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The transition to turbulence in conduits is among the longest-standing problems in
fluid mechanics. Challenges in producing or saving energy hinge on understanding
promotion or suppression of turbulence. While a global picture based on an intrinsically
3-D subcritical mechanism is emerging for 3-D turbulence, subcritical turbulence is
yet to even be observed when flows approach two dimensions, e.g. under intense
rotation or magnetic fields. Here, stability analysis and direct numerical simulations
demonstrate a subcritical quasi-two-dimensional (quasi-2-D) transition from laminar flow
to turbulence, via a radically different 2-D mechanism to the 3-D case, driven by nonlinear
Tollmien–Schlichting waves. This alternative scenario calls for a new line of thought on the
transition to turbulence and should inspire new strategies to control transition in rotating
devices and nuclear fusion reactor blankets.
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1. Introduction

One of the most important questions in fluid mechanics is how, and under what conditions,
flows transition to a turbulent state; this determines the topological, dissipative and mixing
properties of these flows. Besides its fundamental interest as a unique physical process,
it is central to every application where fluid flows through a conduit: turbulent mixing
promotes heat exchange in cooling applications, whereas turbulent dissipation drastically
increases energy consumption. As discovered by Reynolds (1883), the flow of water
through a pipe became turbulent only for sufficiently high values of the eponymous
Reynolds number Re = U0L/ν. In the present work, Re is built out of the typical
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streamwise velocity U0 and kinematic viscosity ν of the fluid, and the transverse conduit
length scale 2L. Since then, the question of transition was often tackled by seeking
the conditions necessary for perturbations growing from the laminar base flow to ignite
turbulence.

In pipes and other shear flows, the most distinctive property of the transition to
turbulence is that it is subcritical. If Rec is the critical Reynolds number beyond which
some perturbation grows exponentially from an infinitely small amplitude through a
linear mechanism, turbulence can develop at Re < Rec, provided the flow is seeded
with a sufficiently energised perturbation. The process is nonlinear and amplifies finite
amplitude perturbations through an intrinsically 3-D ‘lift-up’ mechanism, enacted by
the growth of streamwise streaks (Schmid & Henningson 2001). It also becomes active
at Reynolds numbers well below Rec, where infinitesimal perturbations are severely
damped. For convenience we define rc = Re/Rec, where subcritical Reynolds numbers
correspond to rc < 1. The least damped perturbations are the 2-D transverse-invariant
Tollmien–Schlichting waves (TS waves), which manifest in plane shear flows. For instance,
Beneitez et al. (2019) showed that TS waves were not found to partake in the 3-D transition
to turbulence below rc � 0.98 in Blasius boundary layers, while Zammert & Eckhardt
(2019) showed that they could not be detected in plane Poiseuille flow for rc � 0.84.

However, in rapidly rotating or stratified flows, or in an electrically conducting fluid
subjected to a high magnetic field, fluid motion can be prevented from becoming 3-D
if the respective Coriolis, buoyancy or Lorentz forces are sufficiently intense. Hydraulic
circuits in rotating machines, atmospheres, oceans and some models of planetary interiors
subject to planetary rotation, and the liquid metal blankets cooling fusion reactors, all
occupy this category. Real flows can never be fully 2-D (Paret et al. 1997; Akkermans
et al. 2008); three-dimensionality subsists either in asymptotically small measure or
in asymptotically small regions such as boundary layers (Sansón & van Heijst 2000;
Pothérat 2012). The resulting flows are quasi-two-dimensional (quasi-2-D). Since the
lift-up mechanism driving transition in 3-D shear flows cannot manifest in quasi-2-D
flows, can subcritical quasi-2-D turbulence exist, and if so via which alternative transition
mechanism?

