CONTINUED FRACTIONS WITH ABSOLUTELY
CONVERGENT EVEN OR ODD PART

DAVID F. DAWSON

1. Introduction. The purpose of this paper is to give conditions under
which the absolute convergence of the subsequence of odd or of even approxi-
mants to a continued fraction implies convergence of the continued fraction.
In § 2 we consider the problem in general, and in § 3 we impose a condition
which gives absolute convergence of the odd or of the even part of the
continued fraction and state conditions which imply convergence of the
continued fraction. If each of ¢ and b is a complex number sequence, let
f(a) denote the continued fraction

1o e g
(1.1) I+ 1 +14+1+4...

and g(d) denote the continued fraction

11 1

b+ b+ b3+ .. ..

Let f(a) have the approximants f, and g(4) have the approximants g,, where
f, = A,/B, and g, = C,/D,. Then

Ao =0,41=1, Apy1 = A, + a, 4,1,

By=1,B,=1, Byyg =B, +a,B,.1, ¢=1,23,...,

Co=0,C =1, Cq+1 = bq+1cq + Cq—h

Do = 1, D1 = b1, Dq+1 = bq+1Dq + Dq_l, q = 1, 2, 3, e o s e
If by=1, a, #0, 1/byrs = ayby, p = 1,2,3,..., then (1.1) and (1.2) are
equivalent in the sense that the two continued fractions have the same
sequence of approximants. A well-known necessary condition for the con-

vergence of g(d) is that the series Y. |b,| diverge. Scott and Wall (2) investi-
gated (1.1) by means of the systems of inequalities

nl+aill 2 (1 + 7-)af
72p+]|1 + Q2p + a2p+1| = r2ﬂ+lr2p~1|a2p|+|a2p+1|v p= ]-v 2v 3v ey

(1.2)

(1.3)

(1.4)

(1.5)

and

(16) Tﬂpll + A2p—1 + aﬁp' é 7’2p"2p—2|a2p—1|+la2ply P = 1, 2y 3y LI}
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where 7, is a non-negative number, p = — 1,0, 1,2,.... They showed that
if the 7, are subjected to certain restrictions (for example, 7, = I, p = —
0,1,2,...), then either some a, = 0 and f(a) converges, or else a, # 0,
p=1,2,3,..., and the divergence of the series ) |b,/ is necessary and
sufficient for the convergence of f(a). Lane and Wall (1) arrived at the same
conclusion with the only restrictions on the 7, that r_; and 7, be distinct from
zero by showing that if the even and odd parts of f(a) converge absolutely,
then f(a) converges if, and only if, the series 3_!b,| diverges. This result is a
consequence of two theorems (1, p. 371), the first of which states that if
the even and odd parts of f(a) are convergent the even (odd) part being
absolutely convergent, and if the series }_|ks,_1| (the series >k,
then f(a) converges. Here

1 .

by = Uy s p=1,23,....
The second of these theorems states that if there is a number M such that
fol £ M, p=1,2,3,..., and no term of a is zero, then the two series
> |k, and 2|6, converge or diverge together. The question arises as to what
restriction can be placed on the sequence b which would replace the condition
that the series X_|hs,_1| diverge in the first of these theorems. To answer this
question by studying the relationships between the 6, and %, appears difficult
since the relationships are complicated:

1
bh=1, bo=—hy, bs= —hy- i—_ h

—
b =) (= ha) o (L= )
242 2p+1 (A =h)(A = hy) ... (1 — hyy)

p=1223,..
PSR U € Sl € el ) R € Sl 2%,
2+3 PR A = k) = hy) ... (1 = hopyy)’

We answer this question in § 2 by studying the continued fraction (1.2). The
result is that if {g., 1} ({gsy}) converges absolutely and {g2,} ({gz2_1}) con-
verges, then g(b) converges, provided the series 3_|bs,—1| (the series Y |bs,l)
diverges. Thisresultis stronger than expected in the light of results stated above.
We use this result to construct a simple proof of a theorem of Van Vleck (3):
If there exists a positive number £ such that [Im 8, < k-Re b,,p =1,2,3,..,
and &; ¥ 0, then g(b) converges if the series Y_|b,| diverges.
In § 3 we turn our attention to the systems of inequalities (1.5) and (1.6).

