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Restricted Radon Transforms and
Projections of Planar Sets

Daniel M. Oberlin

Abstract. We establish a mixed norm estimate for the Radon transform in R
2 when the set of directions

has fractional dimension. This estimate is used to prove a result about an exceptional set of directions

connected with projections of planar sets. That leads to a conjecture analogous to a well-known con-

jecture of Furstenberg.

1 Introduction

For each ω ∈ S1, fix ω⊥ with ω⊥ ⊥ ω. Define a Radon transform R for functions f

on R
2 by

R f (t, ω) =

∫ 1

−1

f (t ω + sω⊥) ds.

Suppose 0 < α < 1 and fix a nonnegative Borel measure λ on S1 which is α-dimen-

sional in the sense that λ(B(ω, δ)) . δα for ω ∈ S1. We are interested in mixed norm

estimates for R of the following form:

(1.1)
[

∫

S1

(

∫ 1

−1

|R f (t, ω)|s dt
) q/s

dλ(ω)
] 1/q

. ‖ f ‖p.

Here are some conditions that are necessary for (1.1): testing on f = χB(0,δ) shows

that

(1.2)
2

p
≤ 1 +

1

s
;

if there is ω0 ∈ S1 such that λ(B(ω0, δ)) & δα for small positive δ, then testing on 1

by δ rectangles centered at the origin in the direction ω⊥
0 gives

(1.3)
1

p
≤

1

s
+
α

q
;

if the Lebesgue measure in S1 of the δ-neighborhood in S1 of the support of λ is

. δ1−α, then testing on unions of 1 by δ rectangles in the directions of the support

of λ gives

(1.4)
1 − α

p
≤

1

s
.

Our first result is that these necessary conditions are almost sufficient.
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Theorem 1.1 Suppose p, q, r ∈ [1,∞] satisfy the conditions (1.2), (1.3), and (1.4)

with strict inequality. Then the estimate (1.1) holds.

Now suppose that µ is a nonnegative Borel measure on R
2. If ω ∈ S1, define the

projection µω of µ in the direction of ω by

∫

R

f (y) dµω(y)
.
=

∫

R2

f (x · ω) dµ(x),

where x · ω denotes the inner product in R
2. Fix α ∈ (0, 1) and suppose that λ is an

α-dimensional measure on S1. Then for ǫ > 0 there is C = C(ǫ) such that

∫

S1

dλ(ω)

|ω · ω0|α−ǫ
≤ C(ǫ)

for all ω0 ∈ S1. The computation

∫

S1

Iα−ǫ(µω) dλ(ω) =

∫

S1

∫

R

∫

R

dµω(y1)dµω(y2)

|y1 − y2|α−ǫ
dλ(ω)

=

∫

R2

∫

R2

∫

S1

dλ(ω)

|ω · x1−x2

|x1−x2|
|α−ǫ

dµ(x1)dµ(x2)

|x1 − x2|α−ǫ

≤ C(ǫ)Iα−ǫ(µ)

is due to Kaufman [2]. Refining an earlier result of Marstrand [3], it shows that if

E ⊂ R
2 has dimension β ≤ 1 and pω(E) is the projection of E onto the line through

the origin in the direction of ω, then

(1.5) dim{ω ∈ S1 : dim pω(E) < α} ≤ α,

whenever α ≤ β. (In this note “dim” stands for Hausdorff dimension.) In particular,

(1.6) dim{ω ∈ S1 : dim pω(E) < β} ≤ β.

The next theorem, whose analog for Minkowski dimension is trivial, complements

Kaufman’s results (1.5) and (1.6):

Theorem 1.2 If dim E = β ≤ 1, then

(1.7) dim{ω ∈ S1 : dim pω(E) < β/2} = 0.

The estimates (1.6) and (1.7) lead naturally to the conjecture that if α ≤ β ≤ 1,

then

(1.8) dim{ω ∈ S1 : dim pω(E) < (α + β)/2} ≤ α.

One may view this conjecture as an analog of the following conjecture of Fursten-

berg: for 0 < α < 1, a Furstenberg α-set is a Borel subset of R
2 which contains
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for each ω ∈ S1 an α-dimensional subset of some line parallel to ω. Furstenberg’s

conjecture is that Furstenberg α-sets have dimension at least (3α + 1)/2. It is shown

in [5] that there exist Furstenberg α-sets having dimension (3α + 1)/2 and that any

Furstenberg α-set has dimension at least min{2α, (α+1)/2}. In the analogy between

the two conjectures, (1.5) is the analog of the 2α lower bound for the dimension of

Furstenberg sets and (1.7) is the analog of the (α + 1)/2 lower bound. Inequality

(1.8) with β = 1 would imply the Furstenberg conjecture for a certain class of model

Furstenberg sets. The link between Theorems 1.1 and 1.2 is the fact that formally

µω = Rµ( · , ω).

