ON THE GENERALITY OF THE AP-INTEGRAL

G. E. CROSS

1. Introduction and definitions. In 1955 Taylor [6] constructed an AP-integral sufficiently strong to integrate Abel summable series with coefficients $o(n)$. He showed that the AP-integral includes the special Denjoy integral and further that, when applied to trigonometric series, the AP-integral is more powerful than the SCP-integral of Burkill [1] and the P^{2}-integral of James [3]. The present paper shows that the AP-integral includes the SCPintegral, and, under natural assumptions, the P^{2}-integral.

After completing this manuscript I was advised by Skvorcov that he had shown [5] under more general conditions that the P^{2}-integral is included in the AP-integral. The proof in the present paper seems to have some value in its own right and is considerably shorter.

Since the definition of the AP-integral is essentially for a function defined in ($0,2 \pi$] and elsewhere by 2π-periodicity, we shall consider SCP-integrable and P^{2}-integrable functions defined similarly. As Skvorcov [4] has pointed out, however, P^{2}-integrability on $[0,2 \pi]$ and on $[-2 \pi, 0]$ does not necessarily imply integrability on $[-2 \pi, 2 \pi]$. To illustrate this, consider the function defined on $[0,2 \pi]$ by

$$
f(x)= \begin{cases}0, & x \in(2 / \pi, 2 \pi] \\ \left(-1 / x^{3}\right) \cos x^{-1}, & x \in(0,2 / \pi]\end{cases}
$$

and in $[-2 \pi, 0]$ by periodicity. This function is P^{2}-integrable on $[0,2 \pi]$ and on $[-2 \pi, 0]$ but it is not P^{2}-integrable on $[-2 / \pi, 2 / \pi]$ (see [4]).

We shall make use of the following results proved by Skvorcov [4].
I. Let the function $f(x)$ be P^{2}-integrable on the closed intervals $[a, c]$ and $[c, b]$ and have $F_{1}(x), F_{2}(x)$, respectively, for its P^{2}-integral on these intervals. Then $f(x)$ is P^{2}-integrable on $[a, b]$ if and only if there exists a number α such that the function

$$
F(x)= \begin{cases}F_{1}(x)+(\alpha /(c-a))(x-a), & x \in[a, c] \tag{1.1}\\ F_{2}(x)+(\alpha /(c-b))(x-b), & x \in[c, b]\end{cases}
$$

is smooth at the point c. If such a number α exists, then the function $F(x)$ is the P^{2}-integral of $f(x)$ on $[a, b]$ and

$$
\begin{equation*}
F(c)=\alpha=\lim _{h \rightarrow 0+} \frac{\left[F_{1}(c-h)+F_{2}(c+h)\right](b-c)(c-a)}{h(b-a)} \tag{1.2}
\end{equation*}
$$

> II. In order that a P^{2}-integral be additive on intervals it is sufficient that Condition (A) : the functions $F(x)$ which is the P^{2}-integral on $[a, b]$ have a left

Received November 25, 1970.
derivative at the end point $b\left(F_{-}^{\prime}(b)\right)$ and a right derivative at the end point $a\left(F_{+}{ }^{\prime}(a)\right)$.

The reader is directed to the references, particularly $[\mathbf{3} ; \mathbf{6}]$ for notation, but some definitions are repeated here for convenience.

The definition of P^{2}-major and P^{2}-minor functions $M(x)$ and $m(x)$ of $f(x)$ on $[-2 \pi, 2 \pi]$ may be given as follows:

$$
\begin{align*}
& M(x) \text { and } m(x) \text { are continuous in }[-2 \pi, 2 \pi] ; \tag{1.3}\\
& M(-2 \pi)=M(2 \pi)=m(-2 \pi)=m(2 \pi)=0 ; \tag{1.4}\\
& \underline{D}^{2} M(x) \geqq f(x) \geqq \bar{D}^{2} m(x) \text {, a.e. in }[-2 \pi, 2 \pi] ; \tag{1.5}\\
& \underline{D}^{2} M(x)>-\infty, \bar{D}^{2} m(x)<+\infty, \text { for all } x \in[-2 \pi, 2 \pi] \text {, except } \tag{1.6}\\
& \text { possibly in a denumerable set } E ;
\end{align*}
$$

(1.7) $M(x)$ and $m(x)$ are smooth for all x in E.

