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Abstract

Invasive nonindigenous species pose a serious threat to native biodiversity and ecosystem
functioning. Understanding how species’ performance varies under conditions in the current
and invaded range can help to predict the dynamics of the invading species in its new
environment. Plants with the ability to alter growth in response to variation in light conditions
may be favored in landscapes that experience frequent disturbance, as these species may be able
to exploit a wide range of niches. Seedbank persistence may also play a critical role in successful
plant invasion, as extended seed viability may increase the chance of outlasting unfavorable
conditions, maintain population genetic diversity, and allow reinvasions. This study
investigated seed longevity and the effect of light intensity on germination of wavyleaf
basketgrass [Oplismenus undulatifolius (Ard.) Roem. & Schult.], a newly established invasive
species in U.S. mid-Atlantic forest understories.Oplismenus undulatifolius seeds were collected
across 5 yr from the original site of introduction in Maryland, USA, and stored in standard lab
conditions, then subjected to germination trials under four light conditions in a controlled
growth chamber. Seeds remained viable for at least 9 yr, and light intensity did not significantly
impact seed germination. Our study demonstrates the importance of evaluating environmental
and temporal effects on germination traits, because the scope of surveillance in the field may
need to be expanded based on new information about environmental tolerance. Long-term
monitoring may also be necessary to effectively control invasive plant populations capable of
forming a persistent seedbank.

Introduction

Invasive species contribute markedly to global environmental change, and thus pose an
increasing threat to native biodiversity and ecosystem functioning (Mainka and Howard 2010;
Singh et al. 2021; Vitousek et al. 1996). After introduction to new environments, nonnative
species may aggressively compete with native biota for resources directly through interference
competition and indirectly through exploitation competition (Allstadt et al. 2012; Bennett et al.
2011; Gioria and Osborne 2014; Le Louarn et al. 2016). Invasive species can impact disturbance
dynamics, including fire, erosion, and biotic disturbance regimes (Gergel and Turner 2017;
Mack and D’Antonio 1998). Nonnative pathogens can also be transported with an introduced
nonnative species, and thus impose an additional ecological stress on recipient communities
(Foster et al. 2021; Smith et al. 2006). Furthermore, recipient ecosystems may be susceptible to
modification in nutrient cycling and physical and structural properties in response to the
establishment of invasive species (Asner et al. 2008; Johnson et al. 2020; Zhang et al. 2019).
As plants are foundations of ecological communities, introduced plant species may be
particularly likely to critically threaten ecosystems when they establish and become invasive
(Weidlich et al. 2020).

The seed stage is vital in the life history of invasive plants, as successful germination is critical
for the initial establishment of new populations (Enders et al. 2020; Gioria and Pyšek 2017;
Theoharides and Dukes 2007;Wainwright and Cleland 2013). Emergence timing will determine
the first environmental conditions that seedlings experience, and thus abiotic cues that initiate
germination will affect plant survival and establishment (Baskin and Baskin 1998; Donohue
et al. 2010; Finch-Savage and Leubner-Metzger 2006; Zhang et al. 2014). Light quality and
quantity are prominent environmental cues that many plant species with photoblastic seeds use
to break enforced dormancy or stimulate germination of nondormant, quiescent seeds (Baskin
and Baskin 2004; Côme 1970; Fenner and Thompson 2005). How seeds respond to the light
environments encountered in their introduced ranges can dramatically impact establishment
success in these new locations (Donohue et al. 2010). For example, if coupled with a rapid
growth rate, early emergence in low light conditions may provide a competitive advantage when

https://doi.org/10.1017/inp.2023.27 Published online by Cambridge University Press

https://www.cambridge.org/inp
https://doi.org/10.1017/inp.2023.27
mailto:cwu@richmond.edu
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://orcid.org/0009-0002-5768-9155
https://orcid.org/0000-0002-7716-3460
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/inp.2023.27&domain=pdf
https://doi.org/10.1017/inp.2023.27


individuals are able to overtop neighbors and increase potential
light exposure (Carvalho et al. 2021; Makana and Thomas 2005;
Weinig 2000). The ability to germinate under a wide range of
conditions may also favor invasiveness by increasing potential
suitable habitat and the likelihood of establishment in novel
environments (Bellache et al. 2022; Ebrahimi and Eslami 2012;
Hou et al. 2014; Javaid et al. 2018). Alternatively, narrow
germination requirements may promote invasion success by
ensuring favorable conditions for seedling establishment, such as
through microhabitat selection (Carvalho et al. 2021; Gioria et al.
2018; Kudoh et al. 2007;Makana and Thomas 2005;Marushia et al.
2010; Stromberg et al. 2007;Wainwright et al. 2012). As plants may
encounter diverse environmental conditions following initial
dispersal to new locations, broad light requirements for germina-
tion may strongly influence where invasive plants may be
successful, whereas strict light requirements may optimize seedling
establishment and growth (Bhatt et al. 2023; Castillo et al. 2013).

