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A-BILINEAR FORMS AND GENERALISED A-QUADRATIC
FORMS ON UNITARY LEFT A-MODULES

C.-S. Lin

In this paper we shall define a generalised A-quadratic form and prove that in some way
this form and an A-bilinear form are equivalent to each other. Our result characterises
that of Vukman in the sense that we use any n vectors for a fixed n > 2, instead of any
two vectors. Consequently, a new generalisation of an inner product space among vector
spaces is obtained. This also leads to a new relationship between a 2-inner product space
and a 2-normed space.

1. INTRODUCTION AND DEFINITIONS

It was shown by Vukman in a very recent paper [7, Theorem 7] that given an
A-quadratic form on a unitary left A-module, there exists an A-bilinear form with some
kind of relation between them. The idea originated in a paper by the same author {8,
Theorem 2.1]. In this paper we shall define a generalised A-quadratic form and prove
that in some sense the two forms are equivalent to each other. Therefore, our result
characterises that of Vukman (6, 7] which in turn generalised Kurepa’'s extension [4, 5)
of Jordan-Neumann’s generalisation of inner product spaces among vector spaces. It
may be noted that all well-known characterisations of an inner product space in the
past used any two vectors in a normed vector space, in contrast to this we shall use any
n vectors for a fixed n > 2. In the final section we shall present a new relstionship
between a 2-inner product space and a 2-normed space.

Let us recall first of all some standard definitions. A Banach +-algebra is a *-
algebra (an algebra with involution) which is also a Banach algebra. Let A be a
*-algebra with a unity element e, and let X be a vector space which is also a left
A-module. We call a mapping B: X x X — A an A-bilinear form [8] if B is additive
in both arguments, B(az,y) = aB(z,y) and B(z,ay) = B(z,y)e* for all pairs = and
yin X and all a in A. A left A-module X is said to be unitary if ex = = for all
in X.

DEFINITION 1: A mapping Q: X — A is called a generalised A -quadratic form if

(*) Q(az) = a@(x)a” and
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CQ(ZD.) +iQ<Z i—.(n"‘c— 1)v_,->

2 =1

n n-1

(n+c—1) Q(v1)+cZQ(v, +ZZQ(U,—1},)
i<j i=2
j=3
for all ¢ in A, all n vectors vy,v2,...,v, in X, aconstant c #0, £1~n, #1 —%n

and a fixed n» > 2. Thus, when n =2 and ¢ =1 it reduces to
(%) Qv1 + v2) + Q(v1 ~ v2) = 2(Q(v1) + Q(v2))

which is known as an A -quadratic form [6].

2. THE PRINCIPAL RESULT

THEOREM. Let A be a complex Banach *-algebra with a unity element e, and let
X be a complex vector space which is also a unitary left A -module. If B: X xX — A
and Q: X — A are two mappings, then the following two statements are equivalent:
(1) B is an A-bilinear form and Q(z) = B(x,x);
(2) Therelation B(z,y) = 1(Qz+y) - Qz —y) +iQ(z + iy) — iQ(z — iy))
holds and Q is a generalised A -quadratic form.

PROOF: (1) = (2): Starting from the righthand side, the first relation is a direct
computation. That Q(az) = aQ(z)a* is obvious. To show the second identity in (+),

since

(Z v,) = CZ Q(v;) + CZ i: (B(vi,v;) + B(vj,v;)) and

i<j =1
j=2

ZQ(Z (n+c-1) .):_(n—l)ZQ(vi)

—(n+c- l)zn: (B(zn:’vi,vj> +B(‘Uj,zn:'vi>>
j=2 i=1 =1

+(n+c-1)° Z B(v;,v:)

=2
n n—1
+(n—-1) Z Z (B(vi,vj) + Bvj,v;)),
i<j i=1
j=2
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the rest is straight-forward computation.

