup P'^'fa = r[)P(τ > n - 1).

By the assumption there exist xl9 x2 (xί < x2) such that λ0xi Φ 0, λ0X2 Φ 0.

If x = sup {y; -η'{j, y) Φ 0 for some ./}> then

p ^ ^ ( Γ i > rj) > P'?.'?^^ = x __ X i > Γj < x _ X i ) β

By translation invariance of the probability law of ηn, we can assume

x = x1# Hence

(3.2) P' i-fa> r o > P^X(UAi%0)nn^nnA^0n n AJ;)
i i,Λ;>0 < i,k>0

Λuo) n n Λ& n n Asj
i i,fc>0

- Aί0) n n A?,o n n ̂ «)

> W.o,(9) - ί>α,o,(^))(l - Λt.wfo))"'-1 Π (1 - i>(1,,,(^))2A-
2/>0

where Aίfc = {^(i, /?) = 1} and A'ik = {^(i, k) = 0} for any (ί, /?) e W, because

of the construction of the spin system. Let x0 < xx be an integer such that

Then for any y > Xj — x0 we have

(3.3) i _ f t l i V ) ( 7 ) ^ β x p ( - 2 l i i * ( | ( i - « ) Σ a J

Since 1 - p(ί,y)(V) > (u(l - s/2))/(l + s(l/2 - u)) for any y, from (3.2), (3.3)

we can prove

Pi'Λn > rί) > ( Γ + s(l/2 - K

X exp ( 4 N \ %
1 s/2

x

( - 4N\±°%(1 - it)
\ 1 — s/2

inff («-gQd-r)r .
l£(s'r + l - s'/2)(sr + l - s/2)'

r

> co(l - sβy-^w*-** exp ( - —^—Vs - βθ ,
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where c0, cx are positive constants. Put k = xx — x0 and

c(i) = inf co(l - sl2)2N-1+<*N» exp ( - — ^ ) ,

o<s<ί \ l _ s/2 /

then for 0 < s' < s < t

P(τ < n) > 1 - (1 - c(i)(s - s'))n .

Therefore the inequality

an(s) - an(s') > -±-[1 - (1 - (<#)(* - «0)n]

holds. The method of the proof of (3.14) in [1] can therefore be applied.

For any M > 0

( \ i Λ ψi\ f , , Hs - s')\ ( , . (k - ΐ)(s - s')

> f l ( l φ )
~ 2N L V nM

Then

lim !(«„(») - αB(s0) > - ^ r [1 - e - w - ' " * ] .

Let M —> oo to obtain the desired inequality

a(s) - a{s') > 4$-(s - sθ . Q.E.D.
2A^

LEMMA 6. Under the assumption of Lemma 5, if s < 2^(2 — ύ)~\ then

a(s) = — oo holds.

Proof. Put α = (1 - w)(l + s/2)(l - s/2)"1. Then the condition s <

2u(2 — ύ)'1 implies a < 1. Let {^} be the τι-th power of the stochastic

matrix {λxy}, then for any T (a < T < 1),

£j(rn + 2r-w)+ < E Σ (x + 2r-w)^(i, x) < Σ on(^ + 2r-n) Σ ̂ ,
a;>_2r-n,i X>-2γ~n y^O

since E^O', x) < α(l/2ΛΓ) J]<fV ^y5?(i>y) BY homogeneity of λxy9 we have

Σ (χ + 2 r - w ) Σ ^ } = Σ « } Σ (χ + 2rn)
X>-2γ~n y<Q z<2γ-n -2γ-n<X<-z

< Σ W([2r-«] + 1 - z)([2Γn] + 2 - z)l2.
z<2r~n

Let P° be the probability measure of the random walk Xn with transition
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probabilities λxy and with the initial point 0, then the last term is bounded
above by 1 + (3/2){[2rn] + 1 - nE^Xtf + (3/2)n£J°(X1 - E«XXY < 4Γ2n for
all large enough n. Therefore

lim ΓE{rn + 2 r n)+ < lim 4(—Y = 0 .
n-*co n-*oo \ Y /

This implies P(rn> — γ~n)->Q as n->oo, and rjn -> — oo in law as
n-> co. Because rjn-+a a.s. by Lemma 3, we can obtain a = — oo.