Seed longevity for a year or more can also be important for the
successful establishment of invasive plant populations, by
increasing recruitment opportunities when germination condi-
tions are suitable (Gioria et al. 2021; Simons and Johnston 2006;
Venable and Brown 1988). The ability to maintain a reservoir of
metabolically inactive individuals in a seedbank allows plant
species to employ a bet-hedging strategy to counter suboptimal
conditions and can influence the long-term evolutionary potential
of populations (Gremer and Venable 2014; Levin 1990). Seedbanks
provide a degree of resilience to populations in highly variable or
disturbed environments by temporally staggering emergence
within a growing season or across multiple years (Evans and
Dennehy 2005; Kalisz 1986; ten Brink et al. 2020). Additionally,

persistent seedbanks can facilitate population regeneration and
help maintain genetic diversity within a population across
generations, which may contribute to invasion success (Abbas
et al. 2021; Gioria et al. 2012; Gremer and Venable 2014; Lennon
et al. 2021). Seedbanks can reduce vulnerability to local extinctions
and potential negative consequences of founder effects, genetic
bottlenecks, and small population sizes early in the invasion history
(Houle and Phillips 1988; Meimberg et al. 2006; Puillandre et al.
2008; Williams and Fishman 2014). This stabilizing effect of
seedbanks results in part from the reserve of historical genetic
diversity maintained in dormant seeds, which can supplement
current populations experiencing low genetic diversity (McCue
and Holtsford 1998; Rees 1993). Consequently, seedbank
persistence can affect demographic persistence by promoting
local patch reestablishment, as well as providing a source for
propagules contributing to range expansion (Abbas et al. 2021;
Galatowitsch et al. 2016; Leary et al. 2018).

First discovered in the United States in 1996 near Baltimore,
MD (Peterson et al. 1999), wavyleaf basketgrass [Oplismenus
undulatifolius (Ard.) P. Beauv., Poaceae] is recognized as a high-
risk invasive species by the U.S. Department of Agriculture (DCR
2022; USDA 2012). This perennial rhizomatous grass forms dense
carpets in the forest understory that may crowd out native
herbaceous plants and inhibit the regeneration of native hardwood
trees (Beauchamp and Koontz 2013; Bowen et al. 2020). Seeds may
also be an important form of long-distance dispersal for
O. undulatifolius to colonize new habitats. Flowering spikelets
with long awns produce an extremely sticky substance that
strongly adheres to animals and other objects that brush past the
inflorescence, allowing seeds to be transported over long distances
(Beauchamp and Koontz 2013).

Oplismenus undulatifolius continues to spread across the U.S.
mid-Atlantic region and has been reported in seven states as well as
the District of Columbia (EDDMapS 2023; DCR 2022). Patches of
O. undulatifolius appear restricted to shady conditions that are
characteristic of other congeneric species (Charles-Dominique
et al. 2018; Middelton 1998; Scholz 1981; Srivastava and Shukla
2016; Xu et al. 2023). As such, light availability may be a factor
limiting the spread and distribution of O. undulatifolius within its
invasive range (Beauchamp andKoontz 2013). However, how large
a role photoinhibition has on invasion success, as well as at what
life stage light has a critical influence on the performance of O.
undulatifolius, remains unexplored. In this study, we focused
on performance at the earliest life stage of O. undulatifolius, as
successful germination is a necessary requirement for subsequent
population establishment. Specifically, we (1) characterized the
capacity of O. undulatifolius seeds to germinate under a range of
light levels characteristic of those found in U.S. mid-Atlantic forest
understories and (2) evaluated how seed viability changed with
seed age.