(2) = (1): since Q(0) = 0 by () (the condition that ¢ # 1 — 3n is required
to assure this result), @Q{(z) = B(z,z) is evident from the relation. To prove that
B(z + vy, z) = B(=z,z) + B(y, 2), we first assert that

_ntc— 1 )
T WiE

. n-—1 n—1
1
cB(u-}-n_lE wi,.z)+E B(
(a) =1 i=1

=(n- 1)3(&‘:___1_u’z> - CB(T_L_"'_C__-lu,Z>

n—1 c

for all u, z and w; in X, with ¢ =1,2,...,n— 1. To this end, let v; = v + z and

v; =w;_31/(n —1) for i =2,3,...,n in the second identity of (*), so

Qlu+z+ ! nz_:lw +N§Q +z+ ! nil nte-l
_ i U+ z+ — Wy — ————w;
n—1 & e no1 4 no1
(b) n-1n-2

=(n+c—1) (u+z)+ ZQ@ ZZQ(w,_

i<y =1

ij=2
If z is replaced by —z, by iz and by —iz in (b), we shall get three equations. From
these three equations together with (b) we obtain easily an identity expressed in terms

of the mapping B, namely

1 =Y = _ntc-1

(©) cB<u+n_1;w;,z)+;B( 7 w,-,z)

=(n+c-1)B(u,z).
Let w; = Z'T‘l—u in (¢) for i =1,2,...,n — 1. Then

—1
(d) cB(l%—u,z) = (n+¢—1)B(u, z).
Also let w; = —u in (c¢) for ¢ =1,2,...,n —~1. Then

—1

(e) (n—l)B(E—:;i—l—u,z> = (n+c—1)B(u,z2).

Thus, the identities (c), (d) and (e) constitute our assertion.
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Next, let v = ni———:—i—ly in (d) and (e). Then cB(n_ ! z> =(n-1)B(y,z).
n-—1 1-n (n—1)> . .

let v = —— d w; = f =
Also let u n+c_1(:c+y) and w n+c—1m+c(n+c—1)y in (a) for ¢

1,2,...,n—1. Then

CB(":l z)+(n—1)( z) = (n -~ 1)B(z +, 2),

that is, B(y,z) + B(z,z) = B(z + y,2). Analogously one can show the additivity in
the second argument and we shall omit the details.

It remains to verify that B(aez,y) = aB(x,y) and B(z,ay) = B(z,y)ea* for all
pairs ¢ and y in X and all a in A. We shall omit the proof since the result was
mentioned in [7, Theorem 7], and was proved in detail in [6, Theorem 2.1]. This

completes the proof of the theorem. |
3. COROLLARIES

When X is a real (complex) normed vector space and A is the field of real (com-

plex) numbers, we have

COROLLARY 1. X is a real (complex) inner product space if and only if the norm
in X satisfies the condition:

C”Z'U:HZ"‘Z”Z'U: n+c—-1)vj”2

j=2 i=1
(1) n n-—1
=(n+c—1)f floall* + CZ loall> + D D lloe — w51?
i<F i=2
Jj=3
for any n vectors vy,v2,...,v, in X, a constant c# 0, #1 —n, and a fixed n > 2,

and the inner product is defined by

(2,9) = 3 (Il + 91" ~ lle — )

(i)
((e19) = 3 +91P ~ 1o =51 + il + 8l = lls — i) ).

PROOF: Let us consider the real case first. The proof of the relation (z + y,z) =
(z,z) + (y,2z) is merely changes of notations in our Theorem: B(z,y) =

%(Q(:c+y) ~ Q(z —y)), where B(z,y) = (z,y) the usual real inner product of =z
and y, and @(z) = ||z]|>. This same relation implies the identity (az,y) = a(z,y) for
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all real a which can be found in [1, p.175]. As for the complex version it can easily be
derived from the real case {1, p.176] and we shall omit the details. R

When n =2 and ¢ =1 the equation (i) is reduced to
(iii) Iz + 9l + lle = oli* = 2(l=ll* + llylI*)

which is the classical condition of the Jordan-Newmnann generalisation of an inner prod-
uct space. It is also known as the parallelogram law in an inner product space. This
leads, with the aid of Corollary 1, to:

COROLLARY 2. Statements in Corollary 1 still hold if (i) is replaced by
(') e +9ll® +lle =yl + lle + 2” + lle = 2lI* = allell® + lly + 21* + lly - =|i*

for all triplets ¢, y and z in X .

PROOF: In virtue of Corollary 1, we shall prove the real case only.
(=): obviously (iii) implies (i').

