(c) Canadian Mathematical Society 2011

Restricted Radon Transforms and Projections of Planar Sets

Daniel M. Oberlin

Abstract. We establish a mixed norm estimate for the Radon transform in \mathbb{R}^{2} when the set of directions has fractional dimension. This estimate is used to prove a result about an exceptional set of directions connected with projections of planar sets. That leads to a conjecture analogous to a well-known conjecture of Furstenberg.

1 Introduction

For each $\omega \in S^{1}$, fix ω^{\perp} with $\omega^{\perp} \perp \omega$. Define a Radon transform R for functions f on \mathbb{R}^{2} by

$$
R f(t, \omega)=\int_{-1}^{1} f\left(t \omega+s \omega^{\perp}\right) d s
$$

Suppose $0<\alpha<1$ and fix a nonnegative Borel measure λ on S^{1} which is α-dimensional in the sense that $\lambda(B(\omega, \delta)) \lesssim \delta^{\alpha}$ for $\omega \in S^{1}$. We are interested in mixed norm estimates for R of the following form:

$$
\begin{equation*}
\left[\int_{S^{1}}\left(\int_{-1}^{1}|R f(t, \omega)|^{s} d t\right)^{q / s} d \lambda(\omega)\right]^{1 / q} \lesssim\|f\|_{p} \tag{1.1}
\end{equation*}
$$

Here are some conditions that are necessary for (1.1): testing on $f=\chi_{B(0, \delta)}$ shows that

$$
\begin{equation*}
\frac{2}{p} \leq 1+\frac{1}{s} \tag{1.2}
\end{equation*}
$$

if there is $\omega_{0} \in S^{1}$ such that $\lambda\left(B\left(\omega_{0}, \delta\right)\right) \gtrsim \delta^{\alpha}$ for small positive δ, then testing on 1 by δ rectangles centered at the origin in the direction ω_{0}^{\perp} gives

$$
\begin{equation*}
\frac{1}{p} \leq \frac{1}{s}+\frac{\alpha}{q} \tag{1.3}
\end{equation*}
$$

if the Lebesgue measure in S^{1} of the δ-neighborhood in S^{1} of the support of λ is $\lesssim \delta^{1-\alpha}$, then testing on unions of 1 by δ rectangles in the directions of the support of λ gives

$$
\begin{equation*}
\frac{1-\alpha}{p} \leq \frac{1}{s} \tag{1.4}
\end{equation*}
$$

Our first result is that these necessary conditions are almost sufficient.

[^0]Theorem 1.1 Suppose $p, q, r \in[1, \infty]$ satisfy the conditions (1.2), (1.3), and (1.4) with strict inequality. Then the estimate (1.1) holds.

Now suppose that μ is a nonnegative Borel measure on \mathbb{R}^{2}. If $\omega \in S^{1}$, define the projection μ_{ω} of μ in the direction of ω by

$$
\int_{\mathbb{R}} f(y) d \mu_{\omega}(y) \doteq \int_{\mathbb{R}^{2}} f(x \cdot \omega) d \mu(x)
$$

where $x \cdot \omega$ denotes the inner product in \mathbb{R}^{2}. Fix $\alpha \in(0,1)$ and suppose that λ is an α-dimensional measure on S^{1}. Then for $\epsilon>0$ there is $C=C(\epsilon)$ such that

$$
\int_{S^{1}} \frac{d \lambda(\omega)}{\left|\omega \cdot \omega_{0}\right|^{\alpha-\epsilon}} \leq C(\epsilon)
$$

for all $\omega_{0} \in S^{1}$. The computation

$$
\begin{aligned}
\int_{S^{1}} I_{\alpha-\epsilon}\left(\mu_{\omega}\right) d \lambda(\omega) & =\int_{S^{1}} \int_{\mathbb{R}} \int_{\mathbb{R}} \frac{d \mu_{\omega}\left(y_{1}\right) d \mu_{\omega}\left(y_{2}\right)}{\left|y_{1}-y_{2}\right|^{\alpha-\epsilon}} d \lambda(\omega) \\
& =\int_{\mathbb{R}^{2}} \int_{\mathbb{R}^{2}} \int_{S^{1}} \frac{d \lambda(\omega)}{\left|\omega \cdot \frac{x_{1}-x_{2}}{\left|x_{1}-x_{2}\right|}\right|^{\alpha-\epsilon}} \frac{d \mu\left(x_{1}\right) d \mu\left(x_{2}\right)}{\left|x_{1}-x_{2}\right|^{\alpha-\epsilon}} \\
& \leq C(\epsilon) I_{\alpha-\epsilon}(\mu)
\end{aligned}
$$

