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Abstract

We study the matrix equation C(B XC)† B = X†, where X† denotes the Moore–Penrose inverse. We
derive conditions for the consistency of the equation and express all its solutions using singular vectors
of B and C . Applications to compliance matrices in molecular dynamics, to mixed reverse-order laws of
generalized inverses and to weighted Moore–Penrose inverses are given.
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1. Introduction

Let B, C, X , be complex matrices of size s × n, m × t , n × m, respectively, and let X†

denote the Moore–Penrose generalized inverse of X . The purpose of this paper is to
characterize all triples (B, C, X) which satisfy

C(B XC)† B = X†. (1.1)

We say that (B, C, X) has the cancellation property if (1.1) holds. If B, C, X are
nonsingular n × n matrices then it is obvious that (1.1) holds. In that case we have
C(B XC)−1 B = X−1.

Our investigation is motivated by recent applications of compliance matrices in
molecular dynamics (for instance, [2, 4–6, 15]). According to [15] the compliance
matrix can be defined as the inverse of a force-constant matrix. While the force-
constant matrix describes the forces between different parts of a molecule (acting in
different directions), the compliance matrix shows how the molecule complies with
certain external forces acting on it. In particular, centrifugal distortion constants
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and high-temperature mean-square amplitudes depend directly on compliances rather
than on force constants. Very often it is advantageous to model a molecule in a
redundant coordinate system, which means using more variables than there are degrees
of freedom in the molecule. This is, for instance, the case if all bond lengths and
interbond angles are taken as coordinates. In a redundant coordinate system the
compliance matrix Nr is defined as the Moore–Penrose inverse of the symmetric force-
constant matrix Fr in redundant coordinates. Thus, if Fs is the force-constant matrix
in a nonredundant coordinate system, then Fr is related to Fs via J † Fr (J †)T = Fs ,
where J is a linearized coordinate transformation. In general Fr is much larger than Fs ,
and the question arises whether Nr = F†

r can be obtained from Ns = F†
s . This is

exactly the case if the triple (J, J T , Fr ) possesses the cancellation property.
The main result of our paper is Theorem 3.4 in Section 3 with necessary and

sufficient conditions for the consistency of (1.1). We shall prove that (1.1) holds if
and only if

Im B∗B X = Im X and Ker XCC∗ = Ker X. (1.2)

In Section 4 we study (1.1) as a matrix equation. If X is a solution of (1.1) then (1.2)
implies that Im X and Im X∗ are invariant under B∗B and CC∗, respectively. This
observation will be used to construct all solutions of (1.1). In Section 5 we consider
topics which involve products of the form C(B XC)† B. In particular, we reexamine
the issue of compliance matrices and apply Theorem 3.4 to mixed-type reverse-order
laws and to weighted generalized inverses.

2. Notation, basic facts, auxiliary results

Let us first summarize the main issues related to the definition of the Moore–
Penrose inverse. Consider a matrix A ∈Cn×m and the corresponding linear mapping
A :Cm

→Cn . Let Ker A and Im A denote the kernel and the image of A, respectively.
The restriction A|(Im A∗) : Im A∗→ Im A is invertible. Then A† is defined by A†x =
(A|Im A∗)

−1x if x ∈ Im A, and A†x = 0 if x ∈ (Im A)⊥ = Ker A∗. This functional
definition (see [3, p. 8]) can be illustrated in a diagram:

Cm
= (Im A∗ = Im A†) ⊕ ((Im A∗)⊥ = Ker A)

A
y xA† A = 0

y xA†
= 0

Cn
= Im A ⊕ ((Im A)⊥ = Ker A∗ = Ker A†).

It follows that

PA = AA†
:Cn
→Cn and PA∗ = A† A :Cm

→Cm

are the orthogonal projections on Im A and Im A∗, respectively. These properties
characterize A† uniquely, so that W = A† is the unique solution of the two Moore
equations [3, p. 9; 1, p. 370]

AW = PA and W A = PA∗ . (2.1)
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It is also clear that W = A† satisfies the four Penrose equations [3, p. 9; 1, p. 40]

AW A = A (1) W AW = A (2)

(AW )∗ = AW (3) (W A)∗ =W A, (4)
(2.2)

and in fact these equations determine A† uniquely. The sets of conditions (2.1)
and (2.2) are equivalent such that A† is rightly named the Moore–Penrose inverse
of A. We shall exploit the equivalence of the three definitions where it is convenient.