The two main results obtained are:

(]) If (16) ((1.5)) hOldS, 0 < Tap—2 é 1 (0 < Yop—3 é ]), f) = l, 2, 3, ey

and there exists a positive number M such that

Hm_( HnH), =123 ...,

i=1
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then f(a) converges, provided ¢ contains no zero term and the series Y |bs, 1|
(the series 2_|bs,|) diverges;

(2) If (1.6) ((1.5)) holds and there exists a number 7 such that 0 < ry,_,
Sr<10<ry3=sr<l),p=1223,...,thenf(a) converges absolutely,
provided a contains no zero term. Several examples are given in connection
with these results.

2. Convergence of g(b). Here we study conditions which give con-
vergence of g(b) when one of the sequences {g2, 1} and {gs,} converges abso-
lutely. Throughout this section, theorems are stated and proofs are given for
the case that {g,,_1} converges absolutely; the results for the other case
follow by similar arguments.

LEMMA 2.1. If 2 is a complex number sequence and there exists a non-negative
integer N such that the series

S ‘I_Mz

2N4p

converges, then z converges absolutely.

Proof. If + > N, then

! |
Zit+1 Zit1 Zit1 Zit1
exp |1 -2 > 14 —ﬁ——l' R R e
2 25 i i
Hence, if 7 is a positive integer, then
2 N+n 2 N+n 2
'N- 1 1 1
SNtntl Sptl| o H exp |1 — =2t
2N+1 p=N+11 3p p=N+1 2p
N+n 2
1
=exp », |1 —=22H1 < M,
p=N+1 zp
where
o _—
M=exp ), [1—"28;
p=N+1 2p

thus |2y 1us1] £ M|zy41|. Therefore, there exists a number & such that |z,| < &,

p=1,2,3,.... Thus if g is an integer greater than N 4 1, then
: . Zpt1 - Gp+1

2 5=zl = 2 lal- |1 - <k 31—

p=N+1 p=N+1 » p=N+1 2p

Therefore, z converges absolutely.

TurOREM 2.1. If {gs,—1} converges absolutely to v and the series 3_|bs,_1]
diverges, then there is an infinite subsequence of {g»,} which converges to v.

Proof. Suppose {gs, 1} converges absolutely to v, the series 3 [bs,-1 diverges,
and {g,} contains no infinite subsequence which converges to v. There exists
an integer .S such that if p > S, then Dy,_; # 0. If p > S and D,, # 0, then
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|g3p—1 — gl = 1/|D3p—1Dyy).

Hence there exists a number & such that, if » is a positive integer, then
|D,41D,| < k, since {gs,} contains no infinite subsequence which converges
to v. Suppose p > S. Then

_ o fbyn|

(21 — gop 1| = .
2.1) lg2p+1 £29-1 |D211+1D2p—1|
If there exists a number R such that [Depy1Dgp 1| < R, p =1,2,3,..., then
if n > S and m is a positive integer, it follows that
"21::” |gopt1 — gopa| = "i" "J—ll?‘pji" ‘I‘HZM [B2ps1]
p=n il r p=n lD2p+1D2p—l| ~ R p=n P

But this contradicts the fact that the series Y |bs,_1| diverges. Thus if R > 0,
there exists a positive integer ¢ such that [Dj;1D2; 1] > R, and so either
|Dasr1) > RY or |Dsiy| > RY. Hence {Ds,_;} contains an unbounded sub-
sequence. From (2.1) it follows that if p > S and D,, # 0, then

[bops1] [Dsy|*
|D2ys1Dsy| [D2yDsps|’

(2.2) 82041 — gap—1| =

and so, by (1.4),

|1 _ Dypur| _ [bypiDsy| _ [bapual Dy [*
D2p—l lDip—I[ IDZIJD%—I’ '
and
Dayiy 1

— il =1 = " ;
Ig21’+1 &2 ll } Dgp_l ID2p+1D217|

which means that

D
1= D%+1 = |D2pi1Ds| |g2p41 — gop1| < Blgopr1 — g2p1l-
2p—1
On the other hand, if p > S and D,, = 0, then by (1.4), Dypy1 = Dgpy, and
)
Dipiy
1 -5 =0.
' D2p—1

Hence the series

> |1 _ Dysipi

Dsy(sip—1

converges. Therefore, by the lemma, the sequence {D3,_,} converges absolutely.

