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Matrices of rational functions

W.A. Coppel

The properties of the degree of a matrix of rational functions

are obtained in a simplified way, which enables them to be

generalised to matrices whose elements are not necessarily

rational functions. On the basis of these results a theory of

realisations is developed, which similarly generalises the theory

of state space realisations of a matrix of rational functions.

1 . Introduction

In the application to control problems of spectral factorisation

techniques two slightly different approaches have been used. The first,

introduced by Popov [73] and further developed by Jakubovic [6], uses a

controllability hypothesis to impose three conditions on the state space

matrix A . The second, employed by Anderson [7] and Molinari [77], [72]

for rather less general problems, uses the controllability hypothesis to

impose only two of these conditions on A . The third condition, that A

have distinct eigenvalues, is avoided by using properties of the degree of

a matrix of rational functions. The concept of degree was introduced by

McMi I Ian [9, 70], and has also been discussed by Duff in and Hazony [3] and

Kalman [7]. In attempting to understand its role in these applications to

control theory we have been led to an approach which enables the main

properties of the degree to be developed very directly. (By means of

Theorem 3 below the third condition on A can be avoided also in the

general problem of Popov-Jakubovic.)

However, the main merit of this approach is that it is no longer

necessary to restrict attention to matrices of rational functions. With

trivial changes the definition of determinants! denominators and Theorems
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1-5 in Section 2 hold equally well for matrices with elements from the

quotient field of any unique factorisation domain (for example, the field

of rational functions of several variables). Theorem 6 holds, more

restrictively, for matrices with elements from the quotient field of any

principal ideal domain (for example, the field of rational numbers).

The degree of a matrix of proper rational functions is equal to the

minimum dimension of any state space realisation of the matrix. This

raises the question whether the theory of state space realisations can also

be embedded in a more general algebraic setting. Some results which

suggest this possibility are stated in the original and stimulating book of

Rosenbrock [74], but the proofs of these results make essential use of

state space theory. In the remainder of the paper we develop a theory of

realisations valid for matrices with elements in the quotient field of any

principal ideal domain. This is not just a trivial exercise in general-

isation and the logical order of development is quite different from that

of Rosenbrock. Moreover, even in the rational function case our results

extend his in some respects.

Nevertheless, to fix ideas and to make the contents of the paper more

generally accessible, we will continue to talk"throughout about polynomials

and rational functions of one variable, with coefficients from an arbitrary

ground field.

2. Determinantal denominators

Let R be a p x m rat ional matrix. For any positive integer k

l e t <pAR) denote the monic least common denominator of a l l minors of Ft

of order at most k . * We also set <pn(i?) = 1 (since an 'empty'

determinant has the value 1 ) . The polynomials <P-,(R) wi l l be called the

determinantal denominators of R .

Evidently cp, (/?) divides <Pfe+1(#) for a l l k > 0 . Also

cp,(i?) = cp, (R) for k > min(p, m) , in fact for k > r = ranki? . For

l a t e r use we define the width of R to be the leas t non-negative integer

g such that (fv(#) = fv+i W f o r ^ l k > g . The rat ional matrix R

1 Note that the zero ra t iona l function has monic leas t denominator 1 .
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has width zero i f and only i f i t i s a polynomial matrix.

From the expression for a determinant as a polynomial in i t s elements

we see that <p,(#) divides [cp (if)] for a l l k 2 0 . More generally, by

a Laplace expansion i t may be seen that Vt-.j.^) divides <j>, (i?)cp, (i?) for

a l l h, k > 0 .

THEOREM 1 . Let R. and i?p be p x m rational matrices, and let

R = R + R be their sum. Then <pAR) divides <ph [R )<p, [R ) for all

k .

If <p [R-] and tp-^iO are relatively prime then

<Pk(R) = ^[R-th^) for all k .

Proof. We need only consider the case 1 5 It 5 min(p, m) . By

l inear i ty any k x k minor p of R i s a sum of 2 determinants, each

row of which is taken ei ther from i? or from i?? . Consider one such

determinant, with h rows taken from R and k - h rows taken from

#„ . By a Laplace expansion th is determinant can be written as a sum of

terms ±P-,Pp > w n e r e P-i is an h * h minor of R. and pp is a

(k-h) x (k-h) minor of i?? . Hence p can be written with denominator

<Pfe(^1)<Pk(i?2) • I t follows that tpfc(i?) divides ^ [R^ (p& (i?2) .