A function $f(x)$, defined on $[-2 \pi, 2 \pi]$, is called P^{2}-integrable on $(-2 \pi, x, 2 \pi)$, $-2 \pi<x<2 \pi$, if, for every $\epsilon>0$, there exists a P^{2}-major function $M(x)$ and a P^{2}-minor function $m(x)$ such that $0 \leqq m(x)-M(x)<\epsilon$. The P^{2}-integral of $f(x)$ at the point x is defined as $-F(x)$, where

$$
F(x)=\sup M(x)=\inf m(x)
$$

and we write

$$
-F(x)=\mathrm{P}^{2}-\int_{-2 \pi, x, 2 \pi} f(t) d t
$$

Now suppose that $f(x)$ is P^{2}-integrable over $[0,2 \pi]$ and extend $f(x)$ to $[-2 \pi, 0]$ by the relation $f(x)=f(x+2 \pi)$. Then if

$$
F_{1}(x)=\mathrm{P}^{2}-\int_{-2 \pi, x, 0} f(t) d t \quad \text { and } \quad F_{2}(x)=\mathrm{P}^{2}-\int_{0, x, 2 \pi} f(t) d t
$$

it follows that $F_{1}(x)=F_{2}(x+2 \pi)$. Moreover, if $f(t)$ is P^{2}-integrable on $[-2 \pi, 2 \pi]$ with

$$
F(x)=\mathrm{P}^{2}-\int_{-2 \pi, x, 2 \pi} f(t) d t
$$

and $\alpha=F(0)$, we obtain, using \mathbf{I} above,

$$
F(x)= \begin{cases}F_{1}(x)+(\alpha / 2 \pi)(x+2 \pi), & x \in[-2 \pi, 0] \\ F_{2}(x)+(\alpha /-2 \pi)(x-2 \pi), & x \in[0,2 \pi]\end{cases}
$$

where $F(x)$ is smooth (even at $x=0$) and $F(2 \pi)=F(-2 \pi)=0$.
We recall that according to Taylor's definition [6], a finite constant M and the real function $\Phi(x)$ form an AP-upper approximating pair if

$$
\begin{equation*}
\Lambda(x)=\Phi(x)-M x^{2} / 4 \pi \text { is periodic with period } 2 \pi ; \tag{1.8}
\end{equation*}
$$

$$
\begin{equation*}
\Lambda(x) \text { is Lebesgue-integrable and } \mathscr{A} \text {-continuous for all } x \text {; } \tag{1.9}
\end{equation*}
$$

$\Lambda(x)$ is approximately continuous and has the property R^{*};

$$
\begin{equation*}
\Phi(-2 \pi)=\Phi(2 \pi)=0 \tag{1.10}
\end{equation*}
$$

$A \underline{D}^{2} \Phi(x) \geqq f(x)$ a.e.; $A \underline{D}^{2} \Phi(x)>-\infty$ except possibly in a denumerable set E;

$$
\begin{equation*}
\lim _{r \rightarrow 1-}\left[(1-r) \frac{\partial^{2}}{\partial x^{2}} \Lambda(r, x)\right]=0, \text { at all points of } E . \tag{1.13}
\end{equation*}
$$

A lower approximating pair ($m, \phi(x)$) is defined analogously.
In the case where $\inf M=\sup m=I$, say, $f(x)$ is said to be AP-integrable over $(0,2 \pi)$ and we write

$$
\mathrm{AP}-\int_{0}^{2 \pi} f(t) d t=I
$$

2. An inclusion relation between the SCP-integral, the P^{2}-integral, and the AP-integral.

Theorem 2.1. If $f(x)$ is P^{2}-integrable over $[0,2 \pi]$ and satisfies condition (A) above, then $f(x)$ is AP-integrable on $[0,2 \pi]$ and

$$
\mathrm{AP}-\int_{0}^{2 \pi} f(t) d t=\pi^{-1} \mathrm{P}^{2}-\int_{-2 \pi, 0,2 \pi} f(t) d t
$$

where $f(t)$ is defined on $[-2 \pi, 0]$ by 2π-periodicity.
Proof. Corresponding to $\epsilon>0$, there exists a P^{2}-major function $M(x)$ on [$0,2 \pi$] such that if $R(x)=M(x)-F(x)$, it is true that

$$
|R(x)|<\epsilon / 2, \quad\left|R_{+}^{\prime}(0)\right|<\epsilon / 2, \quad\left|R_{-}^{\prime}(2 \pi)\right|<\epsilon / 2 \quad \text { (see [4]). }
$$

Since each $R(x)$ is convex on $(0,2 \pi)$ we see also that $R(x)$ is the integral of a non-decreasing function in ($0,2 \pi$). In other words,

$$
M(x)=F(x)+\int_{0}^{x} \xi(t) d t
$$

where $\xi\left(t_{1}\right) \leqq \xi\left(t_{2}\right)$ for $t_{1} \leqq t_{2}$. From this it follows that $D^{2} M(x) \geqq f(x)$, $x \in[0,2 \pi]$, except for some set A of measure 0 .

Now we make use of the following well-known lemma (see [1]).
Given a set A of measure zero, and $\epsilon>0$, there exists a function $J(x)$, convex and smooth in (a, b), such that $J(a)=0, J(x) \geqq 0, D^{2} J(x) \geqq 0$, in (a, b), $J(b)<\epsilon / 2$, and $D^{2} J(x)=+\infty$ in A.

