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Abstract

Due to the complex architectural diversity of biological networks, there is an increasing need to complement
statistical analyses with a qualitative and local description of their spatial properties. One such network is the
extracellular matrix (ECM), a biological scaffold for which changes in its spatial organization significantly impact
tissue functions in health and disease. Quantifying variations in the fibrillar architecture of major ECM proteins
should considerably advance our understanding of the link between tissue structure and function. Inspired by the
analysis of functional magnetic resonance imaging (fMRI) images, we propose a novel statistical analysis approach
embedded into a machine learning paradigm, to measure and detect local variations of meaningful ECM parameters.
We show that parametric maps representing fiber length and pore directionality can be analyzed within the proposed
framework to differentiate among various tissue states. The parametric maps are derived from graph-based
representations that reflect the network architecture of fibronectin (FN) fibers in a normal, or disease-mimicking
in vitro setting. Such tools can potentially lead to a better characterization of dynamic matrix networks within fibrotic
tumor microenvironments and contribute to the development of better imaging modalities for monitoring their
remodeling and normalization following therapeutic intervention.

Impact Statement
Quantification of phenotypic variation during tissue development and/or disease progression is essential for the
understanding of different pathologies. All organs and tissues contain a non-cellular core component known as
the extracellular matrix (ECM), composed of a network of macromolecules whose architecture depends on the
pathophysiological state of the tissue. To derive a meaningful comparison of ECM between healthy and diseased
tissues, computational frameworks that account for the localization of areas of phenotypic variation are needed.
Here we introduce a novel framework for the statistical analysis of parametric maps calculated from graph-based
representations of fibers composed of fibronectin, a provisional ECM component that guides ECMorganization.
Our framework is inspired by the statistical analysis of functional magnetic resonance imaging parametric maps
and is embedded in a machine-learning model to compare distinct states of ECM fiber networks, both
quantitatively and qualitatively. These methods may be further developed and implemented in ECM profiling
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of tumor/fibrotic tissue to provide both valuable insight into specific roles of ECM landscapes and their
remodeling in disease, and more specific diagnostic, prognostic, and predictive companion biomarkers in the
clinic.

1. Introduction

During normal development and disease progression, tissues undergo various remodeling processes,
which can, in turn, affect their physical characteristics, yielding heterogeneous morphologies. Automated
detection and quantification of these phenotypic changes in the tissue landscape are essential for an
accurate characterization of a given pathology. Statistical tests that are commonly used for the comparison
of two different conditions based on the distributions of morphological properties, are applied at a global
scale, and do not account for any explicit spatial information. Here we were interested in exploiting a
known spatial statistical approach (historically proposed for functional imaging (fMRI) analysis) and
recasting it into a machine learning framework to facilitate the comparison of two tissue conditions.
Within the proposed framework relying on statistical parametric mapping (SPM)(1,2), the comparison of
various physical tissue characteristics is thus achieved both at a quantitative and qualitative level. It does
so by enabling the localization and quantification of local variations of certainmorphological properties in
the sample that are significantly different and relevant to a given pathology.

SPM is a long-established methodology, specifically developed in fMRI for the detection of signifi-
cantly activated regions of the brain in a given image sample.Mapping of activated regions is achieved by
assessing the probability of random occurrences of activated regions with pixel intensities higher than a
given threshold or having a larger spatial extent at lower intensities.

To address the need for taking spatial localization into account when designing frameworks that can
discriminate between two different conditions of a given tissue, we recast the SPM paradigm into a data-
driven machine learning framework for the detection of significant parametric differences between the
two classes. Thus, we train the model on a given population (for example the control case) and we detect
local areas in the second population of samples that deviate from this model. In our work, we applied this
approach to the characterization of two distinct states of the extracellular matrix (ECM), a non-cellular
component of organs and tissues.