Suppose <p (i? ) and <p [R ) are re la t ive ly prime. Then ip, (f? )

and <f>,(R) are also re la t ive ly prime. Since, by what we have already

proved, cp, (/?„) divides <p7 f—i? )cp, (i?) i t follows that cp, [R-\ divides

ip, (i?) . Similarly <p, \R J divides <p, (/?) . Since they are re la t ively

prime their product cp, (/? )<p, (i? ) also divides <p,(#) . Hence

THEOREM 2. Let R and R be p x n an<i n x m rational

matrices, and let R = R-.R2 be their product. Then <p, (i?) divides
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Proof. Suppose f i r s t that 1 £ k 5 q = min(p, n, m) . By the product

formula for minors any k * k minor p of if is a sum of terms p p ,
1 c

where p and pp are k * k minors of R and if_ . Hence p can be

wri t ten with denominator <p, (if )<p, (if ) . I t follows that cp, (if) divides

Suppose next that k > q . Then ip, (if) = (p (i?) , since R has rank
K q

at most <7 . Since the result holds for q , i t holds also for k .

THEOREM 3. Let R. and R- be non-singular m x m rational

matrices, and let R = R-.R~ be their product. If ip (if ) is relatively

prime to fA^o) anc^ *° ^ i ^p ' an^ ^ ^1^2^ i s re^xl't^ve^y prime to

aU k '

Proof. By Theorem 2 , <p,(if) divides <p, (if ) q>, (if ) . Since

if = ifif" and <Pfe0O i s re la t ively prime to cp, i?~ i t follows from

Theorem 2 also that (p, (if ) divides <p,(if) . Since if = if" if and

<p, (if ) i s re la t ive ly prime to <p, /? i t follows in the same way that

tp, (if ) divides cp, (if) . Since (Pj, (if,) and <p, (i?o) are re la t ive ly prime

t h e i r product ip, (if )<p, (ifp) also divides cp, (if) . Hence

THEOREM 4. Let R be a non-singular m x m rational matrix, and

write detif = a/& 3 where a and 3 are polynomials. Then

ep j iT 1 ) = o<pm(if) ,

where = denotes equality apart from a unit (non-zero constant) factor.

Proof. Any minor p of if can tie written in the form

p = ±p/detif = ±Bp/a ,

where p i s the complementary minor of if'. The least common denominator
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of a l l p/B is Btp (i?~ ) . The least common denominator of a l l p/a is

atp (i?) . The result follows.m

In par t icu la r , i f P is a non-singular m x m polynomial matrix then

tp (P'1) = detP .
mv '

THEOREM 5. Let R , R be p x m , p x m rational matrices,

and let R = R + R be their direct sum. Then <p, (i?) ie ifte least
1 £i ^

common multiple of all products cp, (/? • )<p, , (fl ) , where 0 £ fc £ fe .

Jn particular, if tp (ff ) and f-i^O a r e relatively prime then

fk{R) = ' P j . ^ ) ^ ^ ) /or aZl k .

Proof. Let Xr,(^) denote the least common multiple referred to in

the statement of the theorem. Evidently X^(^) divides X^+-,(^) • I t is

sufficient to prove the theorem for 1 £ k £ m i n ( p + p , m+m) .

Every non-zero k * k minor p of R is either a minor of /?. , or

a minor of R , or a product p̂  p? , where p.. is an h * h minor of

R , p_ is a (k-h) x (k-fe) minor of R^ and 0 < h < k . In any case

i t can be written with denominator X^W > and hence (p^W divides

Consider a fixed value of h (0 £ h £ k) . Let IT be any prime

polynomial and l e t e.. , e be the highest powers of IT dividing "P^C^) >

tp, i,(^g) • Then there exists a minor p of R of order at most h

whose reduced denominator is divisible by TT . Similarly there exists a

minor p2 of R- of order at most k - h whose reduced denominator is

divisible by IT . W e are going to show that there exists a minor p of

6 l + e 2R of order at most k whose reduced denominator is divisible by TT

If e > 0 , e = 0 we can take p = p . If e = 0 , e > 0 we can
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take p = P2 . If e > 0 , e^ > 0 we can take p = p p . Since this

holds for every prime TT i t follows that <p, [i? )<p , ff? ) divides <th(R) .