is due to Kaufman [2]. Refining an earlier result of Marstrand [3], it shows that if $E \subset \mathbb{R}^{2}$ has dimension $\beta \leq 1$ and $p_{\omega}(E)$ is the projection of E onto the line through the origin in the direction of ω, then

$$
\begin{equation*}
\operatorname{dim}\left\{\omega \in S^{1}: \operatorname{dim} p_{\omega}(E)<\alpha\right\} \leq \alpha \tag{1.5}
\end{equation*}
$$

whenever $\alpha \leq \beta$. (In this note "dim" stands for Hausdorff dimension.) In particular,

$$
\begin{equation*}
\operatorname{dim}\left\{\omega \in S^{1}: \operatorname{dim} p_{\omega}(E)<\beta\right\} \leq \beta \tag{1.6}
\end{equation*}
$$

The next theorem, whose analog for Minkowski dimension is trivial, complements Kaufman's results (1.5) and (1.6):

Theorem 1.2 If $\operatorname{dim} E=\beta \leq 1$, then

$$
\begin{equation*}
\operatorname{dim}\left\{\omega \in S^{1}: \operatorname{dim} p_{\omega}(E)<\beta / 2\right\}=0 \tag{1.7}
\end{equation*}
$$

The estimates (1.6) and li.7) lead naturally to the conjecture that if $\alpha \leq \beta \leq 1$, then

$$
\begin{equation*}
\operatorname{dim}\left\{\omega \in S^{1}: \operatorname{dim} p_{\omega}(E)<(\alpha+\beta) / 2\right\} \leq \alpha \tag{1.8}
\end{equation*}
$$

One may view this conjecture as an analog of the following conjecture of Furstenberg: for $0<\alpha<1$, a Furstenberg α-set is a Borel subset of \mathbb{R}^{2} which contains
for each $\omega \in S^{1}$ an α-dimensional subset of some line parallel to ω. Furstenberg's conjecture is that Furstenberg α-sets have dimension at least $(3 \alpha+1) / 2$. It is shown in [5] that there exist Furstenberg α-sets having dimension $(3 \alpha+1) / 2$ and that any Furstenberg α-set has dimension at least $\min \{2 \alpha,(\alpha+1) / 2\}$. In the analogy between the two conjectures, (1.5) is the analog of the 2α lower bound for the dimension of Furstenberg sets and (1.7) is the analog of the $(\alpha+1) / 2$ lower bound. Inequality (1.8) with $\beta=1$ would imply the Furstenberg conjecture for a certain class of model Furstenberg sets. The link between Theorems 1.1 and 1.2 is the fact that formally $\mu_{\omega}=R \mu(\cdot, \omega)$.

2 Proof of Theorem 1.1

The lines bounding the regions defined by (1.2) and (1.4) intersect at

$$
\left(\frac{1}{p}, \frac{1}{s}\right)=\left(\frac{1}{1+\alpha}, \frac{1-\alpha}{1+\alpha}\right) .
$$

Then equality in (1.3) gives $\frac{1}{q}=\frac{1}{1+\alpha}$, so the important estimate is an

$$
L^{1+\alpha} \rightarrow L^{1+\alpha}\left(L^{(1+\alpha) /(1-\alpha)}\right)
$$

estimate. Easy estimates combined with an interpolation argument show that Theorem 1.1 will follow if we establish (1.1) for $f=\chi_{E}$ and a collection of triples (p, q, r) which are arbitrarily close to $(1+\alpha, 1+\alpha,(1+\alpha) /(1-\alpha))$. Standard arguments then show that it is enough to prove that if $R \chi_{E}(t, \omega) \geq \mu$ for

$$
(t, \omega) \in F=\{(t, \omega): \omega \in A, t \in B(\omega) \subset[-1,1]\}
$$

where there is some B such that $B \leq m_{1}(B(\omega)) \leq 2 B$ for $\omega \in A$, then