Materials and Methods

Experimental Conditions

To investigate the effect of light intensity on O. undulatifolius
germination, we established a range of light levels in a TC2 walk-in
growth room (Environmental Growth Chambers, Chagrin Falls,
OH) under long-day conditions (16-h light at 22 C/8-h dark at 18
C) and 50% relative humidity. Four photosynthetic photon flux
density (PPFD; μmol m−2 s−1) levels were created (Table 1) by
increasing the number of overlapping shade cloth layers

Management Implications

Oplismenus undulatifolius (wavyleaf basketgrass) is an invasive
species in U.S. mid-Atlantic forest understories that has spread
rapidly since its discovery in 1996 at Patapsco Valley State Park in
Maryland, forming dense carpets that may crowd out native species.
To better inform early-stage invasive management, we examined the
seed longevity and germination of O. undulatifolius under four light
intensities using seeds from five collection years that had been stored
in laboratory conditions. We found that under laboratory
conditions, O. undulatifolius seed viability remained high for 7 yr,
and seeds could successfully germinate after 9 yr. Germination
percentage did not differ across the light levels examined. This
suggests land managers may need to continue monitoring for
O. undulatifolius seedlings in treated areas for up to 7 yr, even after
complete aboveground removal, to prevent potential reestablish-
ment from seed. Our study demonstrates the importance of early-
stage monitoring management before a persistent seedbank is
established, because eradication becomes increasingly difficult when
population regeneration is possible from seeds as well as vegetative
propagules. Further, surveillance for new O. undulatifolius seedlings
may need to be expanded beyond deep-shade areas, as we observed
high germination rates across a wide range of light levels. Thus, seeds
that disperse to areas of high light may still be able to germinate,
though the ability to persist to reproduction in these high light
conditions is less understood. We recommend additional studies on
factors affecting growth and survival at later life stages of
O. undulatifolius to determine its potential range of environmental
tolerance and inform effective early detection and response efforts.
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(Gemplers, Janesville, WI) suspended by PVC pipe structures
constructed within the shelving system of the growth room, such
that the top and all four sides of each shelf were enclosed with the
shade cloth. PPFD was measured using a Li-Cor LI-250A light
meter, LI-190R quantum sensor, and 2003S mounting and leveling
fixture (Li-Cor Biosciences, Lincoln, NE). We conducted field
surveys of light intensity in June 2021 to determine how these
experimental light levels in the growth room compared with
conditions in the field (Table 1). Light intensity was sampled at
three sites in Virginia (Piney Grove Preserve, n= 15; Powhatan
State Park, n= 8; and Lake Anna State Park, n= 2) in established
O. undulatifolius populations (EDDMapS 2023; DCR 2022). Our
two lowest light levels in the growth room were consistent with
those found in the field (one-way ANOVA followed by Tukey’s
HSD post hoc tests, F(6, 57)= 746.217, P< 0.0001 for light
treatment, P> 0.05 for three field sites and two lowest light
treatments; Table 1).

Seed Source

We germinated seeds from five collection years under four light
levels to determine whether seed viability varied with age or light
conditions. Oplismenus undulatifolius seeds were collected by
Vanessa Beauchamp (Towson University, Towson, MD) from the
Woodstock region of PatapscoValley State Park,MD (39.333222°N,
76.782965°W) in 2011, 2012, 2013, 2015, and 2020. We used seeds
from this location, because it is the site of first identification
(Peterson et al. 1999) and thus may have the most potential for
genetic and phenotypic variability. Preliminary studies suggest
somewhat greater allelic diversity and heterozygosity in this
population than in two more recently established locations (Wu
et al. 2018), but how this compares with populations in the native
range is currently unknown. Seeds were stored in paper bags at room
temperature and ambient humidity after collection, and seed glumes
were removed before the experiment.

Germination Assays

In summer 2021, seeds were sown on 9-cm-diameter petri dishes
containing 20 ml (0.008 g ml−1) sterilized phytoblend agar
(Caisson Laboratories, North Logan, UT) in a laminar flow hood to
reduce surface contamination. Petri dishes were sealed with 3M

Micropore Surgical Tape (Nexcare, 3M Health Care, St Paul, MN)
to minimize moisture loss while allowing gas exchange. Within a
given light level, three replicate petri dishes were established for
each collection year. Each petri dish contained 15 seeds from a
single collection year, arrayed in a three by five grid pattern.
In total, each of the four light levels contained 15 petri dishes (five
collection years with three replicates per year).