Since this holds for every h i t follows that Xr.W divides .cp, (R) .

Hence cpfc(i?) = xk(
R) •

The determinantal denominators of a rational matrix will now be

connected with i t s Smith McMillan normal form. Let P be a p x m

polynomial matrix of rank v . Then i t is well-known (see Jacobson [5])

that there exist invertible2 p x p , m x m polynomial matrices A, B and

monic polynomials y , . . . , y such that y. divides y, i f j 5 k , for

which

P = ACB ,

where e,, = y, (l 5 k 5 r) , e. . = 0 otherwise.

The matrix C , known as the Smith normal form of P , is uniquely

determined by P . In fact the product 6, = y .. . y, is the greatest

common divisor of a l l k x k minors of P . The Smith normal form of P

will be denoted for short by {y., . . . , y } .

In the next section we will have occasion to use the following known

resul t .

LEMMA 1 . . Let P.,P^ be p * n, n * m polynomial matrices with the

Smith normal forms w\ , ••-, Y | , | Y - \ , ••-, Y £ [ respectively. If
<• 1 ' *• 2 >

P = P-J'n has iihe Smith normal form {y , . . . , y } then y\ and y i

each divide y, ( l < fe < r ) .

Proof (see Frobenius [4], pp. 577-590). The ranks satisfy the well-

known inequality r 5 min(r , r ) . I t will be sufficient to prove that

y) divides y, . For this purpose we may assume without loss of

generality that P is already in i t s Smith normal form. Put

2 A square polynomial matrix is invertible if and only if i ts determinant
is a unit.
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6 - Y Y 6 U ) - Y ( l ) Y ( l ) (1 < k < P) •
°j. - Y-, • • • Yr, » °j, - Y, •••'!• (X - K. - rj .

If p is any non-zero k x k minor of P , corresponding to the rows

i < . .. < i, , then since i . > j the j'-th row of p is divisible by
± K J

Y • for 1 5 j 5 k . Hence p is divisible by fi! , and so the
3 it

greatest common divisor 6, of all p is divisible by 6Jt . This

proves the assertion for k = 1 . Now suppose k > 1 . By expanding p

according to the elements of its last row we see that it is divisible by

(l) ( l K (l)
Yj, 6j, , and so 6, is divisible by Yr, °T, n • This proves that Yi.

divides Yj, •

Now l e t R be a p x m ra t ional matrix of rank r , and l e t

<p = <p (R) be the monic leas t common denominator of a l l elements of R .

Then P = (pi? i s a polynomial matrix and hence has a Smith normal form

{y,, . . . , Y } • If we divide throughout by (P and express each rat ional

function YT./* in reduced form we obtain the representation

i? = ASB ,

where A and B are invert ible polynomial matrices,

S = {e /i|> , . . . , z /ty } , e, and ty, are re la t ive ly prime polynomials
.LI 2? IP K. K.

such that e . divides e, and ty. divides ip. i f 3 - k . I t i s easily
• 3 K K 3

shown (see McMi I Ian [9, 70]) that the matrix 5 i s uniquely determined by

these propert ies . I t i s known as the Smith McMillan normal form of i? .

THEOREM 6. Let R be a p x m rational matrix with the Smith

McMillan normal form {e /lj; , . . . , e /i|> } . Then

cp, (R) = I|J • • • ip, for 1 £ k 5 r .

Proof. Let i? = ASB as above. It follows from Theorem 2 that tp,(i?)

K

divides <Pj,(̂ ) » since <Pj,(>0 = <p, (B) = 1 . Since S = A RB i t follows

in the same way that cp, (5) divides <{>AR) • Hence <p, (/?) = <p, (5) .
Thus i t only remains to evaluate ipAS) . We can regard 5 as the
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d i r e c t sum of r 1 x l matrices i^v^v) a n d a matrix of zeros. I t

follows from Theorem 5 t h a t <Pr.(̂ ) i s "the l eas t common multiple of a l l

products ij,. . . . ty. , where 1 5 i < . . . < i 5 r . But since ^ .
%\ vk I k 3

divides ij;. if j < j1 this least common multiple is just \p. . . . ty, .

