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CONJUGACY CLASS REPRESENTATIVES
IN FISCHER’S BABY MONSTER

ROBERT A. WILSON

Abstract

A set of conjugacy class representatives is given in this paper for the
elements in Fischer’s Baby Monster simple group, up to inversion.

1. Introduction

Fischer’s Baby Monster group is the second-largest of the 26 sporadic simple groups, and
has order greater than 4× 1033. Many of its basic properties were described by Fischer,
and its character table was computed by Hunt (see [1]). It was first constructed by Leon and
Sims [2], essentially as a permutation group on some 1010 points.

In [9], the author constructed the 4370-dimensional representation of the Baby Monster
over GF(2). In [5], the 4371-dimensional representation was constructed over GF(3) and
GF(5). The method could in principle be applied also to construct the representation over
any field of odd characteristic.

These matrix constructions now give almost enough invariants to distinguish all conju-
gacy classes of elements. In this paper we use this information to produce a complete set
of conjugacy class representatives for the Baby Monster.

We note first that it is sufficient to find representatives for the maximal cyclic subgroups,
because conjugacy class representatives for the elements can then be found as suitable
powers of the given generators of the maximal cyclic subgroups. It is easy to calculate from
the class list and power maps that there are just 76 classes of maximal cyclic subgroups.
The Atlas names for these are listed in Table2. We also include in this table the main result
of the paper, namely words for generators of such maximal cyclic subgroups, using the
elementsa to z defined in Table1. This table also gives the orders of these elements. The
derivation of the words in Table2 is the main purpose of this paper.

2. Distinguishing conjugacy classes

Our main tool here is the character table (see [1]). All the classes of maximal cyclic
subgroups of odd order are determined by the order. These are 25A, 27A, 31AB, 39A,
47AB, and 55A. Thus we concentrate on the classes of elements of even order from now
on. We work as far as possible in the 2-modular representation, as that is much faster to
work in than the others. As well as the order, we use the trace as a cheap but not very useful
class invariant. We also calculate the dimension of the fixed space, which can be used later
as a more discriminating invariant for even-order elements. (This is of no use for odd-order
elements, as it can already be calculated from the character table.) It is possible to calculate
the full Jordan block structure, but this turns out to be of little use.

In addition to the classes of odd-order elements, the types 38A, 44A, 46AB, 52A, 56AB,
66A, and 70A are determined by their orders. Thus we need only to find elements of all
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these orders in order to find representatives for these classes and all their powers. Using the
trace mod 2 as well, we can characterise the classes 60C, 40E, and 36C. Using the trace
mod 3, we can distinguish 48A and 48B, 42B, 32AB and 32CD, 28A, and 40B. Using
both traces, we can also distinguish 40A, 30C and 30GH.

Since by this stage we know involutions of each class, as suitable powers of elements
that have already been identified, we can calculate the codimensions of their fixed spaces
modulo 2 as 1860, 2048, 2158 and 2168 for classes 2A, 2B, 2C and 2D, respectively. This
enables us to distinguish certain classes by the class of involution up to which they power.
This deals with 26B, 42C, 34A, 34BC, 28E, 20H and 18F, and also 42A, if we use the
trace mod 3 as well.

For elements of order 60, we can distinguish between 60A and 60B by the trace mod 3
of the 5th power. For elements of order 40, we distinguish 40C and 40D from the rest by
the trace mod 2 and mod 3, and then distinguish them from each other by the trace mod 3
of the 10th power. For elements of order 36, we distinguish 36A and 36Bfrom 36Cby the
trace mod 2, and from each other by the trace mod 5 of the 9th power.

For elements of order 30, we distinguish 30D and 30E from the rest by trace mod 3,
and from each other by the trace mod 3 of the fifth power. Similarly, 30A and 30B can be
distinguished from the rest by the trace mod 2 and 3, and from each other by the trace mod 5.
For elements of order 28, the classes 28C, 28D and 28Eare distinguished by having trace
0 mod 3, and then the traces of their 7th powers are 1, 0 and 2, respectively, mod 3.

For elements of order 24, the traces mod 2 and 5 separate them into seven sets: 24A/I ,
24B/E/J , 24C/G, 24D, 24F , 24H/K/L and 24M/N . Each of these sets can then be
resolved by the trace mod 3 of the square. This deals with all elements of order 24. For
elements of order 20, the trace mod 2 and mod 3 distinguishes 20B, 20C and 20I , and
separates the rest into three classes, namely 20A/E/H , 20D/F and 20G/J , all of which
can be distinguished by the trace of the fifth power mod 3.