$$
\mu^{p} \lambda(A)^{p / q} B^{p / s} \leq C(\delta) m_{2}(E)
$$

if

$$
p=\frac{\alpha+\delta \alpha+1}{\delta \alpha+1}, \quad q=\alpha+\delta \alpha+1, \quad s=\frac{\alpha+\delta \alpha+1}{\delta \alpha+1-\alpha}
$$

for small $\delta>0$.
For each $\omega \in A$ let $E(\omega)=\left\{t \omega+s \omega^{\perp} \in E: t \in B(\omega), s \in[-1,1]\right\}$. Since $R \chi_{E}(t, \omega) \geq \mu$ and $m_{1}(B(\omega)) \geq B$, it follows that

$$
\begin{equation*}
m_{2}(E(\omega)) \geq \mu B \tag{2.1}
\end{equation*}
$$

Using the change of coordinates $x \mapsto\left(x \cdot \omega_{1}, x \cdot \omega_{2}\right)$, one can check that

$$
\begin{equation*}
m_{2}\left(E\left(\omega_{1}\right) \cap E\left(\omega_{2}\right)\right) \lesssim \frac{B^{2}}{\left|\omega_{1}-\omega_{2}\right|} \tag{2.2}
\end{equation*}
$$

We will bound $m_{2}(E)$ from below by using

$$
\begin{equation*}
m_{2}(E) \geq m_{2}\left(\bigcup_{j=1}^{N} E\left(\omega_{j}\right)\right) \geq \sum_{j=1}^{N} m_{2}\left(E\left(\omega_{j}\right)\right)-\sum_{1 \leq j<k \leq N} m_{2}\left(E\left(\omega_{j}\right) \cap E\left(\omega_{k}\right)\right) \tag{2.3}
\end{equation*}
$$

for appropriately chosen $\omega_{j} \in A$. Fix, for the moment, a small positive number η and consider a partitioning of S^{1} into intervals of length about η. Since $\lambda(B(x, r)) \lesssim r^{\alpha}$, the λ-measure of each of these intervals is $\lesssim \eta^{\alpha}$. So at least, roughly, $\eta^{-\alpha} \lambda(A)$ of them must intersect A. Thus it is possible to choose $N \sim \eta^{-\alpha} \lambda(A)$ points $\omega_{j} \in A$ with $\left|\omega_{j}-\omega_{k}\right| \gtrsim \eta|j-k|$. Then for any $\delta>0$

$$
\sum_{1 \leq j<k \leq N} \frac{1}{\left|\omega_{j}-\omega_{k}\right|} \lesssim \eta^{-1} \sum_{1 \leq j<k \leq N} \frac{1}{|j-k|} \lesssim \eta^{-1} N^{1+\delta}
$$

and so, by (2.2),

$$
\begin{equation*}
\sum_{1 \leq j<k \leq N} m_{2}\left(E\left(\omega_{1}\right) \cap E\left(\omega_{2}\right)\right) \leq C B^{2} \eta^{-1} N^{1+\delta} \leq C_{1} B^{2} N^{1+\delta+1 / \alpha} \lambda(A)^{-1 / \alpha} \tag{2.4}
\end{equation*}
$$

where we have used $N \sim \eta^{-\alpha} \lambda(A)$. We would now like to choose N such that

$$
\begin{equation*}
2 C_{1} B^{2} N^{1+\delta+1 / \alpha} \lambda(A)^{-1 / \alpha} \leq N \mu B \leq 3 C_{1} B^{2} N^{1+\delta+1 / \alpha} \lambda(A)^{-1 / \alpha} \tag{2.5}
\end{equation*}
$$

or

$$
\begin{align*}
3^{-\alpha /(1+\delta \alpha)}\left(\frac{\mu B^{-1} \lambda(A)^{1 / \alpha}}{C_{1}}\right)^{\alpha /(\delta \alpha+1)} & \leq N \tag{2.6}\\
& \leq 2^{-\alpha /(1+\delta \alpha)}\left(\frac{\mu B^{-1} \lambda(A)^{1 / \alpha}}{C_{1}}\right)^{\alpha /(\delta \alpha+1)}
\end{align*}
$$

This will be possible unless $\mu B^{-1} \lambda(A)^{1 / \alpha} \lesssim 1$, in which case

$$
\mu^{\alpha /(\delta \alpha+1)} B^{-\alpha /(\delta \alpha+1)} \lambda(A)^{1 /(\delta \alpha+1)} \lesssim 1
$$

so that the desired inequality

$$
\begin{equation*}
m_{2}(E) \gtrsim \mu^{(\alpha+\delta \alpha+1) /(\delta \alpha+1)} \lambda(A)^{1 /(\delta \alpha+1)} B^{(\delta \alpha+1-\alpha) /(\delta \alpha+1)} \tag{2.7}
\end{equation*}
$$

follows from $m_{2}(E) \geq \mu B$ unless F is empty. Now (with N chosen so that (2.5) and (2.6) are valid), (2.3), (2.1), (2.4), and the left member of (2.5) give $m_{2}(E) \gtrsim N \mu B$. Then the left member of (2.6) gives (2.7) again.