3. R e a l i s a t i o n s

Let R be a p x m rational matrix. A realisation of i? is a

representation of the form

(1) R = W + VT^U ,

where W, V, T, U are polynomial matrices of size p x- m, p *• n, n * n,

n x m and T is non-singular. The positive integer n will be called

the dimension of the realisation. If R is actually a polynomial matrix

i t has the t r iv ia l and unique realisation R = R of dimension zero.

Any p x m rational matrix R has a realisation of dimension

min(p, m) . For let cp = ip (f?) be the monic least common denominator of

a l l elements of R , so that <pi? is a polynomial matrix. If p 2 m then

If 77! > p then

R = 0 + I (ipJ ) cpi? .

If R has the realisation (l) of dimension n then for any positive

integer q i t has the realisation

1 0 " 1 U
R = W + ( " " n J

<7

of dimension n + <7 •

Also, if if has the realisation (l) of dimension n then for any

non-singular n x n polynomial matrices D, D i t has the realisation

R = W + W(DTD)~XDU
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of the same dimension.

We now need some standard concepts concerning the divisibility of

matrices. Let T, U be n x Z, n x m polynomial matrices. An n x n

polynomial matrix D is said to be a common left divisor of T and U if

there exist polynomial matrices T , U such that

T = DT , U = DU .

The matrices T, U are said to be left relatively prime if every common

left divisor is invertible. It is easily seen that if there exist

polynomial matrices M, N such that

TM + UN = I ,

then T, U are left relatively prime and the block matrix (T U) has rank

n .

A similar definition and result hold for right relatively prime

matrices. One need only take transposes.

The realisation (l) of R will be said to be irreducible if T, U

are left relatively prime and T, V are right relatively prime.

THEOREM 7. If the rational matrix R has the realisation (l) of

dimension n then it has an irreducible realisation

of the same dimension, where

T = DTQD , V = DUQ , V = VQD ,

for some non-singular n x n •polynomial matrices D, D .

Proof. Suppose T and U are not left relatively prime. Then

T = 0{ l )T ( l ) , U = D{1)U{1) ,

where D , T , V are polynomial matrices and deti> is not a

unit. If T , U are not left relatively prime this process can be

repeated. After k steps we obtain
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where detO , ... , detD ' are not units. Since detT has only
(k)finitely many prime factors the process must terminate. That is, T = T

(k)and UQ = U are left relatively prime for some k . Then

T = DT , U = DUQ ,

where D = D ... D . In the same way we can write

T = TQD , V = VQD ,

where T and V are right relatively prime. Since T and V are

left relatively prime it is clear that 2" and V must be also. The

result follows.

THEOREM 8. Let 1, V be n x I, n * m polynomial matrices which

are left relatively prime and such that the block matrix (T U) has rank

n . Then there exists an (l+m) x (Z+m) invertible polynomial matrix A

such that

(T U)A = [ln 0) .

Proof. Since the matrix (T U) has rank n there exist invertible

n x n, (l+m) x (l+m) polynomial matrices X, T such that

X(T U)Y = {E 0) ,

where E = {e , , e } is in Smith normal form. Hence

(T V) = (D O ) ^ " 1 ,

where D = X~ E . In terms of the partition

corresponding to the partition (D 0) , this means that

T = DZ1 , U = DZ2 .

Since T, V are left relatively prime i t follows that D is invertible.

Taking
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A = Y
,-1

we obtain the theorem.

A more constructive approach to Theorems 7 and 8 i s provided by the

Hermite normal form (see MacDuffee [§ , Chapter 3]) . Since the matrix

(T U) has rank n an invert ible (l+m) x (l+m) polynomial matrix Y can

be found such that

(T U)Y = (D 0) ,

where the n x n polynomial matrix D is lower triangular and non-

singular. Depending on Y , the diagonal elements d. . are uniquely
00

determined apart from arbitrary unit factors and the subdiagonal elements

d „ with j > k are uniquely determined apart from arbitrary multiples of

d.. . As in the proof of Theorem 8 we can write
00

T = DT , V = DUQ .

