ON THE GENERALITY OF THE AP-INTEGRAL

G. E. CROSS

1. Introduction and definitions. In 1955 Taylor [6] constructed an AP-integral sufficiently strong to integrate Abel summable series with coefficients o(n). He showed that the AP-integral includes the special Denjoy integral and further that, when applied to trigonometric series, the AP-integral is more powerful than the SCP-integral of Burkill [1] and the P²-integral of James [3]. The present paper shows that the AP-integral includes the SCP-integral, and, under natural assumptions, the P²-integral.

After completing this manuscript I was advised by Skvorcov that he had shown [5] under more general conditions that the P^2 -integral is included in the AP-integral. The proof in the present paper seems to have some value in its own right and is considerably shorter.

Since the definition of the AP-integral is essentially for a function defined in $(0, 2\pi]$ and elsewhere by 2π -periodicity, we shall consider SCP-integrable and P²-integrable functions defined similarly. As Skvorcov [4] has pointed out, however, P²-integrability on $[0, 2\pi]$ and on $[-2\pi, 0]$ does not necessarily imply integrability on $[-2\pi, 2\pi]$. To illustrate this, consider the function defined on $[0, 2\pi]$ by

$$f_{\mu}(x) = \begin{cases} 0, & x \in (2/\pi, 2\pi], \\ (-1/x^3) \cos x^{-1}, & x \in (0, 2/\pi], \end{cases}$$

and in $[-2\pi, 0]$ by periodicity. This function is P²-integrable on $[0, 2\pi]$ and on $[-2\pi, 0]$ but it is not P²-integrable on $[-2/\pi, 2/\pi]$ (see [4]).

We shall make use of the following results proved by Skvorcov [4].

I. Let the function f(x) be P²-integrable on the closed intervals [a, c] and [c, b]and have $F_1(x)$, $F_2(x)$, respectively, for its P²-integral on these intervals. Then f(x) is P²-integrable on [a, b] if and only if there exists a number α such that the function

(1.1)
$$F(x) = \begin{cases} F_1(x) + (\alpha/(c-a))(x-a), & x \in [a,c], \\ F_2(x) + (\alpha/(c-b))(x-b), & x \in [c,b], \end{cases}$$

is smooth at the point c. If such a number α exists, then the function F(x) is the P²-integral of f(x) on [a, b] and

(1.2)
$$F(c) = \alpha = \lim_{h \to 0+} \frac{[F_1(c-h) + F_2(c+h)](b-c)(c-a)}{h(b-a)}$$

II. In order that a P^2 -integral be additive on intervals it is sufficient that Condition (A): the functions F(x) which is the P^2 -integral on [a, b] have a left

Received November 25, 1970.

derivative at the end point $b(F_{-}'(b))$ and a right derivative at the end point $a(F_{+}'(a))$.

The reader is directed to the references, particularly [3; 6] for notation, but some definitions are repeated here for convenience.

The definition of P²-major and P²-minor functions M(x) and m(x) of f(x) on $[-2\pi, 2\pi]$ may be given as follows:

(1.3) M(x) and m(x) are continuous in $[-2\pi, 2\pi]$;

(1.4)
$$M(-2\pi) = M(2\pi) = m(-2\pi) = m(2\pi) = 0;$$

- (1.5) $\underline{D}^2 M(x) \ge f(x) \ge \overline{D}^2 m(x), \text{ a.e. in } [-2\pi, 2\pi];$
- (1.6) $\underline{D}^2 M(x) > -\infty$, $\overline{D}^2 m(x) < +\infty$, for all $x \in [-2\pi, 2\pi]$, except possibly in a denumerable set E;
 - (1.7) M(x) and m(x) are smooth for all x in E.