Q.E.D.

We use the result on limit Theorems by Corollary 2 of Theorem 1 in
Nagaev, S.V. [8] as following:

Let ξl9 ξ2, , ξn, - - - be a sequence of identically distributed inde-
pendent random variables with distribution function F(x), Eξt = 0 and
variance of ξt = 1, and let Fn{x) be the distribution function of Σί=i ζk-
If cm = E\ξt\

n < co, m > 2, then

xm

for

n max log-^ .0 ,

where Bm is a n absolute cons tant depending only on m, and

Km=l + (m + l ) * + ί e - w .

LEMMA 7. Assume (2.3) ami suppose s < s0. T%βτz ί/iere is a positive
constant K depending only on s such that

(3.4) PHVn Φ 0) £ K\A\n-1-'

for all finite set Ad W, and n > 0.

Proof. Using t h e additive property of g.p.p., we see t h a t i t suffices
to prove t h e following inequali ty.

By Lemmas 4, 5, a(s) < β(s). Let A be a constant such that a(s) < h <
jS(s). Then by part (a) of Lemma 3, am(s) < m/t for some m > 0. Using
the notation in the proof of Lemma 3, recall that
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are independent and identically distributed random variables with mean

am(s). Furthermore, let rn = rn — nh and fTOf7l = rm>n — (n — m)h. Then

n
(3.5) fnm = Γ 0 f 7 m < 2-J r(k-l)m,km

fc=l

The condition (2.3) implies

E((r?y+Θ) < + oo .

Since am(s) < mh, we have

for sufficiently large Λf. Hence we get

by Nagaev's result, where Kx is a positive constant. Therefore by the

relation (3.5)

P(rnm > 0) < K^'9

for all sufficiently large n. Similarly

#nm ~ nmh < 0) < K2n'ι-

for all sufficiently large n and for some positive constant ϋΓ2.

For 37O = X{(i,o)}, the relation {̂ w Φ 0}d{£ί < rt for all ί < 7x} implies

0) < P(^, < r* for all i < nm)

< rnm)

< nmh) + P(rnm > nmh)

^ (K, + Kdn-1'9.

Since P^wfa Φ 0) is monotone in ί, it follows that (3.4) holds with

K--= w1+5(if1 + if2). Q.E.D.

LEMMA 8. Assume (2.3) and suppose s < s0. Then there is a positive

constant ε so that

(3.6) P(rn > - nί+ε) > 0 as n > oo .

In particular, a(s) = — oo.

Proof. Write the initial state ^0(j, x) = X(_co,o](̂ ) which is used in

defining rn as
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By the additivity property and the translation invariance of the spin

system ηn, it follows that

P(rn > - n1+ε) < P(rn > n 1 + e ) + Pzn,*mx(-*nn-w>(Vn ψ o ) .

By the subadditivity of rn, for any ε e (0, θ)

P(rn > - n1+ε) < P(rn > n1+ε) + 2K(2N)n1+εn-1-θ

where if is a constant in Lemma 7. By Lemma 3 we have,

P(rn> n1+ε) > 0 .

Combining the last two inequalities gives (3.6). Q.E.D.

§ 4. Proof of Theorems 1 and 2

Because {Σl%i VnU, #)/(2iV)} has same law as the stepping stone model,

the statement (a) of Theorem 1 holds by Lemma 3.

Let ξn(x) and ξ°n(x) be the original oriented bond percolation processes

on Z 1 satisfying initial states X(_oo,o](̂ ) and X{0](x), respectively (see [1]).

Let p be the probability that each bond from (x, ή) to (y, n + 1) satis-

fying y = x ± 1 is open.