Moreover the polynomial matrices T, U are left relatively prime, since

TY + UY = D . If T, U are given left relatively prime then detD is a

unit. Hence the diagonal elements d . . are all units, which we can take

00
to be 1 Consequently the elements d., with j > k can be taken to be

0*-

zero, so that D = I

THEOREM 9. Let R be a p x m rational matrix with, the realisation

(l) of dimension n . Suppose T, U are left relatively prime and let

A =

be an invertible (w+m) x (n+m) polynomial matrix with the property

described in Theorem 8; that is,

TA1 + UA3 = Xn >

TA2 + U \ ' \m •

https://doi.org/10.1017/S0004972700043677 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700043677


100 W.A. C o p p e l

V = WAk - VA2 , T =

Then T is non-singular and R has the realisation

(2)

of dimension m .

R = VT'1

If in addition T, V are right relatively prime, that is, if the

realisation ( l ) is irreducible, then the realisation (2) is also

irreducible. Moreover, if BY is a polynomial matrix for some polynomial

matrix Y , then Y = TX for some polynomial matrix X .

Proof. We first note that since T is non-singular the block matrix

{T U) certainly has rank n . Let i be a polynomial m-vector such that

A, x = 0 . Then TA x = 0 and hence Ax = 0 . Since A is non-singular

(in fact invertible), i t follows that x = 0 . Thus T = A, is non-

singular. Moreover

V = WAk - VT~XTA2

Suppose now that the realisation (l) is irreducible. Then, by Theorem

8, there exists an invertible (n+p) x (n+p) polynomial matrix

D —
B l B2
B3 \

such that

V + V =
BT + 5. V = 03 h p,n

Let C = A be partitioned in the same way as A , so that

Put

M = - , N =
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Then, by the definitions of V and f ,

MV + NT = C3B2VA2 + [ck-C3B1U)Ak

m

Thus T, V are right relatively prime, and the realisation (2) is

irreducible. If Y is a polynomial matrix such that RY is also a

polynomial matrix then

= (MR+N)Y

is also a polynomial matrix. This completes the proof.

Considering still the irreducible case, let T be any m x m

polynomial matrix which shares the last property of T , that is, RT is a

polynomial matrix and if RY is a polynomial matrix for some polynomial

matrix Y then Y = TX for some polynomial matrix X . Then there exist

polynomial matrices J-, X such that

T = TX± , T = TX2 .

Hence T = TX X and XX = I . Thus T and T differ at most by an

invert ible r ight factor.

Again, suppose the p * m rat ional matrix R has another real isat ion

R = Vj?

of the same form. Then V = RT is-a polynomial matrix and hence

Tx = TX for some polynomial matrix X± . It follows that V± = VX .

Hence the new realisation is irreducible if and only if X is invertible.

The properties of determinantal denominators will now be applied to

the theory of realisations.

THEOREM 10. Let R be a p x m rational matrix with the

realisation (l) of dimension n . Then f>AR) divides <Pfc(2"~ ) for all

k .
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If the realisation (1) is reducible then cp (/?) is a proper divisor

of <f> (T ) . If the realisation (l) is irreducible then

Vk{B) = ^{T'1) for all k .

Proof. By Theorem 1, cpfe(i?) = cp, [VT~XV) and by Theorem 2, cp, [VT^u)

divides cp^I1"1) . Thus cp,(i?) divides fA?'1) •

Suppose T, U are not le f t re la t ively prime. Then we can write

T = VTX , U = DU1 ,

where detO is not a unit. Since

R = W + VT~^-V1 ,

ip (i?) divides cp \?~ . But, by the corollary to Theorem h,

Hence cp (i?) is a proper divisor of cp \T J . The same conclusion is

reached if T, V are not right relatively prime.

Suppose next that the realisation (l) is irreducible. Then, as shown

in Theorem 8, thfere exist polynomial matrices A , A , B , B such that

TA1 + M3 " Tn '

V + V = Jn •
Thus

,
T~XU =

From the f i r s t equation cp, [T ) = cp, \T~ UA \ and hence cp, [T ) divides

ip, (T~ U) . From the second equation cp, {f ll) = <p, \B VT~ U\ and hence
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(f^T^u) divides ip^VT^u) . Thus <Pfe(2'~1) divides ^{VT^u) = ^(R) .

Therefore <PAR) = <Pr. (T~ ) •

THEOREM 11. Let R be a p x m rational matrix. Then the width g

of R is the minimal dimension of any realisation of R .

Proof. Let R have the real isa t ion ( l ) of dimension n . By Theorem

7 we can suppose that th i s rea l isa t ion i s i r reducible . Then, by the l a s t

part of Theorem 10, <p,(fl) = <p, AR) for a l l k > n . Hence n> g .