Sometimes we will only consider a subset of the Penrose conditions (2.2).
In accordance with [1, p. 40], let A{i, j, . . . , p} denote the set of matrices
W = A(i, j,...,p)

∈Cn×m which satisfy equations (i), ( j), . . . , (p) from (2.2). Thus
{A†
} = A(1,2,3,4).

The following lemma gathers together some auxiliary results on kernel and image
inclusions, matrix products and Moore–Penrose inverses.

LEMMA 2.1. Let X ∈Cm×n , B ∈Ck×m and C ∈Cn×p.
(i) Im X ⊆ Im B∗ ⇐⇒ X = B† B X ⇐⇒ X†

= X† B† B.
(ii) Ker C∗ ⊆ Ker X ⇐⇒ X = XCC†

⇐⇒ X†
= CC† X†.

(iii) If X = B† B X = XCC† then

X [C(B XC)† B] = B† PB X B and [C(B XC)† B]X = C P(XC)∗C
†.

PROOF.
(i) The assertion follows from B† B = PB∗ and (X†)∗ = (X∗)†, together with

Im X†
= Im X∗.

(ii) It suffices to note that Ker C∗ ⊆ Ker X is equivalent to Im X∗ ⊆ Im C .
(iii) Note that X = XCC† implies Im B XC = Im B X . Hence we have PB XC = PB X

and

X [C(B XC)† B] = B†
[B XC(B XC)†]B = B† PB XC B = B† PB X B. 2

3. Main results

In this section we characterize those triples (B, C, X)which possess property (1.1).
In particular, we aim for criteria which do not involve pseudoinverses and describe
the cancellation property in terms of image and kernel inclusions. Our first criterion,
presented in the following lemma, is rather technical and serves as an intermediate
step in the derivation of the main Theorem 3.4.

LEMMA 3.1. The following statements are equivalent.
(i) We have

C(B XC)† B = X†. (3.1)

(ii) The matrices K = B† PB X B and L = C P(XC)∗C† are Hermitian, and

X = B† B X and X = XCC†. (3.2)

https://doi.org/10.1017/S144678870800044X Published online by Cambridge University Press

https://doi.org/10.1017/S144678870800044X


36 T. Damm and H. K. Wimmer [4]

PROOF. Put W = C(B XC)† B.
We show that (i) implies (ii). From (3.1) it follows that X†

= X† B† B = CC† X†.
By Lemma 2.1(i) the preceding identity is equivalent to (3.2). Then Lemma 2.1(iii)
implies that X W = K and W X = L . By W = X† we have K = K ∗ and L = L∗.

We show that (ii) implies (i). Using (3.2) we obtain W ∈ X{1} from

X W X = [B† B XCC†
]C(B XC)† B[B† B XCC†

]

= B†
[(B XC) (B XC)†(B XC)]C†

= B† B XCC†
= X.

The identity W X W =W is obvious. Hence W ∈ X{1,2}. We know that (3.2) implies
both K = X W and L =W X . Since K and L are Hermitian, W ∈ X{3,4}. Therefore
W = X†, which is (3.1). 2

We remark that W ∈ X{1} can be deduced from a more general result. Note
that (3.2) implies that rank X = rank B X = rank XC . According to [9] the preceding
rank condition holds if and only if C(B XC)(1)B ∈ X{1} for each (B XC)(1) ∈
(B XC){1}.

The following example shows that, in general, condition (3.2) on its own is not
sufficiently strong to imply (3.1).

EXAMPLE 1. Take

B =

(
1 0
1 1

)
, C = B∗ and X =

(
1 0
0 0

)
.

Then (3.2) holds and X†
= X . For

B XC =

(
1 1
1 1

)
,

we find (B XC)† = 1
4 B XC and thus

W = C(B XC)† B =
1
4

(
4 2
2 1

)
6= X†.

In fact we have W ∈ X{1}, but W does not satisfy any of the conditions (2)–(4) in (2.2).