The ECM is a biological scaffold with multiple forms and functions. It acts as a biomechanical and
structural support ensuring tissue integrity, it relays chemical and physical signals to the residing cells
through cell surface receptors and it sequesters growth factors and regulates their bioavailability. The
composition and architecture of the ECM is tissue- and organ-specific, and depends on the pathophysio-
logical state of the tissue (i.e., normal vs diseased)(3). For example, while a healthy connective tissue
displays a loose meshwork-like ECM, a fibrotic or cancerous stroma is characterized by the presence of
dense, aligned ECM fibrils. Thus, the physical and structural traits of the tumor matrix have recently
drawn much attention as cancer hallmarks and potential therapeutic targets(4,5). Collagen, the most
abundant matrix component, has been extensively investigated in this context and several studies
addressing its structural features and their association with cancer progression, metastasis, and treatment
have been published(6–8). Collagen deposition, however, depends on the presence of fibronectin (FN), a
dimeric glycoprotein that forms a provisional matrix framework into which other ECM components
integrate to generate a mature ECM(9,10).

During inflammation, wound healing, or tumor development, the expression of FN is induced and
assembled into an insoluble matrix. This FN produced primarily by fibroblasts, corresponds to cellular
FN, as opposed to plasma FN. At the molecular level, cellular FN differs from plasma FN by the presence
of one or two 90-amino-acid-long alternatively spliced sequences, termed extra domains (EDB andEDA).
Extra domain-containing FN displays enhanced assembly, making it the most prevalent FN isoform in
diseased tissue. This enhanced FN deposition results in a highly modified ECM architecture with
increased fiber density, directionality, and stiffness, that together tune cellular responses and impact
tissue homeostasis(11).
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Despite the pivotal role of FN in health and disease(12), comprehensive studies of FN fiber features are
lacking. In our previous work(11), we set out to develop a robust pipeline of numerical analyses for the
extraction of biologically relevant metrics to discriminate among different isoforms of cellular FN from
confocal microscopy images of FN matrices. The goal of the present work was to capture and analyze
physiologically relevant ECM fibrillar features that discriminate between normal and diseased states. To
that end, we generated FN-rich ECM using an in vitromodel of cell-derived matrices (CDMs) produced
by normal fibroblasts, or fibroblasts activated with transforming growth factor beta-1 (TGF-β1 ), a
fibrosis-promoting cytokine known to induce a tumor-like state.

Herein we show that the proposed SPM-based machine learning methodology can be used to
distinguish between normal and disease-mimicking FN fiber networks. To capture and localize significant
differences in fiber properties, we built parametric maps, such as fiber length and pore directionality
relying on a graph-based fiber representation that recapitulates the FN fiber networks from confocal
microscopy images. In the following sections, we will provide an outline of the proposed methodology
applied to SPMs and describe how our proposed machine-learning embedding can yield significant
localized parametric variations between different tissue states.

2. SPM and Gaussian Random Fields

2.1. SPM statistical framework

SPMs are used to evaluate the probability of change in every pixel by using decision tests based on the
magnitude of the SPM values (i.e., the peak intensity of a cluster in SPM) as well as the spatial extent of
these clusters formed at certain intensity thresholds(1). The value of the pixel intensity reflects a parametric
value of interest. Hence, these two-dimensional (2D) maps are constructed to reflect the spatial variation
of a measured parameter which is important for discriminating between two given classes with regards to
its intensity and area. In this way, clusters of high intensity of an SPM can correspond to a high localized
parametric variation, while a large region reflects a spatially extended area of variation.

Our proposed spatial statistical learning framework relies on graph-derived parametric maps to
quantify and simultaneously localize statistically significant differences across normal and disease-
mimicking FN organizations. Using the pixel intensity of the maps along with the extent of the region
area, these differences can be assessed both quantitatively and qualitatively, and detected as anomalies
with respect to a Gaussian random field (GRF), corresponding to regions within the maps that cannot be
explained by the GRF model learnt from the reference population. Hereafter, we describe the theoretical
framework of GRF(13) that enables the statistical analysis of tissue parametric maps.