A function f(x), defined on $[-2\pi, 2\pi]$, is called P²-integrable on $(-2\pi, x, 2\pi)$, $-2\pi < x < 2\pi$, if, for every $\epsilon > 0$, there exists a P²-major function M(x)and a P²-minor function m(x) such that $0 \leq m(x) - M(x) < \epsilon$. The P²-integral of f(x) at the point x is defined as -F(x), where

$$F(x) = \sup M(x) = \inf m(x)$$

and we write

$$-F(x) = P^{2} - \int_{-2\pi, x, 2\pi} f(t) dt.$$

Now suppose that f(x) is P²-integrable over $[0, 2\pi]$ and extend f(x) to $[-2\pi, 0]$ by the relation $f(x) = f(x + 2\pi)$. Then if

$$F_1(x) = P^2 - \int_{-2\pi, x, 0} f(t) dt$$
 and $F_2(x) = P^2 - \int_{0, x, 2\pi} f(t) dt$,

it follows that $F_1(x) = F_2(x + 2\pi)$. Moreover, if f(t) is P²-integrable on $[-2\pi, 2\pi]$ with

$$F(x) = P^2 - \int_{-2\pi, x, 2\pi} f(t) dt$$

and $\alpha = F(0)$, we obtain, using **I** above,

$$F(x) = \begin{cases} F_1(x) + (\alpha/2\pi)(x+2\pi), & x \in [-2\pi, 0], \\ F_2(x) + (\alpha/-2\pi)(x-2\pi), & x \in [0, 2\pi], \end{cases}$$

where F(x) is smooth (even at x = 0) and $F(2\pi) = F(-2\pi) = 0$.

We recall that according to Taylor's definition [6], a finite constant M and the real function $\Phi(x)$ form an AP-upper approximating pair if

(1.8) $\Lambda(x) = \Phi(x) - Mx^2/4\pi$ is periodic with period 2π ;

(1.9) $\Lambda(x)$ is Lebesgue-integrable and \mathscr{A} -continuous for all x;

- (1.10) $\Lambda(x)$ is approximately continuous and has the property R^* ;
- (1.11) $\Phi(-2\pi) = \Phi(2\pi) = 0;$

AP-INTEGRAL

(1.12) $A\underline{D}^{2}\Phi(x) \ge f(x)$ a.e.; $A\underline{D}^{2}\Phi(x) > -\infty$ except possibly in a denumerable set E;

(1.13)
$$\lim_{r \to 1^{-}} \left[(1-r) \frac{\partial^2}{\partial x^2} \Lambda(r, x) \right] = 0, \text{ at all points of } E.$$

A lower approximating pair $(m, \phi(x))$ is defined analogously.

In the case where $\inf M = \sup m = I$, say, f(x) is said to be AP-integrable over $(0, 2\pi)$ and we write

$$\operatorname{AP-} \int_0^{2\pi} f(t) \, dt = \, I.$$

2. An inclusion relation between the SCP-integral, the P^2 -integral, and the AP-integral.

THEOREM 2.1. If f(x) is P²-integrable over $[0, 2\pi]$ and satisfies condition (A) above, then f(x) is AP-integrable on $[0, 2\pi]$ and

$$AP - \int_{0}^{2\pi} f(t) dt = \pi^{-1} P^{2} - \int_{-2\pi, 0, 2\pi} f(t) dt,$$

where f(t) is defined on $[-2\pi, 0]$ by 2π -periodicity.

Proof. Corresponding to $\epsilon > 0$, there exists a P²-major function M(x) on $[0, 2\pi]$ such that if R(x) = M(x) - F(x), it is true that

 $|R(x)| < \epsilon/2, \quad |R_{+}'(0)| < \epsilon/2, \quad |R_{-}'(2\pi)| < \epsilon/2 \quad (\text{see [4]}).$

Since each R(x) is convex on $(0, 2\pi)$ we see also that R(x) is the integral of a non-decreasing function in $(0, 2\pi)$. In other words,

$$M(x) = F(x) + \int_0^x \xi(t) dt$$

where $\xi(t_1) \leq \xi(t_2)$ for $t_1 \leq t_2$. From this it follows that $D^2M(x) \geq f(x)$, $x \in [0, 2\pi]$, except for some set A of measure 0.

Now we make use of the following well-known lemma (see [1]).

Given a set A of measure zero, and $\epsilon > 0$, there exists a function J(x), convex and smooth in (a, b), such that J(a) = 0, $J(x) \ge 0$, $D^2J(x) \ge 0$, in (a, b), $J(b) < \epsilon/2$, and $D^2J(x) = +\infty$ in A.