COROLLARY 3.2. X†
= C(B XC)† B if and only if both

X†
= (B X)† B and X†

= C(XC)† (3.3)

hold.

PROOF. Consider the special cases of Lemma 3.1 with C = I or B = I . Then
X†
= (B X)† B if and only if B† PB X B is Hermitian and X = B† B X . Similarly,

X†
= C(XC)† is valid if and only if C P(XC)∗C† is Hermitian and X†

= C(XC)†. 2
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Clearly, X†
= C(XC)† holds if and only if the adjoint Y = X∗ satisfies Y †

=

(C∗Y )†C∗. Hence we can focus on the equation X†
= (B X)† B.

THEOREM 3.3. The following statements are equivalent.
(i) (B X)† B = X†.
(ii) Im B∗B X = Im X.
(iii) Im B∗B X ⊆ Im X ⊆ Im B∗.
(iv) (B X)† = X† B† and X = B† B X.
(v) Im X = Im(B∗B)† X.

PROOF. We prove that (i) implies (ii), that (ii) implies (iv), and that (iv) implies (i),
and also that (ii) implies (iii), that (iii) implies (v), and that (v) implies (ii).

We show that (i) implies (ii). From Ker X†
= [Im (X†)∗]⊥ = (Im X)⊥ and

Ker(B X)† B = [Im B∗((B X)†)∗]⊥ = [B∗Im((B X)†)∗]⊥ = [Im B∗B X ]⊥,

we obtain Im B∗B X = Im X .
We show that (ii) implies (iv). Clearly Im B∗B X = Im X implies Im B∗ ⊇

Im X , and thus X = B† B X . We derive the reverse-order identity (B X)† = X† B†

from Im B∗B X = Im X as follows. We first prove that Im(B X)† = Im(X† B†) and
Ker(B X)† = Ker(X† B†) and then show that (B X)†z = X† B†z for all z ∈ Im B X . We
observe that

Im(B X)† = Im(B X)∗ = Im X∗(B∗B X)= Im X∗X = Im X∗

and

Im X† B†
= Im X† B∗ = Im X† B∗B(X†)∗

= Im X†(B∗B X)= Im X† X = Im PX∗ = Im X∗.

From Ker(B X)† = Ker(B X)∗ it follows that (Ker(B X)†)⊥ = Im B X . On the other
hand,

(Ker X† B†)⊥
= (Ker X∗B†)⊥

= Im(B†)∗X = Im(B†)∗B∗B X = Im (B B†)∗B X

= PBIm B X = Im B X.

If z ∈ Im B X then there is a unique u ∈ Im (B X)∗ = Im X∗ such that z = B Xu. Hence
(B X)†z = u and

X† B†z = X†(B† B X)u = X† Xu = PX∗u = u.

We show that (iv) implies (i). According to Lemma 2.1(i) the identity B† B X = X is
equivalent to X† B† B = X†. Hence we obtain X† B† B = (B X)† B = X†.

It is obvious that (ii) implies (iii).
We show that (iii) implies (v). Set β = B∗B|Im B∗ . Then β : Im B∗→ Im B∗ is

invertible and β−1
= (B∗B)† |Im B∗ . Since Im X ⊆ Im B∗ the inclusion Im B∗B X ⊆

Im X can be written as β(Im X)⊆ Im X . Hence β(Im X)= Im X , and we obtain
Im X = β−1(Im X)= Im(B∗B)† X .
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We show that (v) implies (ii). We know that Im B∗B X = Im X implies that
Im(B∗B)† X = Im X . The converse implication follows from (B∗B)† = B†(B†)∗. 2

According to [1, p. 160, Example 22] or [3, p. 23, Theorem 1.4], the reverse-order
property (B X)† = X† B† is equivalent to

Im X X∗B∗ ⊆ Im B∗ and Im B∗B X ⊆ Im X. (3.4)

We did not take advantage of this result in order to make the proof of Theorem 3.3
self-contained. Using (3.4) we could have deduced (iv) from (iii) as follows. Since
Im X ⊆ Im B∗ implies Im X X∗B∗ ⊆ Im B∗, both conditions of (3.4) are satisfied.
Hence (B X)† = X† B†.