GRFs, whose marginal distributions are Gaussian vectors X = X 1ð Þ,⋯,X nð Þ
� �

, are characterized by the
probability density function:

f X xð Þ= 2πð Þ�n=2 Vj j�1
2 exp �1

2
x�μð ÞV�1 x�μð ÞT

� �
(1)

where μ= E X ið Þ
� �� �

i∈ 1,…,nf g is the expectation andV = E X ið Þ �μ ið Þ
� �

X jð Þ �μ jð Þ
� �h i� �

i∈ 1,…,nf g, j∈ 1,…,nf g
is the covariance matrix.

We consider clusters of pixels as connected components that are formed based on 8-pixel connectivity.
Hence, upon image binarization according to a chosen threshold, the pixels (with intensity equal to 1) are
grouped together in disjoint components (including single-pixel components) based on similar values of
the neighboring eight pixels. It was shown in(13), and later adopted in fMRI-specific studies(1,2,14), that for
large thresholds t, the clusters are independent and the expectation of the number of clusters at a threshold
t, of an image modeled by a zero-mean, homogeneous Gaussian field of dimension 2, is estimated by the
expected Euler characteristic of the excursion set of the GRF:

E mt½ �= S 2πð Þ�3=2 Λj j1=2tσ�3 exp� t2

2σ2
(2)
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where mt represents the number of clusters at a certain threshold t, S is the number of pixels of the
image, Λ is the covariance matrix of partial derivatives of the GRF, and σ is the standard deviation of
the GRF.

Similarly, the mean value of the number of clusters at a threshold t +H0 can be written as follows:

E mt+H0½ �= S 2πð Þ�3=2 Λj j1=2 t +H0ð Þσ�3 exp� t +H0ð Þ2
2σ2

(3)

Considering x0 = t +H0 as the intensity peak of a cluster (at threshold t ), one can estimate the
probability that a cluster (at a threshold t , having an intensity peak higher or equal to x0 , denoted
CH0

t ) belongs to a realization of this GRF, Gr. This probability, as shown in
(1), termed PH, can be seen

as the likelihood of a cluster (formed at threshold t) of having an intensity peak higher or equal to
t +H0

(1):

P CH0
t ∈Gr

� �
=
E mt+H0½ �
E mt½ � =

x0
t
exp

t2� x20
2σ2

(4)

Next, we were interested in the estimation of the probability that a cluster (at a threshold t) belongs to a
realization of GRF, depending on its surface (spatial extent - number of pixels). To estimate the number of
pixels (nt) of a cluster at a threshold t, we use the following equation from(2):

E nt½ �= E Nt½ �
E mt½ � (5)

where Nt is the number of pixels at of higher intensity than t , and mt is the number of clusters at the
threshold t. Since the intensity values follow a normal (zero mean value) distribution, the expectation of
Nt is the following

(2):

E Nt½ �= S
Z ∞

t
2πσ2
� ��1=2

exp� x2

2σ2
dx = SΦσ �tð Þ (6)

where Φσ �tð Þ is the complementary cumulative distribution function. It follows, then, based on
Equations (2, 5, 6) that one can approximate the mean value of nt, accordingly:

E nt½ �= E Nt½ �
E mt½ � =

Φσ �tð Þ
2πð Þ�3=2 Λj j1=2tσ�3 exp� t2

2σ2

(7)

Furthermore, nt follows an exponential distribution law
(15), which is commonly defined by a parameter λt,

(the inverse of the mean expected value of the random variable). Consequently:

P nt = xð Þ= λt exp �λtxð Þ (8)

where λt =
2πð Þ�3=2 Λj j1=2t σ�3 exp� t2

2σ2

Φσ �tð Þ
It follows then that the approximation for the probability PS of a given cluster CS0

t having a spatial
extent S greater than S0, is given by the following formulation, as shown in(2):

P CS0
t ∈Gr

� �
=P nt ≥ S0ð Þ= exp �λtS0ð Þ= exp

2πð Þ�3=2 Λj j1=2S0tσ�3 exp� t2
2σ2

Φσ �tð Þ (9)

In the following section, we illustrate our proposed approach using a simple scenario of a simulated GRF,
in which the model parameters are estimated from a “normal” sample, to detect significant changes in an
“abnormal” example.