I t remains to show that there exists a rea l i sa t ion of dimension g .

We can assume for th i s purpose that g > 0 and that R i s in Smith

McMillan form {e /TJJ , . . . , e /<Ji } . Then, by Theorem 6, a real isa t ion of

R of dimension g i s defined in the following way:

W (pxm) : u , , = e , i f g < k £ r , u . . = 0 otherwise,
KK K IJ

V (p*g) : l>, j , = 1 i f 1 5 fc * £ , U . . = 0 o therwise ,

T {gxg) : tkk = i|>k i f 1 < k £ g , t . . = 0 o the rwise ,

[/ (^xm) : M,, = e , i f l £ k £ g , M.. = 0 o therwise .

This r e a l i s a t i o n i s i n fac t i r r e d u c i b l e (of. t h e proof of Theorem 13) .

THEOREM 12. Let R be a p x m rational matrix of width g , with

the irreducible realisation ( l ) of dimension n . If R has the Smith

McMillan form {e;,/i)) , . . . , ^rl%) ihen T }ias the Smith form

Proof. Let T have the Smith form {IJJ , . . . , ty } . Then T~ has

t h e Smith McMillan form {l/ip , . . . , 1/iji } . By Theorem 10,

<PV[T~ ) = <9V(R) for a l l k . By Theorem 6 ,

(p. [I1 ) = i(i . . . lj), for 1 £ ?c £ M ,

(p. (/?) = ^ . . . i|», for 1 < k < r .

The r e s u l t now follows from Theorem 1 1 .
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If the rea l i sa t ion ( l ) , of dimension n , i s not necessarily

irreducible we can write T = DT D , where T belongs to an irreducible

rea l i sa t ion of the same dimension. If T has the Smith form

{iji , . . . , ijJ } i t follows from Lemma 1 that i>, divides ij), forn x K K

1 £ k £ g . Apart from th i s res t r ic t ion and the ordinary d iv i s ib i l i t y

conditions the Smith form of T is arbi t rary , even i f we require ei ther

T, U to be l e f t r e la t ive ly prime or T, V to be right re la t ive ly prime.

This may be seen by assuming T in Smith form and multiplying by a

sui table diagonal matrix.

Let R be a p x m rat ional matrix with the real isa t ion ( l ) of

dimension n . Then, following Rosenbrock 1142, the (n+p) x (n+m)

polynomial matrix

[-V W.

is called the system matrix of the realisation.

By direct multiplication i t may be verified that

(3) P =

Hence P has rank n + r .

That the system matrix is more than an array of coefficients is shown

by the following result.

THEOREM 13. Let R be a p x m rational matrix with the

irreducible realisation ( l ) of dimension n > and let P be the

corresponding system matrix. If R has the Smith McMillan form

{e /i|» , . . . , e /ij> } , then P has the Smith form {j , e , . . . , e } .

Proof. If A, B are invert ible p x p , m x m polynomial matrices

then R = ARB has the real isa t ion

R = AWB +

with system matrix

» • (J Ml B
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Therefore P has the same Smith form as P . Moreover, since A and B

are invertible, this realisation of R is irreducible. Hence we can

suppose that R is already in i t s Smith McMillan form.

By Theorem 8 there exists an invertible {n+m) x {n+m) polynomial

matrix

A =

such that

Hence

(T U)A = [ln 0)

PA =
' I

n
-V

1

0

w1

where

Thus P has the same Smith form as

I
n

0

0

Moreover, by Theorem 9, has the irreducible realisation

I t also has the rea l i sa t ion R = EF~ defined by

E (pxm) •. ekk= £k (1 < fc 5 r) , e . . = 0 otherwise,

P (mxm) • fkk= \ (1 5 fe 5 r) , /fefe = 1 (r < fc 5 m) , / ^ . = 0 (i f j)

Since e, and i(i, are relatively prime there exist 'diagonal' matrices

M, N such that

ME + NF = I .
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Hence this realisation is also irreducible. Therefore, by the second

remark following the proof of Theorem 9, ^ = ^i i ^or s o m e invertible

m x m polynomial matrix 1c . Thus W has the Smith form

{e-̂ j •••, e } , and P has the Smith form {I , e,, ..., e } . This

completes the proof.