Using Corollary 3.2 we can combine Theorem 3.3 with the analogous results
for C(XC)† = X† to obtain equivalence of the first six statements in the following
theorem.

THEOREM 3.4. The following statements are equivalent.
(i) C(B XC)† B = X†.
(ii) (B X)† B = X† and C(XC)† = X†.
(iii) Im B∗B X = Im X and Ker XCC∗ = Ker X.
(iv) Im B∗B X ⊆ Im X ⊆ Im B∗ and Ker C∗ ⊆ Ker X ⊆ Ker XCC∗.
(v) (B X)† = X† B†, (XC)† = C† X†, X = B† B X, and X = XCC†.
(vi) Im(B∗B)† X = Im X and Ker X (CC∗)† = Ker X.
(vii) (B XC)† = C† X† B† and X = B† B XCC†.

PROOF. It remains to include (vii) in the graph of equivalences. We will exploit the
equivalence

X = B† B XCC†
⇐⇒ X = B† B X and X = XCC†. (3.5)

We show that (vii) implies (i). Put W = C(B XC)† B. Then W = CC† X† B† B.
Using (3.5), we find X W X = X , W X W =W , W X = CC† X† XCC†

= (W X)∗, and
X W = B† B X X† B† B = (X W )∗, which means that W = X†.

We show that (v) implies (vii). By (3.5), X = B† B XCC†. Note that X = XCC†

implies that Im B XC = Im B X . Hence PB X = PB XC . Analogously, P(XC)∗ =

P(B XC)∗ . Put A = B XC and W = C† X† B†. Then the Moore equations are easily
verified as follows:

AW = B(XCC†) (X† B†)= B X (B X)† = PB X = PB XC = PA,

W A = (C† X†) (B† B X)C = (XC)† XC = P(XC)∗ = P(B XC)∗ = PA∗ . 2

Now let us assume that X is Hermitian and C = B∗. Theorem 3.3(iii) yields a
sufficient condition for the cancellation property, which will be applied to compliance
matrices in Section 5.

COROLLARY 3.5. If X = X∗ and Im B∗ = Im X then

X†
= B∗(B X B∗)† B.
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4. The matrix equation C(BXC)† B = X†

In this section we consider the matrix equation

C(B XC)† B = X†, (4.1)

where B ∈Cs×n and C ∈Cm×t are given and X ∈Cn×m is unknown. We wish to
determine all the solutions of (4.1). Set η =min{s, t, m, n}. Then (4.1) implies that
rank X ≤ η. We know from Theorem 3.4 that X satisfies (4.1) if and only if there
exists a B∗B-invariant subspace S of Cn and a CC∗-invariant subspace T of Cm

such that Im X = S and Im X∗ = T . Therefore the spectral decompositions of B∗B
and CC∗ should play a role in the following results. Suppose that rank B = r and
rank C = q . Let βi , i = 1, . . . , k, be the different nonzero eigenvalues of B∗B, and
let νi be the multiplicity of βi . Correspondingly, let γ j , j = 1, . . . , `, be the distinct
nonzero eigenvalues of CC∗, and let µ j be their multiplicities. Then there exists a
matrix U ∈Cn×r with

U = (U1, . . . ,Uk), Ui ∈Cn×νi , i = 1, . . . , k, U∗U = Ir , (4.2)

such that

B∗B =
k∑

i=1

βiUiU
∗

i , (4.3)

and a matrix V ∈Cq×m with

V = (V ∗1 , . . . , V ∗` )
∗, V j ∈Cµ j×m, j = 1, . . . , `, V V ∗ = Iq , (4.4)

such that

CC∗ =
∑̀
j=1

γ j V ∗j V j . (4.5)

Suppose that the columns of a matrix G ∈Cn×p are an orthogonal basis of a subspace
S ⊆ Im B∗. Then S is invariant under B∗B if and only if, for some permutation
matrix P ,

G P = (U1 M1, . . . ,Uk Mk)=Udiag(M1, . . . , Mk), (4.6)

with

Mi ∈Cνi×τi , 0≤ τi ≤ νi , M∗i Mi = Iτi , i = 1, . . . , k, (4.7)

and Im X = S if and only if

X = GL , for some L ∈Cp×m with rank L = p. (4.8)