Seed germination was recorded as the first day of radicle or
shoot protrusion and monitored daily for 25 d. When germinants
were counted, petri dishes were kept within the shade structures to
prevent potential exposure to ambient light from the growth
chamber, as short-duration light exposure can stimulate germi-
nation in some species (Milberg et al. 1996). Photometer
measurements confirmed that accessing petri dishes within the
shade structures this way did not expose seeds to detectable
changes in light. Total germination was measured as the percent of
seeds that successfully germinated for each petri dish. To test for
effects of light level and collection year on total percentage of
germination, a two-way ANOVA was performed using jamovi
software for Windows (jamovi project 2021), after confirming that
the data met model assumptions.

Results and Discussion

The capability to germinate under a range of light levels and after
years of dormancy may enable invasive plants to persist in a wide
range of environmental conditions and aid expansion beyond
native niche limits. In this study, we germinated O. undulatifolius
seeds of five ages under four light levels, using overlapping shade
cloth layers to manipulate light intensity. We found similar rates of
germination regardless of collection year or light level, with 99% of
all seeds that eventually germinated doing so by 15 d after plating
(Figure 1).

We found no significant effect of light level (two-way ANOVA,
F(3, 40)= 0.628, P> 0.05) or interaction with seed age (F(4, 40)=
0.989, P> 0.05; Figure 2; Table 2) on total germination percentage
after 25 d, indicating that O. undulatifolius seeds may be light
indifferent, at least in terms of the light intensities or quantities

Table 1. Comparison of light intensity (mean ± SE) in the growth room
experimental conditions and representative field locations where Oplismenus
undulatifolius is established.

Location Average light intensitya

μmol m−2 s−1

Growth room shade treatmentsb

Full exposure 160.83 ± 4.21 a
1 shade layer 39.63 ± 1.43 b
2 shade layers 8.83 ± 0.63 c
3 shade layers 2.46 ± 0.09 c
Field light conditionsc

PINE 8.51 ± 0.96 c
POWH 5.80 ± 1.54 c
ANNA 6.13 ± 1.26 c

aValues are PPFD (μmol m−2 s−1) measured with a Li-Cor LI-250A photometer. Means
followed by distinct letters are significantly different (one-way ANOVA followed by Tukey’s
HSD post hoc tests, F(6, 57)= 746.217, P< 0.0001).
bGrowth room shade treatments were established by increasing the number of overlaid
shade cloth layers (n= 9–12 measurements in each shade treatment).
cLight measurements at three sites in Virginia where O. undulatifolius occurs: Piney Grove
Preserve (PINE; 36.98932°N, 77.04135°W; n= 15); Powhatan State Park (POWH; 37.68427°N,
77.91688°W; n= 8); and Lake Anna State Park (ANNA; 38.111°N, 77.831°W; n= 2).

Figure 1. Germination patterns of Oplismenus undulatifolius seeds collected in
different years (indicated by color) under four light levels for 25 d. Lines indicate total
percentage of seeds germinated across three replicate plates for each collection
year × light level combination. Light levels: , 0 shade layers; , 1 shade layer;
, 2 shade layers; , 3 shade layers.
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used in our study. This was somewhat unexpected based on
characterization ofOplismenus as a shade-tolerant genus (Charles-
Dominique et al. 2018; Middelton 1998; Srivastava and Shukla
2016). While our experimental low light levels (Table 1) simulated
field conditions, the two high light levels (160.83 and 39.63 μmol
m−2 s−1) were much brighter than typical conditions we measured
at locations within Virginia forest understories where O.
undulatifolius is currently found. However, these brighter
conditions may be more typical of light conditions that seeds
could encounter in light gaps or forest edges near established
patches. Thus, O. undulatifolius may be physiologically capable of
at least initially colonizing a wider range of light environments
than predicted based on observed patch distributions, but does not
persist in those locations due to poor competitive ability in those
open habitats (Grime 1977; Kepner and Beauchamp 2020;
Liancourt et al. 2005). Future studies on the effect of different
light conditions on subsequent life stages are imperative to predict
its potential geographic distribution in the invaded range for
effective monitoring and management (Cheplick 2005; Qi et al.
2014; Svriz et al. 2014; Warren et al. 2011).