2.2. Test for anomaly detection using synthetic data

To better understand the concept of detecting statistical abnormalities in a GRF realization, we considered
a simple scenariowhich includes a synthetic example (normal), representing a simulation of aGRF of zero
mean (Figure 1a). To this examplewe added 6 foreign objects representing ellipseswith different surfaces,
and intensity levels. The aimwas to use our approach to detect these 6 objects within the abnormal sample,

e25-4 Anca-Ioana Grapa et al.

https://doi.org/10.1017/S2633903X23000247 Published online by Cambridge University Press

https://doi.org/10.1017/S2633903X23000247


showcasing the potential to localize these anomalies at various thresholds, based on the maximum
intensity of the different regions detected at each threshold, or their spatial extent (Figure 1b). The null
hypothesis is that clusters of pixels computed at different thresholds in the abnormal example belong to a
realization of the same GRF as the normal sample. The hypothesis is rejected if either PH or PS is less or
equal than a p-value (pval) of 0.05.

Our method learns the GRF model parameters from the reference example, and then uses these
parameters to compute the two probabilities of belonging to GRF for each region at various thresholds in
the abnormal example. As shown in Figure 1a, b, the current method, compared to a naïve hard
thresholding (threshold equal to 10), is better suited to localize the abnormal elements, that is, ellipses,
at thresholds equal to (10,15,20). One could opt to jointly consider intensity and surface-based criteria
when selecting the detected objects, which in this scenario, would lead to selecting the 6 ellipses together

Figure 1. (a) Realization of a GRF of zero-mean (normal case) and addition of 6 different sized ellipses
(abnormal case), alongwith intensity-based hard thresholding for each case, respectively (at a threshold t

= 10 pixels) (b). Intensity and surface-based detection at pval ≤ 0:05, and at thresholds equal to
(10,15,20, see colorbar). GRF sample detection will typically contain false-positive detections while
within the abnormal case (GRF+ellipses), all “foreign” objects, that is, ellipses are detected at pval
≤ 0:05, along with a few false-positives. (c). Clusters that are jointly detected based on the surface and

intensity criteria are selected for both normal and abnormal samples.
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with one false positive (Figure 1c). It is noteworthy that the same false positive is detected on the reference
image, which is consistent with the definition of the pval.

2.3. Machine-learning embedded in a GRF-based statistical parametric map framework

Providing both a quantitative and a qualitative assessment of the parameter variations is imperative for the
study of spatial heterogeneity of fibers in pathological conditions. We were interested in leveraging our
proposed framework for the comparison of two distinct conditions, normal and pathological ECM, given
parametric maps that reflect various fiber characteristics. To do so, we learnt the GRFmodel’s parameters
from the normal samples and using these parameters, we subsequently determined the probabilities of
regions within the pathological conditions belonging to the same GRF, casting the original framework
into a machine-learning setting. More specifically, we applied our proposed framework to determine
whether fiber length and pore directionality can discriminate between normal and disease-mimicking
states. While topographical differences between ECM of healthy and tumor tissue have been described(6),
mainly for collagen, no current computational study can, to our knowledge, simultaneously localize and
quantify them.

First, we describe the principle behind the proposed approach (Figure 2), which relies on modeling the
normal maps as realizations of a GRF and testing this hypothesis on tumor-like maps(2). We hypothesized
that the tumor-likemaps are realizations of theGRF learnt from the referencemaps and determined a set of
probabilities that characterize a degree of belonging to the GRF, for certain contiguous regions (clusters)
at various intensity thresholds. In other words, the current statistical analysis identifies those foreign
regions with respect to the reference GRF, within both types of maps, under the null hypothesis (i.e., at a
given pval)).