Traditionally, quasi-2-D turbulence has ‘only’ been considered as a limit-state of its 3-D
counterpart (Moffatt 1967; Sommeria & Moreau 1982; Shats, Byrne & Xia 2010), perhaps
because both very often coexist (Celani, Musacchio & Vincenzi 2010). For example,
atmospheric flows are quasi-2-D at large, continental scales, but 3-D nearer to topographic
scales (Lindborg 1999). A similar spectral split exists in magnetohydrodynamic turbulence
(Baker et al. 2018) and in turbulence in thin channels (Benavides & Alexakis 2017).
Quasi-2-D turbulence appears progressively rather than through a bifurcation, and is
controlled by the constraint driving two-dimensionality (Sommeria & Moreau 1982;
Pothérat & Klein 2014; Benavides & Alexakis 2017). Turbulent transition in quasi-2-D
shear flows differs from the switch between 3-D and 2-D turbulence as it is expected to
arise suddenly, out of (quasi-)2-D finite amplitude instabilities. Since 3-D mechanisms are
excluded, the question is whether there exists a quasi-2-D subcritical transition pathway
from the laminar to the turbulent state. This is particularly crucial in shear flows as
the subcritical lift-up transition is progressively suppressed as two-dimensionality is
established (Cassells et al. 2019). The key result presented in this paper is the discovery of
a transition from the quasi-2-D laminar state to subcritical quasi-2-D turbulence in shear
flows, and that the lack of a 3-D bypass mechanism gives way to an alternative nonlinear
2-D mechanism which, unlike its 3-D counterpart, relies on TS waves.
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2. Physical model

All calculations are performed on a rectangular incompressible duct flow, with walls
in the (x, z) plane moving at a constant velocity U0ex (ex,y,z are unit vectors in the
respective x, y, z directions). The base flow is streamwise invariant and periodic boundary
conditions are imposed in the streamwise direction (x). The flow is assumed quasi-2-D,
i.e. all quantities are invariant in z except in thin boundary layers near the fixed walls
in (x, y) planes (see figure 1). Such flows are well described by the 2-D, z-averaged
Navier–Stokes equations for z-averaged velocity and pressure supplemented by a linear
friction term accounting for the friction these layers impart. With length, velocity, time
and pressure respectively scaled by L, U0, L/U0 and ρU2

0, these equations are

∇⊥ · u⊥ = 0, ∂tu⊥ + (u⊥ · ∇⊥) u⊥ = −∇⊥p⊥ + Re−1
(
∇2

⊥u⊥ − Hu⊥
)

, (2.1)

with dimensionless boundary conditions u⊥( y = ±1) = (1, 0), where u⊥ = (u⊥, v⊥),
∇⊥ = (∂x, ∂y), ∇2

⊥ = ∂2
x + ∂2

y , ρ is the fluid density, and 2L the distance between the
moving walls. Friction parameter H may be defined as appropriate to describe systems
including duct flows under a strong transverse magnetic field Bez (Sommeria & Moreau
1982), thin films (Bühler 1996), or flows with background rotation (with the addition of
the Coriolis force) (Pedlosky 1987).

We investigate perturbations û⊥ about the base flow U⊥( y) = (cosh[H1/2y]/
cosh[H1/2], 0) at H = 10. Here linear perturbations become unstable at Rec = 79 123.2.
At rc = 0.9, the maximum linear transient growth occurs at a streamwise wavenumber
αopt = 1.49, whereas the minimum exponential decay occurs at αmax = 0.979651. The
linearly optimised initial perturbation maximising growth in the functional G = ‖û⊥(t =
τ)‖/‖û⊥(t = 0)‖ is sought following Barkley, Blackburn & Sherwin (2008) for a
prescribed target time τ and wavenumber α. Here G represents the gain in perturbation
kinetic energy under the norm ‖û⊥‖ = ∫

û⊥ · û⊥ dΩ , over computational domain Ω .
Optimisation is performed on the linearised rather than the full nonlinear equation, though
both return practically identical results for this problem (Camobreco, Pothérat & Sheard
2020). The choice of α is based on the decay rate of the leading direct eigenmode,
obtained by decomposing perturbations into normal modes (ũ⊥, p̃⊥) exp(i[αx − ωt]) of
complex frequency ω, and complex velocity and pressure distributions ũ⊥ and p̃⊥.
A discretised direct eigenvalue problem −iωṽ⊥ = Lṽ⊥ is solved in MATLAB via eigs(iL).
The linear evolution operator L is constructed following Trefethen et al. (1993) and Schmid
& Henningson (2001). The discretised adjoint eigenvalue problem iω‡ξ̃⊥ = L‡ξ̃⊥ for
complex adjoint eigenvector ‡ξ̃⊥ is also considered, where the linear adjoint operator L‡

is derived following Schmid & Henningson (2001).
To support the classification of initial conditions realising turbulence, streamwise