3 Proof of Theorem 1.2

For $\rho>0$, let K_{ρ} be the kernel defined on \mathbb{R}^{d} by $K_{\rho}(x)=|x|^{-\rho} \chi_{B(0, R)}(x)$, where $R=R(d)$ is positive. Suppose that the finite nonnegative Borel measure ν is a γ-dimensional measure on \mathbb{R}^{d} in the sense that $\nu(B(x, \delta)) \leq C(\nu) \delta^{\gamma}$ for all $x \in \mathbb{R}^{d}$ and $\delta>0$. If $\rho<\gamma$, it follows that $\nu * K_{\rho} \in L^{\infty}\left(\mathbb{R}^{d}\right)$. Also $\nu * K_{\rho} \in L^{1}\left(\mathbb{R}^{d}\right)$ so long as $\rho<d$. Thus, for $\epsilon>0$,

$$
\begin{equation*}
\nu * K_{\rho} \in L^{p}\left(\mathbb{R}^{d}\right), \rho=\gamma+\frac{1}{p}(d-\gamma)-\epsilon \tag{3.1}
\end{equation*}
$$

by interpolation. The following lemma is a weak converse of this observation.
Lemma 3.1 If (3.1) holds with $\epsilon=0$ and $p>1$, then ν is absolutely continuous with respect to Hausdorff measure of dimension $\gamma-\epsilon$ for any $\epsilon>0$. Thus the support of ν has Hausdorff dimension at least γ.

Proof Recall from [1] p. 140] that for $s \in \mathbb{R}$ and $1 \leq p, q \leq \infty$ the norm $\|f\|_{p, q}^{s}$ of a distribution f on \mathbb{R}^{d} in the Besov space $B_{p, q}^{s}$ can be defined by

$$
\|f\|_{p q}^{s}=\|\psi * f\|_{L^{p}\left(\mathbb{R}^{d}\right)}+\left(\sum_{k=1}^{\infty}\left(2^{s k}\left\|\phi_{k} * f\right\|_{L^{p}\left(\mathbb{R}^{d}\right)}\right)^{q}\right)^{1 / q}
$$

for certain fixed $\psi \in \mathcal{S}\left(\mathbb{R}^{d}\right), \phi \in C_{c}^{\infty}\left(\mathbb{R}^{d}\right)$, and where $\phi_{k}(x)=2^{k d} \phi\left(2^{k} x\right)$. If $\nu * K_{\rho} \in$ $L^{p}\left(\mathbb{R}^{d}\right)$, then $\left\|\nu * \chi_{B(0, \delta)}\right\|_{L^{p}\left(\mathbb{R}^{d}\right)} \lesssim \delta^{\rho}$. It follows that $\|\nu\|_{p q}^{s}<\infty$ if $s<\rho-d=$ $(\gamma-d) / p^{\prime}$. Now for $t>0$ and $1<p^{\prime}, q^{\prime}<\infty$, the Besov capacity $A_{t, p^{\prime}, q^{\prime}}(K)$ of a compact $K \subset \mathbb{R}^{d}$ is defined by

$$
A_{t, p^{\prime}, q^{\prime}}(K)=\inf \left\{\|f\|_{p^{\prime}, q^{\prime}}^{t}: f \in C_{c}^{\infty}\left(\mathbb{R}^{d}\right), f \geq \chi_{K}\right\} .
$$