In this context, the parametric maps are described by the union of two classes of pixels: those
representing a realization of a GRF modeling the normal case, and those that are foreign to the GRF.
We expect these foreign elements to occur in regionswith very high pixel intensity and/or in larger clusters
taken at a specific threshold.

Modeling the parametric maps with GRF is only possible upon gaussianization (i.e., conversion of the
empirical distributions into normal distributions) of the GRF marginal distributions. In practice, we only
performed the gaussianization of the first-order marginal distribution of the GRF, that is, the image
intensity histogram, considering that the parameter maps under studywere smooth enough. Therefore, the
image intensity histogram was the only distribution to be gaussianized using an approach based on
optimal transport(16,17) (Supplementary Figure S1). Thereby, the resulting intensity histogram follows a
normal distribution of zero mean with identical variance as the empirical native histogram.

To estimate the likelihood of a certain cluster formed at an intensity threshold t to belong to a GRF,
depending on the maximal intensity of this cluster, we relied on the formulations taken from the theory of
random fields(13), as previously described. Considering x0 = t +H0 as the intensity peak of a cluster
(at intensity threshold t), one can estimate the probability that a cluster having an intensity peak higher or
equal to x0, belongs to a realization of GRF. This probability can be seen as the likelihood of a cluster
(taken at threshold t) of having an intensity peak higher or equal to t +H0 (Equation 4). Furthermore, as
previously shown, the approximation for the probability of a given cluster having a spatial extent S greater
than S0 is given by Equation 9. At pval ≤ 0:05, the clusters of pixels identified at t are considered
significantly different from the normal GRF model.

In our experiments, we focused on two different FN parametric maps that could potentially discrim-
inate between normal and pathological conditions, fiber length and pore directionality maps, in both
reference and disease-mimicking states. We embedded the SPM framework, initially developed to
analyze single datasets independently, into a machine learning paradigm. To evaluate the differences
between two given groups of maps (e.g., FN in normal state vs disease-like state), we considered one of
the groups as the normal realization of the GRFwhich we divided into a learning set and a smaller test set.
The second group was tested for anomalous regions, therefore all the images belonging to this group were
considered part of the test set. The proposed method learns the normal GRF model specific parameters,
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that is, the average value of λj,σj, from the training set. These learnt parameters during the learning phase
were subsequently used to compute the two relevant probabilities, PH and PS , as described hereafter:

For all the images Ij (previously Gaussianized) in the learning set:
• Computation of Λj (Equation 2, empirical estimator of the covariance of partial derivatives of I j).

If for an image function f ∈ℝ2 , we consider its gradient vector ∇f = ð f x, f yÞ= ð∂f∂x , ∂f∂yÞ, then
Λj = cov½ f x, f y�=E½ð f x�E½ f x�Þð f y�E½ f y�Þ�.

• Computation of σj, as the I j’s sample standard deviation.

Figure 2. Methodology for statistical detection of foreign regions to a GRF, in an example of a sample
representing normal and tumor-like parametric maps. (a) Normal and tumor-like fiber length maps. The
normal sample is modeled as a realization of a GRF, and we assume that the tumor-like sample is a
realization of the same process. Clusters of regions with an intensity higher than a given threshold,

t = 50 (b), t = 80 (c), t = 100 (d) are found to be statistically different to the GRF, with respect to a pval,
depending on the cluster maximum intensity value or their surface.

Biological Imaging e25-7

https://doi.org/10.1017/S2633903X23000247 Published online by Cambridge University Press

https://doi.org/10.1017/S2633903X23000247


The last step involves storing the average Λm,σm of the learning dataset.
During the test phase, for all the clusters identified at a threshold t within the test set, PH and PS are

evaluated using the model’s previously learnt parameters. At pval ≤ 0:05, the clusters are significantly
different from the normal GRFmodel, and can be considered for subsequent analysis (e.g., quantification).