Using a function J(x) with the above properties we define a new function

$$M_{2}(x) = M(x) + J(x) - (x/2\pi)J(2\pi).$$

Then $D^2M_2(x) \ge f(x) > -\infty$ except in A and moreover, in A,

$$\underline{D}^{2}M_{2}(x) \geq \underline{D}^{2}M(x) + D^{2}J(x) = +\infty,$$

except on a denumerable set where however $M_2(x)$ is smooth. It is easy to see

that the J(x) of the lemma may be constructed so that

$$R_2(x) \equiv M_2(x) - F(x) < \epsilon$$

and $|R_{2+}'(0)| < \epsilon$, $|R_{2-}'(2\pi)| < \epsilon$. Now we extend f(x) and $M_2(x)$ to $[-2\pi, 0]$ by 2π -periodicity, letting $M_1(x) = M_2(x + 2\pi)$.

We introduce a constant formed from the known properties of $M_1(x)$ and $M_2(x)$:

$$M = \pi \lim_{h \to 0+} \frac{M_2(h) + M_1(-h)}{h}.$$

(This limit exists since both $\lim (M_2(h)/h)$ and $\lim (M_1(-h)/h)$ exist because of Condition (A) and the manner in which $M_2(x)$ was constructed.)

The next step is to construct a P²-major function on $[-2\pi, 2\pi]$ which will then be used to construct an AP-upper approximating pair. To this end, let

$$M_{3}(x) = \begin{cases} M_{1}(x) + (M/2\pi)(x+2\pi), & x \in [-2\pi, 0], \\ M_{2}(x) - (M/2\pi)(x-2\pi), & x \in [0, 2\pi]. \end{cases}$$

Then $M_3(0) = M$, $M_3(x)$ is a P²-major function of f(x) on $[-2\pi, 2\pi]$, $M_3(0) - F(0) < 2\epsilon\pi$, and

$$\Lambda(x) = M_3(x) + M_3(0) (x^2/4\pi^2)$$

is 2π -periodic.

It follows than [6, Theorem 4] that $AD^2M_3(x) \ge f(x)$ a.e. and $AD^2M_3(x) > -\infty$ except on a countable set where however $\Lambda(\mathbf{r}, x)$ satisfies condition (1.13) above because of smoothness of $M_3(x)$ (see [6, Theorem 5]). The pair $\{-M_3(0)/\pi, M_3(x)\}$ thus form an AP-upper approximating pair for f(x) on $[-2\pi, 2\pi]$. An exactly analogous construction holds for a minor approximating pair, and the statement of the theorem follows.

THEOREM 2.2. If f(x) is SCP-integrable on $[0, 2\pi]$ with basis B, then f(x) is AP-integrable on $[0, 2\pi]$ and

(SCP, B)
$$\int_{0}^{2\pi} f(t) dt = AP - \int_{0}^{2\pi} f(t) dt$$

Proof. Extend f(x) and B to $[-2\pi, 0]$ by 2π -periodicity. It is well known that SCP-integrability implies P²-integrability (see e.g. [2]). If

$$F_1(x) = P^2 - \int_{0,x,2\pi} f(t) dt$$
 and $F_2(x) = P^2 - \int_{-2\pi,x,0} f(t) dt$,

it follows from [2, Theorem III] that $F_{1+}'(0)$ and $F_{2-}'(0)$ both exist. The proof of the theorem follows from Theorem 2.1 above and [2, Theorem II].

Remark. If in the definition of the P^2 -integral, smoothness is imposed on major and minor functions at the end points of the interval [a, b] where it is generalized to mean the existence of one-sided derivatives, the P^2 -integral is included in the AP-integral by the above argument.

560

AP-INTEGRAL

References

- 1. J. C. Burkill, Integrals and trigonometric series, Proc. London Math. Soc. (3) 1 (1951), 46-57.
- 2. G. E. Cross, The relation between two symmetric integrals, Proc. Amer. Math. Soc. 14 (1963), 185-190.
- 3. R. D. James, A generalized integral. II, Can. J. Math. 2 (1950), 297-306.
- V. A. Skvorcov, Concerning definitions of P²- and SCP-integrals, Vestnik Moscov. Univ. Ser. I Mat. Meh. 21 no. 6 (1966), 12–19. (Russian)
- The mutual relationship between the AP-integral of Taylor and the P²-integral of James, Mat. Sb. 170 (112), no. 3, (1966), 380-393. (Russian)
- S. J. Taylor, An integral of Perron's type defined with the help of trigonometric series, Quart. J. Math. Oxford Ser. (2) 6 (1955), 255-274.

University of Waterloo, Waterloo, Ontario