Proof of Theorem 1. By [1] there exists the critical value pc > 0 such

that aQ(p) ΞΞ lim^co sup {x; ξn(x) Φ O\ln > 0 if p > pc. Define the map Gn

from Z 1 to Z 1 by Gn(x) = {(x2 — x,)x — nix, + *2)}/2, and let ηKj, x), j =

1, , 2N be independent copies of ξn(x). Note that {η\(j, x)} is a spin

system with transition law corresponding to {p\jtX)(ij)} where

p\j,χ)(y) = py(J> Λ; — l) + py](j, x + i) - p%j, x - 1)37(7, x + 1) .

Define the spin system rf-n corresponding to {p\jiX)(yj)} with r)\(j, x) =

%(-co,o](^) a n d

p\j,χ)(v) = p^(i» ^ + *i) + W ( Λ χ + **) - p2v(j>χ + *MJ, ^ + ^2).

Then {yfnij, Gn{x))} has the same law as {ηι

n(j, x)}. Recall that the spin

system {ηn{j, x)} has the transition law corresponding to {p(j>X)(yj)}. We

will show there exists a positive constant s0 e (0, 2) such that for s > sQ

the inequality

(4.1) PuAv) < Pu,χM
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for any (j, x) e W and η e {0,1}W. Note that

(4 2) o (rί) > (1 + s/2)(l - u)(XI(2N)) min {λQxι, λxθ2\
' ' ~ 1-SJ2 + β(l - u)(ll(2N)) min {λQxi, λQX2\

X foθ\ * + #i) + 9(7, * + X2) - η(j, X + Xx)η(j, X

Put

b=(l-u)(ll(2N))min{λOXl9λQX2}9

and

/(p) = {2p -p>- b}/{2p~p2 + ( I - 2p +

Obviously we see that if s > f(p),

P P P 1 - β/2 + 8(1 -

for any ξu ξ2 e {0,1}. Hence, by (4.2), if s > f(p), (4.1) holds. The com-

parison theorem (Lemma 1) and the inequality (4.1) imply that

(4.3) P(sup {x; ηn(j, x) Φ 0 for some j} > a)

> P(sup {x; rjlij, x) Φ 0 for some j} > a)

> P(sup {Gn(x); ηKj, x) Φ 0 for some j} > a).

Evaluating the both sides of (4.3) at a = na', we get

P{rnln > a) > P(max rjtjn > a)

where

rj>n = sup {Gn(x); ηKj, x) Φ 0}.

Since the laws of rjn and max̂  fhn\n converge to the laws of constants

a(s) and {(x2 — Xi)ao(p) — X\ — ̂ }/2, which may be — 00, we obtain

α ( g ) > (X2 - Xi)(Xo(p) - Xi - X2

and

Therefore if s > /(pc), α(s) > β(s) holds. Hence, by the fact that a(s) -

β(s) is strictly increasing if a(s) > — 00 and β(s) < 00 in Lemma 5 and
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that a(s) = — oo and β(s) = oo if s < 2u(2 — u)~x in Lemma 6, the state-

ment (b) of Theorem 1 is proved with 2^(2 — u)'1 < s0 < /(pc).

If we assume (2.3) in place of (2.2), then from Lemmas 7 and 8, we

obtain the results

a(s) = — oo and β(s) = oo for s < s0. Q.E.D.

Proof of Theorem 2. By [1], if p > p c, P(ξ°n(x) Φ 0 for all n) > 0 and

l i n v ^ sup{x; ?°(x) =£ 0}/^ = aQ(p) a.s. on {fj(x) ^ 0 for all ή\, with initial

state ξ°0(x) = X(0}(x) for x e Z . Let $(1, x) be an independent copy of ξQ

n(x)

and let τfn(j, x) = 0, j = 2, , 22V. Note that foiO", x)} is a spin system

corresponding to {p\jtX)(η)} Define the spin system 7)1 corresponding to

tfo(j, x) = X{α,o)}(i, x). Put

En = {x; VnU, x) Φ 0 for some j},

^ = {x; VnU, x)φθ for some i} ,

Fn = {x; ^ ( j , x) Φ 0 for some j} .

Then by the comparison between ηn and ^

P(lim inf (sup En)/n > a and lim sup (in£En)ln < αθ

> P(lim inf (sup Fn)/n > α and lim sup (in£Fn)[n < af)
n n

= P(lim (sup Fn)/n > a and lim (inf Fn)[n < a'),
n n

if

(4.4) s>f(p).