For elements of order 18, the traces mod 2 and 3, and the 9th power, distinguish the classes
except for 18Aand 18B. The elements of order 16 are distinguished up to ambiguities
16A/D/F, 16C/E and 16B/G/H, by traces mod 3 alone. The traces of the squares mod 3
resolve all of these except the pair 16B/H (which can be resolved by the trace mod 5) and
the one remaining problem, that of distinguishing 16D/F(see below).

For elements of order 12, the traces mod 2, 3, and 5 distinguish classes except for the
following ambiguities: 12B/K/Q, 12F/O, 12H/P , 12J/L, 12M/R and 12N/T . The
first is not required for our purposes, while the rest can be distinguished by the class of the
6th power (determined as above by the codimension of its fixed space).

3. Difficult cases

While most classes are fairly easily found by the above methods, we encountered a few
problem cases. These are the classes 18A and 18B, which cannot be distinguished by traces
and power maps alone; 16F , which similarly cannot be distinguished from 16D; and 12A,
which is such a small conjugacy class that finding a 12A-element at random is impracticable.

3.1. The classes18Aand18B

We found two elements, each of which is in either 18A or 18B, but one has fixed space
of dimension 280 in the 4370-space over GF(2), while the other has fixed space dimension
282. Thus one of them is in 18A and the other is in 18B, but without extra information
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we cannot tell which is which. For example, we might look inside the involution centralizer:
each powers up to a 2A-element, and inside the 2A-centralizer 2.2E6(2):2, one maps to a
9A-element and the other maps to a 9B-element. However, these elements are still not easy
to distinguish in this subgroup.

An alternative approach is to look inside a subgroup Fi23. We first find such a subgroup,
with standard generators(e20)c

10
and (g4)d

9
given in terms of the words in Table1 in

generatorsa andb of the Baby Monster. Words for representatives of all the conjugacy
classes of elements in Fi23 are given in [8] (see also [11]), and we can test the elements
of order 18. We found that an element of Fi23-class 18Ahas fixed space dimension 282.
This class corresponds to class−9A in 2. Fi22, which fuses to class−9A in 2.2E6(2), and
thence to 18Ain B.

3.2. The class16F

To resolve the classes 16D and 16F, we adopted a slightly different approach, which
involved finding the centralizer order directly. Suppose that we have an elementx in one
of these two classes, and work inC(x8) ∼= 21+22. Co2. Now x is conjugate tox9, so C(x)

has the same order as the centralizer of its image inC(x8)/(x8). We calculate the latter as
follows.

First, we calculate the involution centralizer (in the 2-modular representation) by one of
the standard methods, and chop the representation to obtain an irreducible 22-dimensional
constituent. We use the latter to find standard generators for the quotient Co2, and hence
find words for a subgroupU6(2):2 thereof.

Next, we switch to the 3-modular representation, and again chop the restriction to the
involution centralizer. We take the 2300-dimensional constituent, and find the invariant 1-
space of the group 222. U6(2).2 which acts on it. A vector in this 1-space has 4600 images
under 222. Co2, which acts faithfully on this orbit. Therefore we can convert to a permutation
representation of 222. Co2 on 4600 points, and then we useGAP [7] to find the order of the
centralizer of our element quickly.

We have applied this to the elementdej , and have found that its centralizer has order
1024; therefore, it is a 16F -element.

3.3. The class12A

There is a problem with very rare classes, such as 12A, where a purely random search
would take a very long time. In this case, only about 1 in 4 million elements of the group
is in the class 12A, and it would take about three years of CPU time to make 4 million
elements on a Pentium 4/1400. Indeed, even with a rapid screening procedure to eliminate
elements of order not 12, we estimated a CPU-time requirement of many months, and
therefore decided on a different strategy. The result is a significantly longer word, which
requires 30 multiplications to make, rather than the 5 multiplications that we would expect
from the random approach.

We first take an element that powers up to a 6C-element, and find the centralizer of
the involution to which it powers. For example, we can take the 48A-elementcg, and
find the centralizer of(cg)24 to be generated bycg andx = (a(cg)24)6. We now have
a group 21+22. Co2 and an element(cg)16 mapping to Co2-class 3B. We now search in the
corresponding coset of 21+22 for elements of order 12, and use the trace mod 2, 3 and 5 to
test for membership in class 12A.
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Table 1: The elementsa to z