We expected to see negative photoblastism in O. undulatifolius
seeds, based on predictions that light availability restricts the
distribution of this species (Beauchamp and Koontz 2013).
However, our finding that germination percentage did not differ
across the four light levels is not unusual among photoblastism
studies with invasive plants (Ebrahimi and Eslami 2012; Greenberg
et al. 2001; Tinoco-Ojanguren et al. 2016). For example, light
intensity did not affect the proportion or timing of germination in

the invasive vine Oriental bittersweet (Celastrus orbiculatus
Thunb.), although seedlings could also establish in dense shade
and grow rapidly when exposed to high light conditions (Greenberg
et al. 2001). Indeed, numerous introduced plant studies identified
positive photoblastic seeds that exhibit an increase in germination
when exposed to high light conditions, which may enhance
performance in disturbed areas (Bittencourt et al. 2017; Cervera and
Parra-Tabla 2009; Lamsal et al. 2019; Leal et al. 2013;Mwendwa et al.
2020; Qi et al. 2014). However, germination requirements and shade
tolerance at later life stages may be uncoupled (Figueroa and Lusk
2001). As such, additional studies are warranted to understand
whether the observed germination indifference to light intensity is
more broadly characteristic of invasive shade-tolerant grasses like
O. undulatifolius.

Seeds may respond differently to various aspects of light
environments (Lindig-Cisneros and Zedler 2001; Veldman and
Putz 2010). For example, invasive canarygrass (Phalaris arundi-
nacea L.) seeds displayed positive photoblastism to light quality
(photon irradiance: white and red light) and quantity (no
germination in the absence of light) but were light indifferent to
photoperiod (Lindig-Cisneros and Zedler 2001). Thus, while our
results suggest O. undulatifoliusmay be insensitive to light quantity
across our experimental light levels, other attributes of light known
to promote germination in some species, such as absorption of red
light or photoperiod regimes, could bemore important cues to break
dormancy or release nondormant seeds from quiescence (Baskin
and Baskin 1998; Baskin and Baskin 2004; Bhatt et al. 2020; Han
et al. 2022; Mathews 2006). Likewise, other abiotic factors known to
influence germination, such as temperature and salinity, may also
act as potential environmental filters constraining the establishment
of O. undulatifolius in the invaded range at the seed stage (Bangle
et al. 2008; El-Keblawy and Al-Rawai 2005; Ottavini et al. 2019;
Tinoco-Ojanguren et al. 2016).

Introduced species are often exposed to novel climatic
conditions in their new ranges or released from competitive biotic
constraints encountered in their native ranges. Rapid evolutionary
change in response to these new local conditions may facilitate
expansion of introduced species beyond conditions characteristic
of their native range, particularly when population differentiation
follows climatic gradients in the introduced range (Blossey et al.
2017; Quiroga et al. 2018; Zhang et al. 2022). Indeed, recent
studies have found evidence of population differentiation in seed
germination requirements of invasive Johnsongrass [Sorghum
halepense (L.) Pers.] (Fletcher et al. 2020) and garlic mustard
[Alliaria petiolata (M. Bieb.) Cavare & Grandel] that suggests
adaptive shifts in the germination niche that maximizes
germination across the invaded North American ranges.
Similarly, the realized niche of O. undulatifoliusmay be expanding
in North America to include sunlit environments previously
thought to be unsuitable based on distribution in its native range.
Although light conditions in the field can vary within a single day,
this study demonstrates that O. undulatifolius has the capacity to
germinate in continuous shade as well as under extended exposure
to high light intensity. Hence, our results suggest O. undulatifolius
may also be able to successfully germinate in the field under much
brighter conditions than forest understories typical of where it has
already been detected in the U.S. mid-Atlantic. Additional studies
are needed with seeds sourced from populations spanning the
current geographic range, as well as from different microsites (e.g.,
deep forest understory vs. peripheral patches at forest edges) to test
for adaptive changes in germination response to light environment
across the invaded range.

Figure 2. Comparison of total average percent germination in Oplismenus undu-
latifolius seeds collected across years. Means (± SE) of percent germinated for all seeds
per collection year, pooled across light treatment levels. Bars with unique letters are
significantly different from one another (P < 0.05). n= 12 replicate plates per
collection year.

Table 2. Two-way ANOVA for effects of light level and seed age on Oplismenus
undulatifolius seed germination after 25 d under controlled growth room
conditions.