2 Proof of Theorem 1.1

The lines bounding the regions defined by (1.2) and (1.4) intersect at

( 1

p
,

1

s

)

=

( 1

1 + α
,

1 − α

1 + α

)

.

Then equality in (1.3) gives 1
q
=

1
1+α , so the important estimate is an

L1+α → L1+α(L(1+α)/(1−α))

estimate. Easy estimates combined with an interpolation argument show that Theo-

rem 1.1 will follow if we establish (1.1) for f = χE and a collection of triples (p, q, r)

which are arbitrarily close to (1 + α, 1 + α, (1 + α)/(1 − α)). Standard arguments

then show that it is enough to prove that if RχE(t, ω) ≥ µ for

(t, ω) ∈ F = {(t, ω) : ω ∈ A, t ∈ B(ω) ⊂ [−1, 1]},

where there is some B such that B ≤ m1(B(ω)) ≤ 2B for ω ∈ A, then

µpλ(A)p/q Bp/s ≤ C(δ) m2(E)

if

p =

α + δα + 1

δα + 1
, q = α + δα + 1, s =

α + δα + 1

δα + 1 − α

for small δ > 0.

For each ω ∈ A let E(ω) = {tω + sω⊥ ∈ E : t ∈ B(ω), s ∈ [−1, 1]}. Since

RχE(t, ω) ≥ µ and m1(B(ω)) ≥ B, it follows that

(2.1) m2(E(ω)) ≥ µB.

Using the change of coordinates x 7→ (x · ω1, x · ω2), one can check that

(2.2) m2

(

E(ω1) ∩ E(ω2)
)

.
B2

|ω1 − ω2|
.
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We will bound m2(E) from below by using

(2.3) m2(E) ≥ m2

( N
⋃

j=1

E(ω j)
)

≥

N
∑

j=1

m2(E(ω j)) −
∑

1≤ j<k≤N

m2

(

E(ω j) ∩ E(ωk)
)

for appropriately chosen ω j ∈ A. Fix, for the moment, a small positive number η and

consider a partitioning of S1 into intervals of length about η. Since λ(B(x, r)) . rα,

the λ-measure of each of these intervals is . ηα. So at least, roughly, η−αλ(A) of

them must intersect A. Thus it is possible to choose N ∼ η−αλ(A) points ω j ∈ A

with |ω j − ωk| & η | j − k|. Then for any δ > 0

∑

1≤ j<k≤N

1

|ω j − ωk|
. η−1

∑

1≤ j<k≤N

1

| j − k|
. η−1N1+δ

and so, by (2.2),

(2.4)
∑

1≤ j<k≤N

m2

(

E(ω1) ∩ E(ω2)
)

≤ CB2η−1N1+δ ≤ C1B2N1+δ+1/αλ(A)−1/α,

where we have used N ∼ η−αλ(A). We would now like to choose N such that

(2.5) 2 C1 B2N1+δ+1/αλ(A)−1/α ≤ NµB ≤ 3 C1 B2N1+δ+1/αλ(A)−1/α

or

(2.6) 3−α/(1+δα)
( µB−1λ(A)1/α

C1

)α/(δα+1)

≤ N

≤ 2−α/(1+δα)
( µB−1λ(A)1/α

C1

)α/(δα+1)

.

This will be possible unless µB−1λ(A)1/α . 1, in which case

µα/(δα+1)B−α/(δα+1)λ(A)1/(δα+1) . 1,

so that the desired inequality

(2.7) m2(E) & µ(α+δα+1)/(δα+1)λ(A)1/(δα+1)B(δα+1−α)/(δα+1)

follows from m2(E) ≥ µB unless F is empty. Now (with N chosen so that (2.5) and

(2.6) are valid), (2.3), (2.1), (2.4), and the left member of (2.5) give m2(E) & NµB.
Then the left member of (2.6) gives (2.7) again.
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3 Proof of Theorem 1.2

For ρ > 0, let Kρ be the kernel defined on R
d by Kρ(x) = |x|−ρχB(0,R)(x), where

R = R(d) is positive. Suppose that the finite nonnegative Borel measure ν is a

γ-dimensional measure on R
d in the sense that ν(B(x, δ)) ≤ C(ν)δγ for all x ∈ R

d

and δ > 0. If ρ < γ, it follows that ν ∗ Kρ ∈ L∞(R
d). Also ν ∗ Kρ ∈ L1(R

d) so long

as ρ < d. Thus, for ǫ > 0,

(3.1) ν ∗ Kρ ∈ Lp(R
d), ρ = γ +

1

p
(d − γ) − ǫ

by interpolation. The following lemma is a weak converse of this observation.