But this contradicts a statement proved above that {D,, ;} contains an

unbounded subsequence. Therefore, our assumption that {gs,} contains no

infinite subsequence which converges to v is proved false, and the theorem
is established.
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THEOREM 2.2. If {gs—1} converges absolutely, {gs,} comverges, and the series
2 |boy1| diverges, then g(b) converges. There exists a sequence a such that the
odd part of f(a) converges absolutely, the even part comverges, and the series
2.18,| diverges, and f(a) does not converge.

Proof. The first part of the theorem follows immediately from Theorem 2.1.
We now construct a sequence ¢ as in the second part of the theorem. Let

fopor = 1/2771
1;—}% if pis odd,
fz,,=| p=1,23,....
lg_j%g if p is even,

It p is a positive integer, let a,s be the number determined by

= api2 (fp — for2) (Forr — fors) = (o = for1) (forz — fFota),
and let ¢; = ¥ and a» = — %. Then {f,},-1" is the sequence of approximants
of f(a) (5). Clearly f(a) does not converge, but the odd part of f(a) converges
absolutely while the even part converges, but not absolutely. We note that
|as/a,| = 2. Let p be a positive integer. Then

Wops2(fop = fopr2) Foper — fops) _ (fop — foprr) (foprr — fopas)
a2p+1(f?p—l - f2p+1) (fi‘p - f21r+2) (f2p—l - f2p) (f2p+1 - f2p+2) ’

and so

f2p+2 - f2p+3
f2p+1 - f2ﬂ+2

Sfoom1 — fopr1| |fop — foprr
foor1 = foprsl [fopr — fop
— ot = for1| |fope2 — foprs

f2p-l - f211 f‘lp+l - f217+2
> 2.

We note that if p is a positive integer, then [fy, — fa_1] < 2, and so
1 (f2p—1 — fopt1) (f217 _ f2p+2)

Qo1 (far—1 = f20) (fopt1 — fopt2)
> tfo-1 = far| [foo — foosol

1
= g2 [fsp = fopsal-

A2pt2

A2pi1

Therefore, it # is a positive integer, then
n

I H (127
=1

[bonte| = b
n ' n+10«2p—1
=1

1

= (12;7
fdzn+1| p=1

Q2p—1

Vv

1
zn‘ 211_+§ lf?ﬂ _f2n+2|
%’f% _f2n+2‘-

Thus the series 3. |b,| diverges. This completes the proof of the theorem.
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156
We now use Theorem 2.2. in constructing a simple proof of the theorem of

Van Vleck mentioned in the Introduction.
TuEOREM 2.3. (Van Vleck) If there exists a positive number k such that
Im b, < k- Rebd, p=1,2,3,...,
and by # 0, then g(b) converges provided the series >_|b,| diverges.
4 = -— =1,2,3,....
tp(u) bp+ u’ p 1‘ ’3’

Then we see that if p is a positive integer and Re u = 0, then Re ¢,(#) = 0.
Let H denote the half-plane z + 2 = 0. If n is a positive integer, let T, (u)

Proof. Let

t,(w). We note that 7,(H) is a circular disc and we denote its

= l1Ifz .
radius by R,. We also note that 75, (f) isa subsetof 7,([{), p = 1,2,3,....

We find that
. _ G+ G,
Ta(u) = D, .yu+D,’
and
; }
Ry = 55 -2 '
Re DnDn’l 1 Re prDp—ll2
p=
Since b, =

Thus ]‘n(O> = Cn//Dn = &n and ]‘7z(°°> = Cn—l/Dn—l = &n-1.
Reb,+ |Imb, < Reb,+kReb, = (1+ k) Reb,, p =1,2,3,...,itfollows that
(1 +k)Re DnDn—l = Z (1 + &) Re bﬂle—liZ > Z lbzl| |D17~1i2

p=1
n=123....

s

> anDn—l'r
Case 1. If Re D,D,_;— © as n — o, then R, =0 as n — » and (b)

converges.
Case 2. If there exists a number A such that (I + k) Re D,D,_, < M,

p=1,2,3,..., then it m is a positive integer,
m m | ] 1 12
_ - bl 1bpi1] [Dy)

rZA Igw—l gp*ll 1;1 {DZ’+JDD*II p=1 {DD+1D11[ !DprAli

KLY byl 1D, < L2 M,
p=1

where L = 2R;. Hence the even and odd parts of g(b) converge absolutely.
Thus, by Theorem 2.2, g(b) converges since either the series 3 'bs, 1! or the
series Y |bs,| diverges. Therefore the theorem is established.