For all the images Ij in the test set:
•Gaussianization of each sample image I j. The result is a new image Ig, whose histogram is Gaussian
with identical variance to that of I j.

• For a given list of thresholds T = t1, t2,⋯, tnð Þ :
– Binarization of the image Ig according to the threshold ti
–Once the list of connected components in the binary image resulted from thresholding is achieved,
then for every (labeled) connected-component l1, l2,⋯, lp

� �
:

* Evaluation of PH using the learnt model parameter σm.
* Evaluation of PS using the learnt model parameters Λm,σm.

3. Generation of FN Variant-Specific Fibroblast-DerivedMatrices and Induction of a Tumor-Like
State

To test our method, we utilized a previously established in vitro system to generate normal and disease-
mimicking ECMs by normal mouse fibroblasts. Fibroblasts are the major ECM-producing cells of
tissues. In pathological conditions (e.g., tumors), quiescent fibroblasts become activated by environ-
mental cues that induce their phenotypic conversion to “myofibroblasts”with a pro-tumoral phenotype
(Figure 3a, top). This process is characterized by the upregulation of cellular FN expression, actin
reorganization and increased cell contractility that result in their elongation and the deposition of a
highly anisotropic FN-rich ECM(11). In vitro, these changes can be mimicked by treating normal resting
fibroblasts with TGF-β1, a potent cytokine involved in fibroblast activation in the tumor microenvir-
onment(11). For our analyses, FN-rich normal or tumor-like matrices were generated by presenting
FN-null mouse embryo fibroblasts with recombinant cFN (prepared as previously described(11)), as
schematized in Figure 3b. For the induction of a tumor-like phenotype, fibroblasts were incubated with
TGF-β1 (Figure 3c). Cultures were decellularized after 7 days, and the resulting cell-derived matrices
were visualized by immunofluorescence staining and confocal microscopy. Organization of variant-
specific FN matrices in normal and activated states was then quantitatively analyzed, as described
below.

4. Generation of Parametric Maps from Confocal Images of ECM

4.1. Fiber detection using Gabor filters and graph extraction

To detect and quantify fiber-specific properties of FN networks (Figure 4a), we developed a pipeline that
was primarily utilized for the extraction of local topological fiber properties from 2D confocal microscopy
images, as described previously(11). Existing ECM analysis methods focusing on collagen exploit
alternative fiber detection techniques, such as Fast Fourier Transform bandpass filters(18), ridge detec-
tion(19), or fast discrete curvelet transform(20), which is arguably the best suited method to detect
curvilinear anisotropic objects, among the previous options. The latter option was used in conjunction
with a fiber extraction algorithm. Our method relies on a more flexible detection scheme using Gabor
filters, thereby avoiding translation/rotation errors, and unlike other methods, associates graph networks
to fiber morphological skeletons, enabling diverse fiber analyses. The current study builds on our
previously described fiber enhancement approach(11), for which the key steps are summarized as follows.
Fibers in confocal images (Figure 4a) were detected and enhanced usingGabor filters (Supplementary S1)
tailored to capture a range of different fiber elements that occur at multiple frequencies and orientations
(Figure 4b). Subsequently, we opted for a graph-based framework to construct morphological fiber
skeletons (Figure 4c) that would ultimately provide a geometrical characterization of fiber patterns.
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Further steps for improving fiber representation (e.g., fiber pruning, post-processing fiber reconnection)
were implemented as described in previous work(21). Graphs (i.e., collections of nodes connected by
edges) are powerful tools for the structural and pattern analysis of objects, which can be utilized for the
mathematical study of relations between entities, including fiber-like object detection(22,23).