Lemma 3.1 If (3.1) holds with ǫ = 0 and p > 1, then ν is absolutely continuous with

respect to Hausdorff measure of dimension γ − ǫ for any ǫ > 0. Thus the support of ν
has Hausdorff dimension at least γ.

Proof Recall from [1, p. 140] that for s ∈ R and 1 ≤ p, q ≤ ∞ the norm ‖ f ‖s
p,q of a

distribution f on R
d in the Besov space Bs

p,q can be defined by

‖ f ‖s
pq = ‖ψ ∗ f ‖Lp(Rd) +

(

∞
∑

k=1

(2sk ‖φk ∗ f ‖Lp(Rd))
q
) 1/q

for certain fixed ψ ∈ S(R
d), φ ∈ C∞

c (R
d), and where φk(x) = 2kdφ(2kx). If ν ∗ Kρ ∈

Lp(R
d), then ‖ν ∗ χB(0,δ)‖Lp(Rd) . δρ. It follows that ‖ν‖s

pq < ∞ if s < ρ − d =

(γ − d)/p ′. Now for t > 0 and 1 < p ′, q ′ < ∞, the Besov capacity At,p ′,q ′(K) of a

compact K ⊂ R
d is defined by

At,p ′,q ′(K) = inf{‖ f ‖t
p ′,q ′ : f ∈ C∞

c (R
d), f ≥ χK}.

It is shown in [4, p. 277] that At,p ′,q ′(K) . Hd−t p ′(K). Thus it follows from the

duality of Bs
p,q and B−s

p ′,q ′ that

ν(K) . ‖ν‖s
pq A−s,p ′,q ′(K) . Hd+sp ′(K) = Hγ−ǫ(K)

if s = (γ − d − ǫ)/p ′.

Now suppose that µ is a nonnegative and compactly supported Borel measure on

R
2 which is β-dimensional in the sense that µ(B(x, δ)) . δβ . If the radii R(1) and

R(2) (in the definition of Kρ) are chosen so that R(1) = 1 and R(2) is large enough,

depending on the support of µ, then one can verify directly that

µω ∗ K(ρ−1)(t) .

∫ 2R(2)

−2R(2)

µ ∗ Kρ (tω + sω⊥) ds.

If p, q, s are such that (1.1) holds and if ρ = β + (2 − β)/p − ǫ, so that (3.1) implies

that µ ∗ Kρ ∈ Lp(R
2), then a rescaling of (1.1) gives

(3.2)

∫

S1

‖µω ∗ K(ρ−1)‖
q
Ls(R) dλ(ω) <∞.
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If we could take (p, q, s) =

(

1 + α, 1 + α, (1 + α)/(1 − α)
)

and ǫ = 0, then (3.2)

would yield
∫

S1

‖µω ∗ Kτ‖
1+α
L(1+α)/(1−α)(R) dλ(ω) <∞

with τ = (1 − α + αβ)/(1 + α). Adjusting for the fact that (3.2) actually holds only

for (p, q, s) close to
(

1 + α, 1 + α, (1 + α)/(1 − α)
)

and with ǫ > 0, it still follows

that
∫

S1

‖µω ∗ Kτ‖
1+α−ǫ
L(1+α−ǫ)/(1−α)(R)

dλ(ω) <∞

with τ = (1−α+αβ)/(1+α)−ǫ for any ǫ > 0. With ν = µω , p = (1+α−ǫ)/(1−α),

and d = 1, Lemma 3.1 then shows that for any ǫ > 0 the Hausdorff dimension of µω ’s

support exceeds β/2− ǫ for λ-almost all ω’s. Since this is true for any α-dimensional

measure λ and for any α ∈ (0, 1), it follows that

dim{ω ∈ S1 : dim pω(E) < β/2} = 0

as desired.
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