(«): after interchanging = and y in (i') we have
e +ylI* + flz = yl® + lly + 21> + fly — 211 = 4flyll* + [l + 2))* + [|= ~ 2|

Adding this to equation (i') we get equation (iii). |
Corresponding to Corollary 2 we have

COROLLARY 3. Statements in the Theorem still hold if Q in (2), instead of being
a generalised A -quadratic form, satisfies the conditions:

Q(az) = aQ(z)e* and
Qlz+y)+Q(z-y)+Q(xz+2)+Qz - 2) =4Q(z) + Qy + 2) + Qy — 2)

(+'

for all triplets ©, y and z in X .

4. REMARKS

1) When n = 2 and ¢ =1 the implication (1) = (2) in the Theorem is immediate,
and that (2) = (1) is precisely [7, Theorem 7].

2) If ¢ =1 in particular; we can show that

B (Z Ty Z) = E B(.’B,‘,Z)
i=1 i=1
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in the proof of (2) = (1) in the Theorem. This goes as follows: from our assertion in
(a) we have, when ¢ =1,

B(u+

The desired result follows by setting « = l
n

= n-1
n
Z) Z (u + n‘—:—l -~ w; — ;—iwj,z) = B(nu, 2).

(n — 1)}(zy — ®i4y) for
n

z; and w; =

i

i=1,2,...,n —1 in the above.

3) A closer look ad Kurepa’s papers ([4] and [5]) shows that many results appear-
ing there can be generalised by just replacing the quadratic form by ourlgeneralised
quadratic form (i).

5. 2-NORMED AND 2-INNER PRODUCT SPACES

The following standard defintions are from {3] and [2]. If X is a real linear space
of dimension greater than one, and if ||.,.|| and (.,.|.) are real functions on X x X and
X x X x X respectively, then X is called a real 2-normed space with a 2-norm ||.,.||
if the following conditions are satisfied:

(1) |l=,y|| = 0 if and only if z and y are linearly dependent;
(2) M= 9l = lly, ll;

(3) |laz,y|l = la] ||z, y|| for every real a;

(4) Mz +y, 2l <liz, 2l + lly, 2| -

X is called a real 2-inner product space with a 2-inner producet (.,.|.) if the
following conditions are satisfied:

(1') (=,zly) 2 0; (z,z|y) = 0 if and only if z and y are linearly dependent;
2') (=,=ly) = (v,9l);

(3") (=ylz) = (v, z|2);

(4') (az,y)z) = a(z,y)z) for every real a;

(5') (2= +y,zls) = (z,2|s) + (y,2]s).

It may be noted that in other papers, including [3] and [2], these are simply called
a 2-norined space and a 2-inner product space. In this last section we shall present a
new generalisation of a real 2-inner product space among real 2-normed spaces. We also
define in an obvious fashion a complex 2-normed space and a complex 2-inner product

space, and give a similar generalisation.

COROLLARY 4. The following two statements are equivalent:

(I) X is a real 2-inner product space and

(f) llz,yll = (=, ly)¥;
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(II) X is a real 2-normed space and

(®) (2,912) = 3 (I + .21 = 1= — v,21),

and the 2-norm in X satisfies the relation

cl Zvusu2 + Z J sz n+c—1)vj,s’

j=2 i=1
(h) n n-—1
= (n+e—1)| log, sl + cZ lloissll? + D 3 llvi = w5, 81
<) i=2
=3
for any vectors vy,v3,...,U, and s in X , aconstant ¢# 0, £ 1—n and

n>=2.

PRrOOF: (I) = (II). It is known [2, Theorem 4] that X is a real 2-normed space
with the 2-norm in (f), and that (g) holds. The equality (h) is similar to (i) in Corollary
1.

(I) = (I). That (g) implies (f) is obvious. It may be noted that a 2-norm is
nonnegative [3], and the condition (5') implies (4') [2, Theorem 5). Thus it suffices to
show that (h) implies (5'). We remark that the claim (a) in the Theorem is now

1 n—1 n-—1 1 n—1 n + c— 1
c(u + —y ;w;,zh;) + Jz—; (u + — ;wi - __;___T_.wj,zls>

-1 -1
=(n-— 1)(%u,z|a) = c(%—u,zls)

for v, z, s and w; in X,and ¢ =1,2,...,m — 1. The rest of the proof is clear. R

It seems natural to consider the complex variant of the space X, and that of

Corollary 4. We shal begin with two definitions.