Similarly, if T ⊆ Im C is a subspace of Cm with an orthogonal basis given by the
columns of a matrix H ∈Cm×p, then T is invariant under CC∗ if and only if, for
some permutation matrix Q,

Q H = (V ∗1 N∗1 , . . . , V ∗` N∗` )
∗
= diag(N1, . . . , N`)V, (4.9)
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with

N j ∈Cµ j×ω j , 0≤ ω j ≤ µ j , N j N∗j = Iω j , j = 1, . . . , `. (4.10)

Moreover, Im X∗ = T if and only if

X = K H, for some K ∈Cn×p with rank K = p. (4.11)

THEOREM 4.1. Let Ui , i = 1, . . . , k, and V j , j = 1, . . . , `, be given as in (4.2),
(4.3), and (4.4), (4.5), respectively. Suppose that p ≤ η. Then X is a solution of (4.1)
and rank X = p if and only if

X = Udiag(M1, . . . , Mk)Zdiag(N1, . . . , N`)V

= (U1 M1, . . . ,Uk Mk)Z

N1V1
. . .

N`V`

 , (4.12)

where Mi ∈Cνi×ρi , i = 1, . . . , k, and N j ∈Cω j×µ j , j = 1, . . . , `, are as in (4.7)
and (4.10), and

∑
ρi =

∑
ω j = p, and Z ∈Cp×p is nonsingular.

PROOF. Suppose that X is given as in (4.12). Then

L = Zdiag(N1, . . . , N`)V ∈Cp×m,

has full row rank. This leads to (4.8), and therefore Im B∗B X = Im X . Similarly,

K =Udiag(M1, . . . , Mk)Z ∈Cn×p,

has full column rank. Then (4.11) yields Im CC∗X∗ = Im X∗. Hence X satisfies (4.1).
On the other hand, if X is a solution of (4.1) then we have seen that X = GL = K H

with G and H given by (4.6) and (4.9). Thus

rank L = rank K = rank X = p (4.13)

and

X = X X† X = GL(GL)†K H = G[L L†G†K ]H = G Z H.

It follows from (4.13) that Z = L L†G†K ∈Cp×p has full rank. 2

5. Applications

We first discuss an issue related to compliance matrices. Then we consider reverse-
order laws and weighted generalized inverses.

5.1. Compliance matrices In Section 1 a compliance matrix Nr was introduced.
Recall that Nr is the Moore–Penrose inverse of a symmetric matrix Fr , which is related
to a Hessian matrix Fs by Fs = J † Fr (J †)T . With regard to [2] or [8] it is important
to retrieve information on F†

r from the matrix F†
s . In a chemical set-up Brandhorst [2]

makes the assumption that

θ = rank Fs = rank Fr , (5.1)
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where θ represents the maximal degree of freedom in a molecule. Let us show that the
additional assumption

Im J ⊆ Im Fr (5.2)

is sufficient to recover F†
r completely from F†

s . Note that (5.1) implies that rank J ≥
rank Fr . Thus (5.2) implies Im J = Im Fr . Hence the following observation is an
immediate consequence of Corollary 3.5.

PROPOSITION 5.1. Assume that (5.1) and (5.2) hold. Then F†
r = (J †)T F†

s J †.

5.2. Reverse-order laws Let R ∈Cm×n and S ∈Cn×p. According to [13, p. 3110],
the pair (R, S) fulfills the reverse-order law (RS)† = S† R† if and only if both mixed-
type reverse-order laws

(RS)† = S†(R† RSS†)† R† and (RS)† = S∗(R∗RSS∗)† R∗ (5.3)

are satisfied. Both equations in (5.3) are of the form X†
= C(B XC)† B if we set

X = RS and (B, C)= (R†, S†) or (B, C)= (R∗, S∗). Hence we can use Theorem 3.4
to obtain the results on mixed-type reverse-order laws.

THEOREM 5.2 [12, Theorem 1]. The following statements are equivalent.
(i) (RS)† = S†(R† RSS†)† R†.
(ii) Im (R†)∗R† RS = Im RS and Im S†(S†)∗(RS)∗ = Im (RS)∗.
(iii) (R† RS)† R†

= S†(RSS†)†.