Remark 2.1. It is interesting to note in the above that actually R, — 0 as
n— o. If ¢ is a positive number, there exists a positive integer V, such

that, if = > N, then
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1
—1| = 7" - <c
fgn £n I ID,,,D”_] ;
and so
- 1
|DnDn,——1l > .
[
Thus

= |
Re DD, _; > (—(Ttl" 7\’> .

Therefore, R, >0 as n — o,

Remark 2.2. A curious corollary to Lemma 2.1 is that convergence of the

series ».|C,D,.1~" implies convergence of the series > .!D,D,.,I='. This is
evident since, if p is a positive integer,
1 o+ 8p T 8p+1| _ \C,/D, — sz+1/1)n+l‘ — o
% g |C,/D,| |C,Dys1]
Clearly, the converse is not true in general. For example, let g, = 277, p = 1,
2,3,....

3. Convergence of f(a). Here we study conditions which give converg-
ence of f(a) when one of the systems of inequalities (1.5) and (1.6) holds. We
shall state the theorems of this section in terms of the system (1.6) only.
Similar results are obtained when (1.5) holds.

TurEOREM 3.1. If (1.6) holds, ry # 0,and az, #0,p = 1,2,3, ..., then {[sp_1}
converges absolutely to a point v (a known result, (2, p. 155)), and if the series

Slawas . . . @op_| |@2as . . . asp|”! diverges, them there exists an infinite subse-
quence of the sequence of approximants of the even part of f(a) which converges
to v.

Proof. From (1.6) and (1.3) we observe that

P

(B.1)  r5(Bapia| > lag| [Byya| + <H "u) 11 @21

1=

, o p=1,2,3,....

By (1.6), 7y, # 0, p = 1,2,3,...,since as, # 0, p = 1,2,3,..., and from
(3.1) it follows that Bs,41 # 0, p =1,2,3,..., (we note that B, = 1).
Hence by (3.1),

ST N 2y |
U2W+l ij 1 ‘Bﬁp-l—lBZp—l‘,

|CLQ(I4 P (I/zp_Ql 1(12(14 RN (12,,] e
= Yo¥o . .. 7’2,,,,2|sz—1| Yoro . .. 7’271|sz+|‘ ' b= 2,34,
Therefore,
. a1 las|

“’/ -/ p-- < ' )
1 Fortr = Japea] < 1+ ai + as| * rors| By

p=
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and {fs,_1} converges absolutely to a point v. We now require that the series

E!ang e (12,,~1i IG/Q(L; e (lzpl—l
diverge. Thusa, # 0, p = 1,2,3,.... Hence we can consider the continued
fraction (1.2) equivalent to f(a). Since |11 = |@1a3. . . @2p| |@2as . . . azy|™!

then by Theorem 2.1, the sequence of approximants of the even part of f(a)
contains an infinite subsequence convergent to v.

THEOREM 3.2. If (1.6) holds and there exists a positive number M such that

(1) O<7’2p_2<1, P=1,2,3,...,
2) M < T raps n=1273,...,
p=1

then f(a) converges if either of the following conditions holds:

(i) @y # 0, p = 1,2,3,..., and the sertes Y bs,_.| diverges,
(ii) some as, = 0 and no asy 1 = 0.

There exist a number sequence {rs,},—0" and a sequence « which satisfy (1.6),
(1), and (i) such that f(a) does not converge.

Proof. Suppose ¢, # 0, p = 1,2,3,.... We consider the continued fraction
(1.2) which is equivalent to f(e), and note that
(32) B;},, = QA3 ... (Lgp_lv[)-g,,, .
= 1,2,3, ...
Bopi1 = @sas . .. azpDopis, b
From (3.1), (3.2), and (2), it follows that
7‘-’-PID‘ZI)+1| g |D2P—1’ + M{bh)‘i’li‘v /) = 1v 2, 3! LN
Hence
p+1

ID211+1I > M ;1 ib2i—1|1

since Dy = 1 and M = 1. If » is a positive integer, then

o ol
ot " ‘DZnD2n+1[ |D2n+1| |D2n+1 - D2n—1!
Ib2n+ll 1
< T <
=~ |D2n+1|[ID2n+1| - ID:Zr[-le = MID‘ZW}'lI
1

< Slilbap |
Therefore, since the odd part of f(a) converges by Theorem 3.1, we see that
f(a) converges.