Therefore, if we put

A = {lim inf rjn ^ {(x2 — Xi)ao(p) — xt — x2}/2},
n

B = {lim sup SJn < {— (x2 — xdao(p) - xί - x2}/2},
n

Ω1 = {p(n) Φ 0 for all n},
A' = {lim sup {x; £„(*) ̂  0}/ra = αo(/>)} ,

β ' = {lim inf {x; ξn(x) Φ 0}jn = - ao(p)},
n

and Ω[ = {fn Φ 0 for all rc}, then

(4.5) P,(A n B n a,) > P(A' n B' n Ω{)

where μ = δ[pm. Therefore if

* > /(P.).
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we can findp > p c such that the pair s,p satisfies (4.4), and P^({lim inΐrjn

> a! and lim sup ijn < β'} Π fli) > 0 where

a! = {(*2 - Xi)aQ(p) - x, - x2}/2 and β' = {(x2 - xdaQ(p) — xt — x2}/2.

The inequality a' > βr holds, because aQ(p) > 0 for p > pc. Hence we

have ΩQ 3 {lim \r£rjn > a! and lim sup £Jn < β'} Π Ωx. Compare the two

spin systems {ηn(j, x)} corresponding to {p(j,X)(η)} satisfying initial states

X(_co,o](s) and %{(i,o)}0', x), to obtain limsupw rjn < a(s) and liminfw SJn >

β(s). Hence, if s < s09 then Pμ{ρ(n) φ 0 for all n} = 0. Thus Theorem 2

is proved. Q.E.D.

§ 5. Proof of Theorem 3

In this section, S denotes the set {0,1}W which will be a compact

metric space with product topology. We shall prove in the way similar

to Ch.III, Theorem 5.18 in [6] and Theorem 1.3 in [11]. We will use a

Lemma for the mixing properties of the distribution of ηn.

Denote by C(S) the continuous functions on S and by C0(S) the

functions on S depending finitely many coordinates. Then since ρw(-)e

C(S) and C0(S) is dense in C(S), the map Qo: f-+E*(f(ηi)) is a contrac-

tion from C(S) into C(S) with sup-norm || ||. For any aeZd define the

shift translation τa on S by τaη(j, x) = η{j, x + a) for any x 6 Zd

9 and

define an operator Ta on C(S) by

Taf(v) = fbaV) f o r any ? e S .

Then we have

LEMMA 9. For any f, ge C(S), n > 1,

lim SUp SUp \E'(f(ηn)g(τaηn)) - E»(f(ηn))E»(g(τaηn))\ = 0 .
|α|->oo veS

Proof. The statement of the Lemma is equivalent to

(5.1) l i m || Q?(fTag) - QZ(f)Qϊ(Tag) \\ = 0 f o r a n y f , g e C(S), n>l.
|α|-oo

We will show the equality (5.1) by induction on n. First, we suppose

that / and g depend only on {η(j, x); xe AJ} and {η(j, x); xe BJ}, respec-

tively, with finite A, BdZd. Let \a\ to be large so that A ί l W " 1 ®

= 0 . Then
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holds. Since C0(S) is dense in C(S) and the map Qo is a contraction

from C(S) into C(S), we get the equality (5.1) in the case where n = 1.

Translation invariance of p{j,x){η) implies that

Q0Ta = TaQQ for any aeZd .

Suppose n > 1. Assume the statement (4.1) is true for all k < n. Then

by the assumption of induction,

) - QZf-QZ{Tag)\\
|α|-oo

+ lim sup || Q0(Q0"/ Γ.Q,-*) - Q0(Q0Y) QΛ(TaQ?g) || = 0 . Q.E.D.
|α|-»oo

Denote by «̂ 0 the set of all translation invariant probability meas-

ures on S. Suppose that μ e ^ 0 and that μ{η η = 0} = 0. Denote by P"1

the probability measure of the Markov chain An on F ~ {finite subsets

on W} with transition probabilities Q(A, B) defined by

Π [1 - pJ?iΛ = Σ Q(A, B) Π [1 - η{z)] for any , e {0, 1}W .
wGA B zGB

then

(5.2) μn(A) Ξ £ ' Π [ 1 - 9,(W)] = f EA[ Π [1
wG A J wGAn

Then we need to show that

^ Π [1 - Vn(w)] = limEδ> Π [1 - Vn(w)]
τι->oo wQA n->oo wθA

for all finite A d W. This is equivalent to lim,,^ ΣB*Φ P\An = B)μ{B)