Using a function $J(x)$ with the above properties we define a new function

$$
M_{2}(x)=M(x)+J(x)-(x / 2 \pi) J(2 \pi)
$$

Then $D^{2} M_{2}(x) \geqq f(x)>-\infty$ except in A and moreover, in A,

$$
\underline{D}^{2} M_{2}(x) \geqq \underline{D}^{2} M(x)+D^{2} J(x)=+\infty,
$$

except on a denumerable set where however $M_{2}(x)$ is smooth. It is easy to see
that the $J(x)$ of the lemma may be constructed so that

$$
R_{2}(x) \equiv M_{2}(x)-F(x)<\epsilon
$$

and $\left|R_{2+}{ }^{\prime}(0)\right|<\epsilon,\left|R_{2-}{ }^{\prime}(2 \pi)\right|<\epsilon$. Now we extend $f(x)$ and $M_{2}(x)$ to $[-2 \pi, 0]$ by 2π-periodicity, letting $M_{1}(x)=M_{2}(x+2 \pi)$.

We introduce a constant formed from the known properties of $M_{1}(x)$ and $M_{2}(x)$:

$$
M=\pi \lim _{h \rightarrow 0+} \frac{M_{2}(h)+M_{1}(-h)}{h}
$$

(This limit exists since both $\lim \left(M_{2}(h) / h\right)$ and $\lim \left(M_{1}(-h) / h\right)$ exist because of Condition (A) and the manner in which $M_{2}(x)$ was constructed.)

The next step is to construct a P^{2}-major function on $[-2 \pi, 2 \pi]$ which will then be used to construct an AP-upper approximating pair. To this end, let

$$
M_{3}(x)= \begin{cases}M_{1}(x)+(M / 2 \pi)(x+2 \pi), & x \in[-2 \pi, 0] \\ M_{2}(x)-(M / 2 \pi)(x-2 \pi), & x \in[0,2 \pi]\end{cases}
$$

Then $M_{3}(0)=M, M_{3}(x)$ is a P^{2}-major function of $f(x)$ on $[-2 \pi, 2 \pi]$, $M_{3}(0)-F(0)<2 \epsilon \pi$, and

$$
\Lambda(x)=M_{3}(x)+M_{3}(0)\left(x^{2} / 4 \pi^{2}\right)
$$

is 2π-periodic.
It follows than [6, Theorem 4] that $A D^{2} M_{3}(x) \geqq f(x)$ a.e. and $A D^{2} M_{3}(x)>$ $-\infty$ except on a countable set where however $\Lambda(r, x)$ satisfies condition (1.13) above because of smoothness of $M_{3}(x)$ (see [$\mathbf{6}$, Theorem 5]). The pair $\left\{-M_{3}(0) / \pi, M_{3}(x)\right\}$ thus form an AP-upper approximating pair for $f(x)$ on [$-2 \pi, 2 \pi]$. An exactly analogous construction holds for a minor approximating pair, and the statement of the theorem follows.

Theorem 2.2. If $f(x)$ is SCP-integrable on $[0,2 \pi]$ with basis B, then $f(x)$ is AP-integrable on $[0,2 \pi]$ and

$$
(\mathrm{SCP}, B) \int_{0}^{2 \pi} f(t) d t=\mathrm{AP}-\int_{0}^{2 \pi} f(t) d t
$$

Proof. Extend $f(x)$ and B to [$-2 \pi, 0]$ by 2π-periodicity. It is well known that SCP-integrability implies P^{2}-integrability (see e.g. [2]). If

$$
F_{1}(x)=\mathrm{P}^{2}-\int_{0, x, 2 \pi} f(t) d t \quad \text { and } \quad F_{2}(x)=\mathrm{P}^{2}-\int_{-2 \pi, x, 0} f(t) d t
$$

it follows from [$\mathbf{2}$, Theorem III] that $F_{1+}{ }^{\prime}(0)$ and $F_{2-}{ }^{\prime}(0)$ both exist. The proof of the theorem follows from Theorem 2.1 above and [$\mathbf{2}$, Theorem II].

Remark. If in the definition of the P^{2}-integral, smoothness is imposed on major and minor functions at the end points of the interval $[a, b]$ where it is generalized to mean the existence of one-sided derivatives, the P^{2}-integral is included in the AP-integral by the above argument.

References

1. J. C. Burkill, Integrals and trigonometric series, Proc. London Math. Soc. (3) 1 (1951), 46-57.
2. G. E. Cross, The relation between two symmetric integrals, Proc. Amer. Math. Soc. 14 (1963), 185-190.
3. R. D. James, A generalized integral. II, Can. J. Math. 2 (1950), 297-306.
4. V. A. Skvorcov, Concerning definitions of P^{2-} and SCP-integrals, Vestnik Moscov. Univ. Ser. I Mat. Meh. 21 no. 6 (1966), 12-19. (Russian)
5. _- The mutual relationship between the AP-integral of Taylor and the P^{2}-integral of James, Mat. Sb. 170 (112), no. 3, (1966), 380-393. (Russian)
6. S. J. Taylor, An integral of Perron's type defined with the help of trigonometric series, Quart. J. Math. Oxford Ser. (2) 6 (1955), 255-274.

University of Waterloo,
Waterloo, Ontario