Fourier spectra of kinetic energy are computed at selected instants in time at 21
equi-spaced y-values spanning the channel. At each y-location, a Fourier transform
is obtained along x, with coefficients for the streamwise wavector κ , cκ( y) =
N−1

f
∑Nf −1

n=0 |û⊥(xn, y)|2 exp(−2πiκn/Nf ), where the nth coefficient xn = 2πn/(αNf )

spans the streamwise-periodic domain. Here for convenience the coefficient N−1
f is applied

to the forward transform rather than its inverse. Instantaneous mean Fourier coefficients
c̄κ are then obtained by averaging |cκ | over y.

Time evolution of the full quasi-2-D equations or the linear forward and adjoint systems
is computed numerically using a primitive variable spectral element solver (Hussam,
Thompson & Sheard 2012; Cassells et al. 2019; Camobreco et al. 2020; Camobreco,
Pothérat & Sheard 2021b). The (x, y) plane is discretised with quadrilateral elements
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y
Bez

u3D = 0

u3D = U0

z x

U⊥ = 
cosh(H1/2)

cosh(H1/2y)

Figure 1. An example of a quasi-2-D flow is shown, namely a lateral wall-driven laminar duct flow under a
transverse magnetic field. Here the solution (green profile, H = 10) obtained from the quasi-2-D equations
(2.1) precisely approximates the z-average of the 3-D streamwise velocity profile u3D (grey isosurface, black
contour lines) satisfying the quasi-static magnetohydrodynamic equations (Müller & Bühler 2001). Beyond this
example, the results derived in this paper apply to a much wider variety of flows.

(12 by 48) featuring polynomial basis functions of order Np = 19 (Camobreco et al.
2020, 2021b; Camobreco, Pothérat & Sheard 2021a). Time integration is via third-order
backward differencing, with operator splitting (Karniadakis, Israeli & Orszag 1991).
The time step size is initially set to �t = 1.25 × 10−3, and is reduced once turbulence
emerges to maintain stability. The initial condition is composed of the laminar base flow
and a perturbation computed via linear transient growth optimisation. The domain length
is matched to the wavelength minimising the decay rate of the leading eigenmode. The
perturbation amplitude is normalised to the energy E0 required for each simulation.

3. Evidence of subcritical turbulence

The starting point is to determine whether subcritical turbulence in quasi-2-D shear
flows exists (for Re < Rec). In the subcritical regime, turbulence originates from
perturbations that are sufficiently intense to activate nonlinear amplification mechanisms
that infinitesimal ones cannot. Unlike 3-D flows, there is evidence that seeding the
subcritical laminar shear flow with even high levels of noise does not ignite turbulence
(Camobreco et al. 2021b). Seeking turbulence, but not necessarily its most efficient
trigger, the laminar state is seeded with optimal transient growth perturbations of different
energies, and evolved until the flow either returns to its initial laminar state or becomes
turbulent.

Figure 2(a) depicts a representative set of the aforementioned simulations at a Reynolds
number rc = 0.9. A turbulent state is reached for any normalised initial energy E0 > ED,
where E0 = E/EB. Here E is the kinetic energy of the disturbance, and EB is the energy
of the laminar base flow. The delineation energy ED, found when seeding the flow with
optimal perturbations from linear transient growth analysis, lies within 3.0576 × 10−6 <

ED < 3.0577 × 10−6. Evidence of a turbulent state is found in the energy spectra c̄κ(κ) of
figure 2(b): while low energy states contain energy above the noise floor (around 10−13) in
only a few of the lower wavenumber modes, all modes are energised in the turbulent cases
(Grossmann 2000), with an extended inertial range following c̄κ(κ) ∼ κ−5/3 (Tabeling
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Figure 2. (a) Kinetic energy time history showing the nonlinear evolution of linear optimals at rc = 0.9, αmax:
when E0 < ED (blue) the flow visits the edge but relaminarises, whereas it becomes turbulent for E0 > ED
(red). (b) Fourier spectra at select instants in time at E0 = 3.0577 × 10−6 > ED. Dash-dotted line, exp(−3κ/2)

trend. Dashed line, κ−5/3 trend. (c) Streamwise high-pass filtered snapshot of spanwise vorticity |ω̂z,|κ|≥10|
from DNS at rc = 0.9, αmax, indicating quasi-2-D turbulence at t = 1.1 × 104. (d) Data from (a) re-plotted
under the framework of the Stuart–Landau model. The instantaneous growth rate of the perturbation amplitude
A is plotted against A2. The data exhibits a collapse onto a common curve exhibiting the signature of a
subcritical bifurcation, i.e. approaching the eigenmode growth rate Im(ω) = −5.94084 × 10−4 as A → 0+
with a positive gradient. For guidance, the dot-dashed line is tangent to this curve at A = 0.