DEFINITION 2: Let X be a complex linear space of dimension greater than one,
andlet [|.,.]| be a real function on X x X, and [.,.|.] a complex functionon X x X x X,
then X is called a complez 2-normed space with a 2-norm |[., .|| if all four conditions in
a real 2-normed space are satisfied, where a is a complex number in (3). X is called a
complez 2-inner product space with a 2-inner product [.,.|.] if the following conditions
are satisfied:

1") [=,z|ly] 2 0; [z,z]y) =0 if and only if z and y are linearly dependent;
2")  [=zly] = [y, vlz];
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(3") [z ylz] = [y, z|2]*;
(4") [a=z,ylz] = a[z,y|z] for every complex a;
(") [z+y,z|s] = [z, z|s]+[y, z|s] ; where * denotes the conjugate of a complex
number.
It follows easily that [z,aylz] = a*[x,y|z] for every complex a, [[z,ylz]] <

[w,xlz]% [y,ylz]% (the proof is a slight change in that of [2, Lemma 1]), and [z, yly] = 0.

Examples of such spaces can easily be found. In fact, it is not difficult to show that
every inner prdduct space, that is, a complex pre-Hilbert space, of dimension greater
than one with the usual inner product (.|.) is a complex 2-inner product space if the

2-inner space is defined by
[z, yl2] = (zlp)llzlI* — (el2)(zly).

On the other hand, if X is a complex 2-inner product space, then it is a complex

2-normed space if the 2-norm is defined by
1
=, yll = [z, xly]?.

COROLLARY 5. The following two statements are equivalent:

(I) X is a complex 2-inner product space and

(') e,y = [z, ly]?.

(I1) X is a complex 2-normed space and

1 . . . .
) [myld=L(lz+y2° =l —yzl* +illz + iy, 2]° - ifle iy, 2]1*),
and the 2-norm in X satisfies the relation in (h).

Proor: (I} = (II). With the 2-norm in ({') it follows easily that X is a complex
2-normed space (lLere, we use the aforementioned inequality |[z,y|z]] € [z, 'clz]'i’ ly, y|z]?
to show the inequality (4)). That (f') implies (g') is straightforward. The relation (h)
holds exactly as in Corollary 4 except replacing (.,.|.) by [.,.[]-

(II) = (I). That (g') implies (f') is immediate, and hence conditions (1") and
(2") hold. We shall use Corollary 4 and adapt the device developed in [1, p.176]
to verify the other three conditions, and proceed as follows: we may regard X as a
real 2-inner product space; in view of Corolary 4, (g) defines a real-bilinear form with

llz, y|| = (:c,:cly)% and (y,z|z) = (z,y|z). Rewriting (g') in the form

[, 9lz] = (z,912) + i(z,iy|2),
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then [z,y|z] is also real-bilinear, and hence (5" ) holds.
Using (g) in Corollary 4, that is, (z,y|z) = (iz,1y|z), (3" ) follows from

[y, 2lz]" = (y,z]2) — i(y, iz]z) = (z,yl2) + i(iz, —y[2)
= (z,ylz) + i(z,1y|z) = [z, ylz].
To show (4") at last, in view of real-bilinearity it will be sufficient if we prove that
[iz,y|z] = i[z,y|z]; indeed
[iz, yl2] = (iz, ylz) +i(iz,y|z) = —(=,iy|2) + iz, y]2)
= i((z, ylz) + iz, iyl2)) = i[z, yl2).

Corresponding to Corollary 2, we have

COROLLARY 6. The following two statements are equivalent:

(I) X is a real (complex) 2-inner product space and (f) holds (respectively,
(f' ) holds);

(II) X is a real (complex) 2-normed space and (g) holds (respectively, (g')
holds), and the 2-norm in X satisfies the relation

4”:‘8>‘ZI|2 = ”y + z,:c||2 + ”y - Z,:E”Z + ”:l: +y7Z”2 + ”'c - yazllz
—llz + 2,9 = |z — z,9l*

for any vectors ¢, y and z in X .

In conclusion, it should be noted that when ¢ = 1 and n = 2 in particular, (h)

becomes
llos + vz, slI® + llog — vz, 8l|® = 2(llvs, sll* + flvz, sl1?)-

Thus, Theorem 4 and 5 in [2] are special cases of our Corollary 4. When ¢ =1 we can

(Z zi, z|s) = Z (i, 2]8).

i=1 i=1

show that
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