If the realisation (l), of dimension n , is not necessarily

irreducible,the corresponding system matrix P can be written in the form

p = [0 0]p p 0]

where ?0 is the system matrix of an irreducible realisation of the same

dimension. If P has the Smith form {e,, ..., e }, it follows from

Lemma 1 that z, divides g +. for 1 5 k 5 r .

In Rosenbrock's treatment considerable use is made of the concept of

strict system equivalence and attention is restricted to realisations of

dimension not less than the degree of the polynomial detl1 (which has no

meaning outside the rational function case). The necessity for a restrict-

ion on the dimension is shown by the following simple example. The scalar

o
rational function R{s) = (s+l)/s has the 1-dimensional irreducible

realisations defined by the system matrices

2is* 1]
[-e-1 oj

a+l
-1 0

However these realisations are not strictly system equivalent, since there

do not exist polynomials x(s), n(s) such that

1 = [s+l-s2x(s)]n(s) .

We consider next-some simple formal properties of realisations.

LEMMA 2. Let R , R be p x m rational matrices with the
1' 2

realisations

of dimension n , n respectively. Then R = R + R has the realisation
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R = W + VT~XU

of dimension n. + n_ defined by

T = , v =

v= [v± v2) , w= w1 + w2 . ,

The verification is immediate. Suppose cp (/? ) and cp (i?2)

relatively prime. Then, by Theorems 1 and 11,

The realisation of i? is reducible if and only if cp [R ) is a proper

divisor of detT. . The realisation of i? is reducible if and only if

(p [R ) is a proper divisor of detT- . The realisation of R = R + R
n^ id c. A. ti

is reducible if and only if <p (i?) is a proper divisor of
"l 2

detf = detl1 detT . It follows that the composite realisation of

R = R + R is irreducible if and only if the realisations of R. and R

are both irreducible.

LEMMA 3. Let R , R be p x n, n x m rational matrices with the

realisations

R = W + V T~XV , R = W + V T~XU
1 1 1 1 1 2 2 2 2 2

of dimension n , n respectively. Then R = fl,#? has the realisation

R = W +

of dimension n + n defined by

T = U =
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The verification is immediate. Suppose p = n = m and the hypotheses
of Theorem 3 are satisfied. Then i t follows as above that the composite
realisation of R = -#,#9 is irreducible if and only if the realisations of

R and i?? are both irreducible.

LEMMA 4. Suppose the m x m rational matrix R has a realisation

( l ) j of dimension n , in which W is invertible. Then R is non-

singular if and only if the polynomial matrix T + UW~ V is non-singular.

In this case R has the realisation

R-1 = w + VT'1!] ,

of the same dimension n 3 defined by

T - T + UW~XV , U = UW'1 ,

V = -w~lv , W = W'1 .

It is irreducible if and only if the realisation (l) is irreducible.

Proof. Using a simple property of determinants (see Kalman [7], Lemma

5), we obtain

detT = detT • det - -

(
= detT • det

^= detT • det {W+VT'^U) • det (

= detT • detR/ietW .

This proves the first assertion. Define

R = W + VT'1!/ .

Then

RR = ~1 1~"

i y r r T w K
m *•

= I + VT~X [T-T-UW~1V)T~1U

m '
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Thus R = R . Moreover <P {R) = <P (R) i s a proper divisor of detT i f

and only if the polynomial

is a proper divisor of detT = AetR&etT . The lemma follows.

By increasing the dimension of the real isa t ion we can remove the

res t r ic t ion that W be inver t ib le . Let I be a non-singular m x m

rat ional matrix with the real isat ion ( l ) of dimension n and corresponding

system matrix P . Then, using (3) , i t i s easily verified that R has

the real isa t ion

R x = W + VT LU ,

of dimension n + m , defined by

T = P ,

• 7 = ( 0 l J , » = 0 .

Moreover, since detT = defcffdet? by (3), this realisation is irreducible

if and only if the realisation (l) is irreducible.

It remains to establish the connection between the preceding theory

and the concepts of degree and state space realisation. From now on we

really do require the elements of our matrices to be rational functions.