a b c = ab d = cb e = cd f = ce g = f c h = gd

2 3 55 55 40 20 12 18

i = ch j = id k = jd l = ck m = lc n = md o = nd p = eo

31 23 17 46 16 46 24 34

q = pe r = qc s = dr t = sc u = no v = il w = gh

36 60 26 47 47 34 47

x = (a(cg)24)6 y = ((cg)6x)12 z = ((cg)4xcgx)15

2 2 2

Table 2: Maximal cyclic subgroups

12A 12H 12I 12L 12P 12S 12T 16E

yz(cg)16 i3vj h2n ehvk n2snv efj cwh api

16F 16G 16H 18A 18B 18D 18F 20B

dej m guk mo dtv aoj h clsh

20C 20H 20I 20J 24A 24B 24C 24D

cf vo f h2 ij2 fg2 f mw kuq cgon f u

24E 24F 24H 24I 24J 24K 24L 24M

ef h e2f h ps f hj f hg cig wgl wgk

24N 25A 26B 27A 28A 28C 28D 28E

bv cfg cf h hj af r h2i uw gj

30A 30B 30C 30E 30GH 31AB 32AB 32CD

lum agq guq hg2 cjg i ci cn

34A 34BC 36A 36B 36C 38A 39A 40A

v fg tw hl ehg ij cfj nv2

40B 40C 40D 40E 42A 42B 42C 44A

gj2 op e cgh amu amo gn gi

46AB 47AB 48A 48B 52A 55A 56AB 60A

l f i cg kn e2i c eih djf

60B 60C 66A 70A

nv cg2 gji cih
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Table 3: Codimensions of fixed spaces

2A 1860 8G 3810 12Q 4002 20H 4144 30E 4214

2B 2048 8H 3780 12R 4002 20I 4138 30F 4224

2C 2158 8I 3786 12S 4004 20J 4150 30GH 4216

2D 2168 8J 3812 12T 4002 22A 4140 32AB 4222

4A 3114 8K 3818 14A 3996 22B 4158 32CD 4222

4B 3114 8L 3786 14B 4008 24A 4152 34A 4238

4C 3192 8M 3818 14C 4048 24B 4152 34BC 4220

4D 3192 8N 3818 14D 4034 24C 4152 36A 4226

4E 3256 10A 3860 14E 4052 24D 4152 36B 4238

4F 3202 10B 3896 16A 4072 24E 4164 36C 4248

4G 3204 10C 3918 16B 4072 24F 4170 38A 4236

4H 3266 10D 3908 16C 4074 24G 4164 40A 4242

4I 3264 10E 3920 16D 4074 24H 4182 40B 4242

4J 3266 10F 3932 16E 4074 24I 4176 40C 4242

6A 3486 12A 3936 16F 4074 24J 4178 40D 4250

6B 3510 12B 3942 16G 4094 24K 4174 40E 4258

6C 3566 12C 3936 16H 4094 24L 4186 42A 4242

6D 3534 12D 3936 18A 4088 24M 4176 42B 4242

6E 3606 12E 3958 18B 4090 24N 4186 42C 4258

6F 3604 12F 3996 18C 4110 26A 4196 44A 4254

6G 3596 12G 3962 18D 4124 26B 4176 46AB 4270

6H 3610 12H 3962 18E 4128 28A 4188 48A 4266

6I 3636 12I 3964 18F 4122 28B 4200 48B 4266

6J 3638 12J 3986 20A 4114 28C 4188 52A 4284

6K 3634 12K 3978 20B 4114 28D 4200 56AB 4284

8A 3774 12L 3966 20C 4114 28E 4210 60A 4280

8B 3738 12M 3978 20D 4114 30A 4190 60B 4286

8C 3738 12N 4000 20E 4128 30B 4190 60C 4296

8D 3778 12O 3982 20F 4132 30C 4212 66A 4286

8E 3738 12P 3988 20G 4148 30D 4206 70A 4292

8F 3780

179https://doi.org/10.1112/S1461157000000735 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157000000735


Conjugacy class representatives in Fischer’s Baby Monster

4. Further remarks

In fact, we found our elements in various classes by employing methods other than those
described above. The point is that if we can guess the class correctly, then it is easy to prove
that our guess is correct by using the criteria in the previous sections. We actually used
various tables of partial information collected over the years (with a few mistakes in) to
help us find elements in various classes, and then proved them as above.

Finally, having produced elements in each of the conjugacy classes, we could tabulate in-
formation that may not be easily obtainable by other means. In particular, we have calculated
the dimensions of the fixed spaces of all the elements of even order on the 4370-dimensional
module over GF(2). This is a useful conjugacy-class invariant, which can often be used to
identify the conjugacy class of a given element more quickly than the methods described
above. We tabulate this information in Table3.
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