2002). These features are characteristic of turbulence, a snapshot of which is visualised
in figure 2(c). This visualisation employs a streamwise high-pass filter to remove the
otherwise occluding large-scale TS wave structures. This filter reveals smaller-scale
structures being entrained from the sidewall boundary layers into the channel interior.
Instances of this are visible near the bottom wall at the upstream end of the domain, and
further downstream near the top wall. The respective locations of these features align with
the entrainment regions of the underlying TS wave.

With the existence of subcritical turbulence in quasi-2-D flows now established, two
remarkable features emerge. First, the turbulence is intermittent in time, exhibiting
sporadic regressions to a low energy state differing from the original laminar state
(figure 2a). This is reminiscent of the spatial intermittency in various 3-D shear flows
(Cros & Gal 2002; Barkley & Tuckerman 2007; Moxey & Barkley 2010; Brethouwer,
Duguet & Schlatter 2012; Khapko et al. 2014). Second, transition to indefinitely sustained
turbulence was only found for Re � 0.8Rec. Hence the Reynolds numbers required to
sustain turbulence are much higher than in 3-D flows. Over 0.4 � rc � 0.8, only a single
turbulent episode was observed, with finite lifetime proportional to Re.
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Verification that the turbulence reported herein originates from a subcritical instability is
determined using the Stuart–Landau model (Drazin & Reid 2004) following the approach
detailed in Sapardi et al. (2017), a brief outline of which is explained here. The time history

of a measure of the disturbance amplitude A(t) =
√∫

Ω
|û⊥|2 dΩ is taken, with subcritical

bifurcation evolution characterised by an increase in d(log A)/dt with increasing amplitude
near A = 0. Beyond the critical Reynolds number, an infinitesimal disturbance achieves
super-exponential growth before saturating. Below the critical Reynolds number, small
disturbances decay, while larger-amplitude disturbances grow. This behaviour is observed
in figure 2(d). Cases bracketing ED approach a common curve having the expected
subcritical profile; cases with E < ED then decay (d(log A)/dt < 0, A → 0), while E >

ED cases grow towards turbulence.

4. Nonlinear Tollmien–Schlichting waves are the tipping point between laminar and
turbulent states

Having established that subcritical turbulence exists, we consider the pathway from the
laminar base flow to the turbulent state. We now seek edge states. These act as tipping
points from which the flow can either revert to its original laminar state, or become
turbulent (Skufca, Yorke & Eckhardt 2006). The edge state is reached for the initial
perturbation delineation energy ED, separating perturbations triggering turbulence from
those decaying. As the initial energy approaches ED, the edge state persists for a longer
duration. Here ED is found iteratively with a bisection method (Itano & Toh 2001). The
edge state from figure 2(a) is visualised in figure 3(a). It consists of a travelling wave of
very similar topology to the infinitesimal TS wave, suggesting they may play a role in the
quasi-2-D transition to turbulence.

To investigate this possibility, we calculated a weakly nonlinear flow state in which
nonlinearities only arise out of combinations of the leading TS wave. The weakly
nonlinear equations are a more precise version of the perturbation equations compared
with the linearised version used to calculate the leading eigenmode and the perturbation
maximising transient growth. They are obtained by approximating the perturbation by
the leading eigenmode, and truncating its governing equations to the third order in its
amplitude. For example, for a leading eigenmode of amplitude ε, the nth harmonic of the
spanwise velocity component is written as

v̂⊥,n =
∞∑

m=0

ε|n|+2mÃ|n||Ã|2mv̂⊥,n,|n|+2m, (4.1)