Suppose some ¢y, = 0 and agp1 # 0, p = 1,2,3,.... By (1.3) and (3.1)
we see that B, £ 0, p = 0,1,2,3,....Hencebyaknown theorem (4, p. 26),
f(a) converges. This completes the proof that f(a) converges if either of the
conditions (i) or (ii) holds.
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Let
_§ Llif pisodd
T2 = Lif pis even,
1if p is odd
— 2if p is even,

0,21,_1':—‘021,:{ p=1,2,3,....
Then (1), (1.6), and (i) are satisfied and f(a) does not converge since the se-
quence of approximants of the even part of f(a) contains an infinite subsequence
of zero terms while the odd part of f(a) does not converge to zero. This com-
pletes the proof of the theorem.

Remark 3.1. In (ii) of Theorem 3.2, the condition that ay,_; # 0, p = 1, 2,

3, ..., 1n case some as, = 0 cannot be removed. We see this in the following
example: let 7o, =1,p=0,1,2,... ,a1=a:=1,a3=0as=0,a1=a5s= — 3,
a, =1, p=7,89,.... Clearly (1), (2), and (1.6) are satisfied. Simple
calculations show that B¢ = B; = 0,andsoby (1.3),B, =0,p = 6,7,8,....

Remark 3.2. In Theorem 3.2, in case a5, # 0, p = 1,2,3,..., but some
@2p—1 = 0, the continued fraction does not necessarily converge, as shown by
the following example: let ro, = 1, »p =0,1,2,3,..., a; = 0, and

— 3if pis odd

lifPiSeven, p:]rzyls,....

a2p=a2ll+1={
Then By, =0, p=1,2,3,....

THEOREM 3.3. If (1.6) holds and there exists a number v such that 0 < ryp_»
Sr<l1,p=123,..., then f(a) converges absolutely, provided one of the
sequences {@s,_1} and {as,} contains no zero term.

Proof. Suppose a, # 0, p = 1,2,3,.... Again we consider the continued
fraction (1.2) which is equivalent to f(a). If # is a positive integer, then

g2nt1 — gon| = ! = [banta|
" " ID2n+lD2711 |D2n+11 |D2n+1 - D2n—1|
— |b2n+1| . 1
‘D2n+1D2n~lI 'D2n+1/D2n—1 - ]|

1
< fon =l

r
< g = o[ 75 -

Thus it follows that f(a) converges absolutely, since the odd part of f(a)
converges absolutely, as shown in the proof of Theorem 3.1.
Suppose some @3, = 0and a2,1 70, p = 1,2,3,.... Then by (3.1) and (1.3)

[ngl = |B2P+1 - 0’217B222—1I é |B2p+l| - (aZpBQp-ll > Oy P = lv 21 3v CEE]
Hence B, #0,p = 1,2,3,.... Therefore f(a) converges absolutely (4, p. 26).
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On the other hand, suppose some as,-1 = 0 and ay, # 0, p =1,2,3,....
Since 1o, =7 <1, p=1,2,3,..., we see by (3.1) that

’B21)—li > 1(12,;' ‘;BSIF—IL) [) = 1, 2, 3, e ey

and so By, 1 # 0, p=1,2,3,..., since a:B; # 0. Therefore, as before,
B,#0,p=1,23, ..., and f(a) converges absolutely.

Remark 3.3. We give an example of a number sequence {7s,},-0” and an
unbounded sequence a which satisfy the hypothesis of Theorem 3.3 as
follows: let 7y, o =3, p=1,2,3,..., and a; = a» = 1, @y, = — (27),
Aoy = — (277 + 1, p=2,3,4,....

Remark 3.4. There exist a number sequence {7s,},-¢” and a sequence a
such that all of the conditions of Theorem 3.3. are satisfied except that each
of the sequences {as,—1} and {as,} contains a zero term and f(a) does not

converge. Letr, = 3,75, = 3,0 =0,2,3,4,...,anda, = a4 = 0,a, = — %,
a;=—3%,a,=1,p=5,6,7,....Since By =1+ a, + a: + a3(1 + a,)=0
and By = By +aB; = 0, by (13), B, =0, p = 4,5,6, .. ..
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