Any p x rn matrix R{s) of rational functions can be uniquely

expressed in the form

R(s) = D(s) + RQ(s) ,

where D(s) is a matrix of polynomials and ^n(
s) i-s a matrix of proper

rational functions. Let v(i?) denote the maximum degree of any of the

polynomials cp, (R) . Then the degree <5(i?) may be defined by

If D(s) is a constant matrix then 6(fl) = v(i?) . The properties of the

degree can be deduced without difficulty from the theorems of Section 2.
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In some applications, however, v(i?) is more appropriate than 6{R) . The

polynomials ^(fl) convey more information than the integer v(i?) , and

may be manipulated just as conveniently.

If the elements of R(s) • are not al l polynomials then a state space

realisation of R(s) is a realisation of the form

(U) R(s) = D{s) +

where D{s) is the uniquely determined polynomial part of R(s) and A,

B, C are constant matrices of size n * n, n x m, p x n . The theory of

such realisations, due primarily to Kalman, is now widely known (see

Brockett [2]) .

The ordered pair (A, B) is controllable if for some positive integer

k the n x km block matrix

T = [B AB . . . Ak~XB)

has rank n . The ordered pair {A, C) is observable if {A*, C*) is

controllable. It is not difficult to show that a state space realisation

(U) always exists, and furthermore that there exists one for which {A, B)

is controllable and {A, C) is observable.

The following theorem is due to Rosenbrock, but the present proof is

somewhat different.

THEOREM 14. Let A, B be n x n, n x m constant matrices. Then

(A, B) is controllable if and only if the polynomial matrices si - A and

B are left relatively prime.

Proof. Suppose first that (A, B) is controllable and choose any

positive integer k such that F has rank n . Then there exist constant

matrices Y , ..., Y. such that
U rC—-L

BY + ABY + . . . + Ak~XBY. = I .
\J -L fC—A.

Put

Then it is easily verified that
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(5) B\YQ + sY^+ ... + s rfe_1j - (sI-A)\XQ + s ^ + . . . + s \_2\ = J •

Thus si" - A and S are le f t re la t ively prime.

Conversely, suppose that si - A and B are le f t re la t ive ly prime.

Since si - A i s non-singular i t follows from Theorem 8 that (5) holds for

some positive integer k and constant matrices X., Y. . Equating
3 3

coefficients we get

BYn + AX. = I ,
0 0

BY . + AX. - X. = 0 (1 2 j < fe-2) ,
J J • 3~1

BYk-l ~ h-2

I t follows that

Hence T has rank n , and (A, B) i s controllable.

I t follows that the s ta te space rea l i sa t ion (It) i s irreducible in the

sense of the present paper i f and only i f {A, B) i s controllable and

{A, C) i s observable. In th is case, by Theorem 12, the polynomial matrix

si - A has Smith form {i , <p /cp , . . . , <P,/<(> } , where <p, = ip,(fl)
rl—y y y—± X V K. K

and g is the width of R . By standard results from linear algebra (see

Jacobson [5], Chapter 3) it follows that the constant matrix A is similar

to a direct sum of g companion matrices corresponding to the polynomials

w •••- Wi •
Thus if the state space realisation is irreducible the determinantal

denominators of R uniquely determine A , apart from a similarity

transformation which is inherent. In particular, the minimum polynomial of

A is the least common denominator of all elements of R , and the

characteristic polynomial of A is the least common denominator of all

minors of R . Hence the realisation has dimension v(R) .

ADDENDUM (24 May 1974). In Theorem 3 we have (pffl(i?) = ^[R-Jv {R^\

even without the hypothesis that WAR,) and <p [R ) are relatively

prime.
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Proof. From Theorem k and the relat ion deti? = deti? deti? we obtain

Let IT be any prime polynomial and l e t e . , e be i t s mul t ip l ic i t ies as a

divisor of cp (i? ) , <p (i? ) . We wish to show that TT divides

cpm(i?) . If e > 0 , e = 0 th i s follows from the fact that cp (i? )

divides cp (i?) . If e = 0 , e > 0 , i t follows from the fact that

cpm(i? ) divides cp (i?) . If e > 0 , e > 0 i t follows from (*) and the

fact that v does not divide cp i? or cp i? . Since v i s

arbi t rary th is proves that cp (i?_)cp (i? ) divides cp (i?) , and hence

Consequently the hypothesis that cp (i? ) and WAR*) are re la t ive ly

prime may be omitted in the remark following Lemma 3. I t i s easily shown

by examples that the ful l assertion of Theorem 3 does not hold when th is

hypothesis i s omitted.
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