where v̂⊥,n,|n|+2m denotes a perturbation (n refers to the harmonic, |n| + 2m to the
amplitude order) and Ã = A/ε is the normalised amplitude. Nonlinear self-interaction of
the linear mode v̂⊥,1,1 excites a second harmonic v̂⊥,2,2, which is compared to the κ = 2
harmonic from DNS. Nonlinear interaction between the linear mode v̂⊥,1,1 and its complex
conjugate v̂⊥,−1,1 generates a modification to the base flow û⊥,0,2, which is compared to
the κ = 0 harmonic from DNS. The full equations governing the nth harmonic of the
base flow and perturbation follow from insertion of this decomposition into (2.1); they are
expressed in full in Camobreco et al. (2021b) and the general method is detailed in Hagan
& Priede (2013). The full nonlinear evolution of the flow is obtained by solving the system
(2.1) numerically.

This technique facilitates a comparison between the fully nonlinear flow state (with all
possible modes) obtained from DNS, with its asymptotic approximation to second order
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Figure 3. (a) Flooded contours of spanwise velocity v̂⊥ from DNS at rc = 0.9, αmax, representing the edge
state at t = 7.48 × 103 overlaid with contour lines showing the linear TS wave v̂⊥,1,1. Both sets of contours are
equi-spaced between the minimum and maximum values of the respective fields. (b) Weakly nonlinear modes
û⊥,0,2, v̂⊥,1,1, v̂⊥,2,2 (dashed black lines) and corresponding Fourier components from DNS at different times
(coloured lines) at κ = 0 (streamwise), 1 (spanwise) and 2 (spanwise) with E0 = 3.0577 × 10−6 > ED. The
solution departs the edge at t ≈ 9 × 103.

in the perturbation amplitude. The streamwise κ = 1 Fourier mode extracted from DNS is
directly compared to the linearly computed modal instability in figure 3(a), showing close
agreement.

Figure 3(b) compares velocity profiles from each of the modes accounted for in
the weakly nonlinear analysis with the corresponding Fourier components of the same
wavelength extracted from the full DNS evolved from the linear optimal with α = αmax
with E0 close to ED. Both the leading eigenmode (κ = 1) and its nonlinear interaction
(κ = 2) matched their DNS counterpart to high precision in the early stage of evolution.
The modulated streamwise-independent (κ = 0) component exhibited small differences at
this stage, that vanished as the influence of our particular choice of initial condition did.
Additionally, the cumulated kinetic energy of all three components forming the weakly
nonlinear approximation represents over 93.7 % of the total energy in the DNS while on
the edge. This proves that the build-up of the edge state originates almost exclusively
from the dynamics of the TS wave. As such, this transition mechanism differs radically
from its counterpart in 3-D flows (Zammert & Eckhardt 2019), where a bypass transition
involving rapidly growing streamwise structures takes place at such low Reynolds numbers
that TS waves are too damped to contribute.
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Figure 4. (a) Comparison between linear transient growth initial conditions with various τ = Tτopt (solid
lines) and the leading adjoint mode (dashed lines), horizontally shifted for clarity. (b) Delineation energies
from DNS and energy growth ratios from linear analysis for each T .

With the pathway to the edge state and then to turbulence now clarified, the
question remains as to its robustness against the choice of initial condition. Thus, DNS
were performed with the initial conditions chosen as the modes optimising growth at
increasingly large times T = τ/τopt (where τopt is the time of optimal growth for a given
wavenumber α, i.e. τopt � 31.0 for α = αmax at rc = 0.9). The corresponding delineation
energy provides a measure of how easily these transients ignite turbulence and therefore
of their role in doing so.

In these simulations, all optimals for a given α evolved into the same edge state. Further,
as T increases, the profiles of spanwise velocity of the initial condition optimising growth
with α = αmax converge toward the leading adjoint mode (figure 4a), with a corresponding
monotonic reduction in the delineation energy with increasing T (figure 4b). By T = 8,
the delineation energy of the optimal matches that of the leading adjoint to approximately
±0.01 %. Figure 4(b) further shows that these initial conditions lead to reduced transient
growth, yet are more efficient at triggering turbulence: that is to say, the delineation
energy ED decreased approximately twofold as the initial condition morphed from the
linear optimal mode to the linear adjoint mode. This was found to be consistent when the
streamwise wavenumber was varied. Duguet, Brandt & Larsson (2010) similarly showed
that maximising transient growth does not necessarily imply an easier transition. Hence
the leading adjoint eigenmode, which by construction optimally energises the TS wave, is
a more efficient initial condition to reach turbulence than any initial condition producing
optimal transient growth. Consequently, optimal growth does not favour the transition,
unlike in 3-D shear flows where the transient growth associated with the lift-up mechanism
is an essential element of the transition process (Reddy et al. 1998; Pringle, Willis &
Kerswell 2012).