PROOF. To show that (i) implies (ii), apply part (iii) of Theorem 3.4.
We show that (iii) implies (i). Set A = RS and W = (R† RS)† R†.
From Im RSS†

= Im RS, it follows that PRSS† = PRS . If (iii) holds then

AW = RSS†(RSS†)† = PRSS† = PRS.

Similarly,

W A = (R† RS)† R† RS = P(R† RS)∗ = P(RS)∗ .

Thus W = (RS)†. Setting (B, C, X)= (R†, S†, RS), we find that (iii) is equivalent
to (3.3), and, by Corollary 3.2, also to (i). 2

The rank formula in (5.4) below is due to Mazko [7]. In the case where B XC
is an invertible square matrix the result is known as Wedderburn–Guttman theorem
(see [10, 11]).

THEOREM 5.3. Let X ∈Cn×m , B ∈Cs×n and C ∈Cm×t so that rank X = r and
rank B XC = h. If (B XC)− ∈ (B XC){1} then

rank[X − XC(B XC)−B X ] = r − h. (5.4)

https://doi.org/10.1017/S144678870800044X Published online by Cambridge University Press

https://doi.org/10.1017/S144678870800044X


42 T. Damm and H. K. Wimmer [10]

In our context the special case with r = h and (B XC)− = (B XC)† is of interest.
Note that (5.5) in the following proposition can be regarded as another cancellation
property of the triple (B, C, X). As we have seen in Example 1, it is weaker than
X†
= C(B XC)† B.

PROPOSITION 5.4. The equality

XC(B XC)† B X = X (5.5)

holds if and only if

rank X = rank B XC. (5.6)

PROOF. The left-hand side of (5.5) can be written as

XC(B XC)† B X = XC(B X X† XC)† B X.

Thus we are in the setting of Theorem 3.4 with X = X†, B = B X and C = XC .
Because of

Im X∗B∗B X X†
= Im X∗B∗B X = Im X∗B∗,

and Im X†
= Im X∗, the condition Im B∗B X = Im X can be expressed as Im X∗B∗

= Im X∗, which implies rank B X = rank X . Similarly, Im CC∗X∗ = Im X∗ is
equivalent to rank XC = rank X . Since

rank X = rank B X = rank XC

is equivalent to (5.6), the proof is complete. 2

5.3. Weighted Moore–Penrose inverses Our third application deals with a
generalization of the Moore–Penrose inverse. Let M ∈Cn×n and N ∈Cm×m be
positive definite Hermitian matrices. If A ∈Cn×m then

A†
M,N = N−1/2(M1/2 AN−1/2)† M1/2

is the weighted Moore–Penrose inverse of A with respect to M and N . The
following observation, which is contained in [1, p. 121, Example 42], is an immediate
consequence of Theorem 3.4.

PROPOSITION 5.5. The equality A†
M,N = A† holds if and only if

Im M A = Im A and Ker AN = Ker A.

We indicate without proof a condition for the cancellation property in the case of a
weighted generalized inverse.

THEOREM 5.6. Let B, C and X be of size n × n, m × m and n × m, respectively.
Then

C(B XC)†M,N B = X†
M,N

if and only if

Im M−1 B∗M B X = Im X and Ker XC N−1C∗N = Ker X.
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6. Open problems

Consider the matrix

M =

(
A B
C D

)
, (6.1)

and let

S1 = A − B D†C and S2 = D − C A† B (6.2)

be the associated Schur complements. If A = B XC and D = X† then S1 =

B XC − B(X†)†C = 0 and S2 = X†
− C(B XC)† B. Thus the cancellation property

of (B, C, X) is equivalent to S2 = 0. The following problem arises. Let M be the
matrix in (6.1) with Schur complements (6.2). When does S1 = 0 imply S2 = 0?

A more detailed investigation of cancellation properties would require an
understanding of relations of the form

C(B XC)(i,..., j)B = X (i,..., j).

We remark that a comprehensive study of triple matrix products and mixed-type
reverse-order properties of the form

(B XC)(i,..., j)
= (XC)(i,..., j)X (B X)(i,..., j)

can be found in [14].
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