Factor df SS MS F P

Light level 3 0.015 0.005 0.628 0.601
Collection year 4 9.029 2.257 293.014 <0.001*
Light × year 12 0.091 0.008 0.989 0.476
Error 40 0.308 0.008
Total 59 9.443

*Significant treatment effect: P< 0.05.
SS = Sum of squares, MS = Mean squares.
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We found that some seeds from all collection years successfully
germinated under each light level, albeit with varying levels of
success (Figure 1). Although total germination differed across
collection years, that is, with seed age, at least one seed from each
collection year showed successful protrusion of a radicle or shoot.
Thus, O. undulatifolius seeds are capable of remaining viable for at
least 9 yr after storage in standard laboratory conditions. We also
found a significant effect of collection year on total germination
percentage (two-way ANOVA, F(4, 40)= 293.014, P< 0.001;
Figure 2; Table 2), with germination percentage of seeds collected
from 2011 and 2012 significantly lower than that of the younger
seeds (Tukey’s HSD post hoc test, P< 0.001; Figure 2). While the
decrease in seed germination in these two seed age groups could be
an artifact of maternal effects, temperature and precipitation in
2011 and 2012 were not notably different from the other collection
years in the geographic region from which these seeds were
sourced (Supplementary Table S1). Similarly, seed storage
conditions are unlikely to have influenced relative differences in
germination percent across collection years, as all seeds were
collected and stored under comparable conditions. These results
suggest a potential for high seed viability in O. undulatifolius for
approximately 7 yr, at least under laboratory storage conditions.

Seed longevity has been found to vary widely across invasive
plants (Redwood et al. 2018; Schoeman et al. 2010; Wijayratne and
Pyke 2012).While a recent study found seed viability inA. petiolata
to persist for at least 13 yr in some populations (Blossey et al. 2017),
the extended seed viability we observed in O. undulatifolius is
particularly notable among invasive grasses, many of which show
only short-term persistence or transient seedbanks (Humphries
and Florentine 2022; Martins 2006; Redwood et al. 2018; Williams
et al. 2016). Certainly, our seed storage conditions undoubtably
influenced seed longevity estimates. Laboratory storage is generally
more benign compared with soil conditions, where seeds are
exposed to complex interacting factors and stochastic events such
as risk of predation, infection, and intolerable environmental
conditions (Dantas-Junior et al. 2018; Long et al. 2015; Redwood
et al. 2018; Wijayratne and Pyke 2012). Even under laboratory
settings, loss of viability generally occurs more rapidly under room
temperature conditions (as used in this study) than refrigeration
(Solberg et al. 2020). However, many members of the Poaceae
exhibit relatively short-term viability across different laboratory
storage strategies (Solberg et al. 2020), so our observed 7-yr seed
viability of O. undulatifolius is indeed notable. Additionally, other
longevity studies (Bangle et al. 2008; Blossey et al. 2017; Humphries
and Florentine 2022; Solberg et al. 2020) also use seed storage at
room temperature, and thus provide reasonable comparisons for
the observed seed longevity in O. undulatifolius. While storage
under laboratory conditions may not simulate the full environ-
mental complexity seeds experience in the field, it still provides a
useful first assessment of seed longevity. It would be interesting to
explore whether this lengthy seed viability in O. undulatifolius
persists under field conditions. Nevertheless, long-term monitor-
ing and management of O. undulatifolius–infested sites may be
warranted for up to 7 yr or more, when the potential for successful
germination remains high.

Based on the long duration of seed viability under laboratory
conditions, we encourage land and natural resource managers
to continue long-term control and monitoring efforts for O.
undulatifolius even after aboveground removal to detect and treat
subsequent seedlings. Furthermore, the observed indifference of
O. undulatifolius germination to light intensity in this study has
important management implications. Because light level does not

appear to be a major constraint on germination, seedling
establishment and range expansion may be promoted outside
previously expected environmental conditions. Understanding
seed responses to environmental conditions, as well as the capacity
for long-term dormancy, is necessary when forecasting perfor-
mance of invasive species that are colonizing new habitats.
Considering the capability of O. undulatifolius to spread by seed
(Beauchamp and Koontz 2013), studies on this life stage are
essential to make effective management decisions and predict areas
that are at high invasion risk.

Supplementary material. To view supplementary material for this article,
please visit https://doi.org/10.1017/inp.2023.27
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