The same procedures applied at lower rc produced the same reduction in delineation
energy with increasing T and exhibited edge states independent of T . For 0.3 � rc � 0.8,
after departing the edge, a secondary stable state formed (Jiménez 1990; Falkovich &
Vladimirova 2018), again independent of the initial condition.

5. Discussion and concluding remarks

In conclusion, subcritical turbulence exists in quasi-2-D shear flows and can be reached
directly, rather than via an intermediate 3-D state. The 2-D transition mechanism bears
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important similarities with its 3-D cousin: it is ignited by a perturbation of finite amplitude
and first reaches an edge state that is seemingly independent of this initial perturbation.
The edge state subsequently breaks down into a turbulent state if the initial perturbation
energy exceeds the delineation energy ED for that particular perturbation. As in the 3-D
problem, the attained turbulence is not yet fully developed (Wygnanski & Champagne
1973; Wygnanski, Sokolov & Friedman 1975). Departure from fully established turbulence
in quasi-2-D shear flows expresses as time intermittency, with sporadic retreats to a low
energy state different from the base laminar flow.

Conversely, the subcritical transition in quasi-2-D shear flows exhibits specificities
that distinguish it sharply from the 3-D one. Chiefly, the lift-up mechanism that
underpins transitions in 3-D can be ignited at criticality so low that the TS waves are
strongly suppressed by the linear dynamics, despite being the least damped infinitesimal
perturbation. Thus, they are not observed in the 3-D transition. In quasi-2-D flows by
contrast, the 3-D mechanism is absent and our study demonstrates that the dynamics
is dominated by the TS waves, with the edge state resulting directly from their weakly
nonlinear evolution. In a quasi-2-D flow, the TS wave instability directly connects the base
flow to turbulence via a subcritical bifurcation, in stark contrast to a 3-D flow in which the
saddle-node bifurcation is disconnected from the base state (Khapko et al. 2014). This may
also explain why transition in quasi-2-D flows is relatively weakly subcritical: at lower rc,
TS waves are so strongly linearly damped that their nonlinear growth is stifled.

This new transition mechanism reopens many questions resolved in the 3-D case:
How does the intermittency or localisation of the turbulence evolve into the supercritical
regime, e.g. following the mechanism outlined by Mellibovsky & Meseguer (2015)?
Does the transition to the fully turbulent state obey a second-order phase transition
of the universality class of directed percolations as for other shear flows (Lemoult
et al. 2016)? While the thermodynamic formalism used by Wang, Li & Weinan (2015)
indicates that two-dimensional Poiseuille flow loses stability in a manner consistent
with a continuous phase transition, in the quasi-2-D case linear friction may impact
the development and interaction of unstable travelling waves, and so this remains an
open question. Separately, much remains to be discovered on the subcritical response
to finite amplitude perturbations: How does the delineation energy vary with criticality,
especially considering the relatively short subcritical range in which turbulence can be
sustained? Can this subcritical response be manipulated to prevent or promote turbulence
(for example, to enhance heat transfer in the heat exchangers of plasma fusion reactors)?
These questions call for expensive numerical simulations, but also for experiments
with well-controlled perturbations, since this first evidence of subcritical transitions in
quasi-2-D shear flows is currently purely numerical.

While we have established a scenario for transition involving a purely 2-D mechanism,
3-D mechanisms could still compete with this scenario and trigger a subcritical 3-D
transition. Whether one of the other scenarios dominates cannot be determined on the
basis of (2.1) only as the 3-D mechanisms are specific to the physical process promoting
the emergence of quasi-2-D dynamics. As such, whether a purely quasi-2-D subcritical
transition to turbulence can be observed in practice remains to be determined in particular
cases. The question could be addressed either with 3-D numerical methods or experiments
on magnetohydrodynamics or rotating flows, or in Hele-Shaw cells, for example.
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