= 0, where μ{B) = jl\weB[l- η(w)]dμ, because E> \\weA [1 - ηn{w)] =

Σ £ P"(An = B)β{B).

We shall show that for any ε > 0 there exists an /n for which

(5.3) lim sup sup {fim(B); \B\ = k, B C W} < ε

holds. By Lemma 9, for any e > 0, C and n > 0 there is an L depending

on ε, C, and n such that

(5.4) E' Π [1 - Vn(w)] < Π S*[l - ,„(«>)] + ε,
wQC WQC

whenever

(5.5) min {\x - y\; (i, x), ( , y) e C, (i, x) Φ (j, y)} > L .
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By Hodler's inequality and the fact that μ e ^ 0 ,

f [ Π E'[l - ηn(w)]]μ(dη) < f [E'[l - ηn(l, O)]]^μ(dη) .
J wee J

From (5.2) and (5.4), we see that for any B satisfying (5.5)

(5.6) μn(C) < ε + J [E'[l - ηn(l, 0)]]^μ(dV) .

Since μ{η; η = 0} = 0, {x; λfig Φ 0} -^ Zd as n -> oo, and the relation that

Rn = {w e W; there exists C such that α e C a n d that P{^0)](An = C) > 0}

=>{O',*);JS>=£0},

holds, we see

μ{η; η = 0 on !?„} > 0 , as ra > oo .

Combining with the relation

E'[l - ? n ( l , 0)] = E"™ Π [1 - 7(^)1 ?

we get that for any ε' > 0 there exists an m depending only on ε' such

that

μ{η; E'ηn(l,0)> 0}^: 1 - έ

holds. It follows from the Dominated Convergence Theorem that

(5.7) lim sup f [E'[l - ?m(l, 0)]]'μ(dη) < εf.

Now, let t be any positive integer, and let ε be any positive constant. If

|B | is ssufficiently large, there is a C c B so that \C\ = ί and C satisfies

(5.4) and (5.5) for suitably chosen L. Then (5.6) gives

μm(B) < μm(C) < ε + J [E'[l - 9 m (l, 0)]]'μ(dη)

so that

lim sup sup {fim(B); \B\ = k, B c W} < ε + f [E'[l - ηm(l, 0)]]eμ(dη)
k-*oo J

for every ε > 0 and ί > 1. By (5.7), it follows that μm satisfies (5.3) for

some m.

Next we shall show

(5.8) limPΛ(\An\ = k) = 0 for any k > 1.
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Since

P (An+ι = 0 , An ~Φ 0 ) = Jbj \P n\Aχ = 0 ) ; .An ^ 0 ] = A [c2

 n jJAnj=j£ 0 ]

where c2 = (1 - s/2)κ/{l + 5(1/2 - w)} > 0, we have

"\ ' \ r%k "pA/i A I __ Jo\ \ ' "P ™-\ Δ C/\ Δ —4— (~7\ 1 ^* 1

therefore we have

Σ P^(| An | = k) < + co for A > 1,
71 = 1

to obtain (5.8). From (5.3) and (5.8) we get

(5.9) lim sup^Σ PA(An = B)μm(B) < ε for any ε .

Note that

(5.10) Σ PA(An = B)fi(B) = Σ ( Σ PA(An-m = C)Pc(Am = B)β{B))
BΦ0 BΦ0 CΦ0

< Σ P\An-m = C)μm(C) ,
CΦ0

because 0 is a trap of An. From (5.9) and (5.10) we have

lim sup 2] PA(An — B)μ(B) < ε

for any ε. Thus completing the proof. Q.E.D.
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