It is shown in [4, p. 277] that $A_{t, p^{\prime}, q^{\prime}}(K) \lesssim H_{d-t p^{\prime}}(K)$. Thus it follows from the duality of $B_{p, q}^{s}$ and $B_{p^{\prime}, q^{\prime}}^{-s}$ that

$$
\nu(K) \lesssim\|\nu\|_{p q}^{s} A_{-s, p^{\prime}, q^{\prime}}(K) \lesssim H_{d+s p^{\prime}}(K)=H_{\gamma-\epsilon}(K)
$$

if $s=(\gamma-d-\epsilon) / p^{\prime}$.
Now suppose that μ is a nonnegative and compactly supported Borel measure on \mathbb{R}^{2} which is β-dimensional in the sense that $\mu(B(x, \delta)) \lesssim \delta^{\beta}$. If the radii $R(1)$ and $R(2)$ (in the definition of K_{ρ}) are chosen so that $R(1)=1$ and $R(2)$ is large enough, depending on the support of μ, then one can verify directly that

$$
\mu_{\omega} * K_{(\rho-1)}(t) \lesssim \int_{-2 R(2)}^{2 R(2)} \mu * K_{\rho}\left(t \omega+s \omega^{\perp}\right) d s
$$

If p, q, s are such that (1.1) holds and if $\rho=\beta+(2-\beta) / p-\epsilon$, so that (3.1) implies that $\mu * K_{\rho} \in L^{p}\left(\mathbb{R}^{2}\right)$, then a rescaling of (1.1) gives

$$
\begin{equation*}
\int_{S_{1}}\left\|\mu_{\omega} * K_{(\rho-1)}\right\|_{L^{s}(\mathbb{R})}^{q} d \lambda(\omega)<\infty \tag{3.2}
\end{equation*}
$$

If we could take $(p, q, s)=(1+\alpha, 1+\alpha,(1+\alpha) /(1-\alpha))$ and $\epsilon=0$, then (3.2) would yield

$$
\int_{S_{1}}\left\|\mu_{\omega} * K_{\tau}\right\|_{L^{1+\alpha) /(1-\alpha)(\mathbb{R})}}^{1+\alpha} d \lambda(\omega)<\infty
$$

with $\tau=(1-\alpha+\alpha \beta) /(1+\alpha)$. Adjusting for the fact that (3.2) actually holds only for (p, q, s) close to $(1+\alpha, 1+\alpha,(1+\alpha) /(1-\alpha))$ and with $\epsilon>0$, it still follows that

$$
\int_{S_{1}}\left\|\mu_{\omega} * K_{\tau}\right\|_{L^{(1+\alpha-\epsilon) /(1-\alpha)(\mathbb{R})}}^{1+\alpha-\epsilon} d \lambda(\omega)<\infty
$$

with $\tau=(1-\alpha+\alpha \beta) /(1+\alpha)-\epsilon$ for any $\epsilon>0$. With $\nu=\mu_{\omega}, p=(1+\alpha-\epsilon) /(1-\alpha)$, and $d=1$, Lemma3.1 then shows that for any $\epsilon>0$ the Hausdorff dimension of μ_{ω} 's support exceeds $\beta / 2-\epsilon$ for λ-almost all ω 's. Since this is true for any α-dimensional measure λ and for any $\alpha \in(0,1)$, it follows that

$$
\operatorname{dim}\left\{\omega \in S^{1}: \operatorname{dim} p_{\omega}(E)<\beta / 2\right\}=0
$$

as desired.

References

[1] J. Bergh and J. Löfström, Interpolation Spaces. Grundlehren der mathematischen Wissenschaften, 223, Springer-Verlag, Berlin, 1976.
[2] R. Kaufman, On Hausdorff dimension of projections. Mathematika 15(1968), 153-155. http://dx.doi.org/10.1112/S0025579300002503
[3] J. Marstrand, Some fundamental geometrical properties of plane sets of fractional dimension. Proc. London. Math. Soc. 4(1954), no. 3, 257-302. http://dx.doi.org/10.1112/plms/s3-4.1.257
[4] B.-M. Stocke, Differentiability properties of Bessel potentials and Besov spaces. Arkiv Mat. 22(1984), no. 2, 269-286. http://dx.doi.org/10.1007/BF02384383
[5] T. Wolff, Recent work connected with the Kakeya problem. In: Prospects in Mathematics, American Mathematical Society, Providence, RI, 1999, pp. 129-162.

Department of Mathematics, Florida State University, Tallahassee, FL 32306, USA
e-mail: oberlin@math.fsu.edu

[^0]: Received by the editors November 18, 2009.
 Published electronically April 6, 2011.
 This work was supported in part by NSF grant DMS-0552041.
 AMS subject classification: 44A12, 28A78.