Within our current analysis, we employ two different graph types to measure fiber-specific properties.
First, graphs are used to depict a morphological skeleton representation (Figure 4d, left). Here, the nodes

Figure 3. (a) Schematic representation of a simple cuboidal epithelium displaying the different architec-
tures of the underlining ECM in normal (left) and pathological conditions (right). (b) Workflow diagram
featuring the linear structure of the purified recombinant FN (rFN) variants and the relative positions of the
alternatively spliced Extra Domains, the generation of fibroblast-derived matrices, and image acquisition
and analysis. (c) Phase contrast images (top row) of FN-null mouse fibroblasts presented with FN B+A+
variant (15 μg/ml) in the presence or absence of TGF-β1 (5 ng/ml) to mimic the changes that take place in
the tumor/fibroticmicroenvironment. After removal of the cells, matrices were stainedwith a rabbit-anti-FN
polyclonal antibody and visualized with confocal microscopy. Scale bars: phase, 100 μm; IF, 50 μm.
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represent either fiber crosslinks (actual fiber junctions or junctions due to the 2D projection of the network
onto the image plane) or fiber ends, and the edges capture the fiber length between two given nodes. We
previously showed how such a representation can provide a description of distinct local features among
four FN variant networks, in a normal state(11).

Figure 4. Fiber enhancement and graph-based representation starting from confocal 2D images.
(a) Representative region (512x512 pixels) of a sample image (FN B-A+) at a resolution of 0.27 μm/pixel.
(b) Fiber enhancement with Gabor filters (c) Morphological fiber skeleton extraction (d) Skeleton-based

graph (left) and simplified graph representation (right) which is derived from the latter.
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The second type of graph-based representation introduced in this work (Figure 4d, right) is meant to
simplify fiber delineation, as described hereafter. Starting from the skeleton graph, we kept all nodes
corresponding to fiber extremities, and connected all pairs of nodes with a straight line, if a fiber had
previously been identified. For the sake of simplicity, we refer to fiber length as the length of any straight
line connecting a pair of graph nodes.

We note that both representations are useful to extract different local or global fiber properties. The
graph-based skeleton fiber delineation faithfully represents (according to a visual assessment performed
by a trained biologist) the geometrical and topological properties of the fibers from the 2D confocal
images, while the Gabor-specific (e.g., fiber local orientation, thickness) and graph-derived parameters
(e.g., fiber length, number of nodes, etc.) are linked to meaningful physical fiber attributes. This
biologically relevant representation enabled us to develop here a statistical analysis of the variation of
certain fiber parameters for both the normal and a tumor-like state of the FN networks.

4.2. Generation of fiber parametric maps from graph-derived fiber representations

We next sought to develop a statistical framework for differentiating between parametric maps of
activated and non-activated FN network configurations, computed from graph-based fiber representa-
tions. To create tissue variation maps (Figure 5), we considered different fiber attributes computed from

Figure 5.Computation of fiber parametric maps: (a) Starting from the skeleton graph (FN B-A+ disease-
like sample, 1024x1024 pixels, 0.27 μm/pixel), a pore directionality map is derived (b), as the inverse
value of the difference between the median pore angle and each individual one. (c) Starting from the fiber
skeleton associated graph, a parametric map (fiber length, (d)) associates the fiber length, in pixels, to

each corresponding connecting line.
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graphs, representing either morphological skeletons (Figure 5a) or simplified graph depictions
(Figure 5c). This framework is exemplified on two different types of parametric maps (Figure 5b,d)
reflecting discriminative features, namely the individual fiber lengths (i.e., the length of the connecting
line between two graph nodes), and the fiber pore (“gap”) directionality (i.e., the inverse value of the
absolute difference between the median and individual pore orientation).

To build a fiber length map (Figure 5d), the starting point was the simplified graph-based represen-
tation, where nodes depict fiber ends or crosslinks, and fibers are represented by the straight connecting
line between these nodes. During the next step, we identified the 2D pixels coordinates that approximate
the straight line between the nodes(24) and assigned the length value of the connecting line to each one of
the corresponding pixels. The last step for generating dense fiber length maps consists of including the
extrapolation of the fiber length values(25) and smoothing of this result with a Gaussian kernel.
Concerning the pore directionality parametric maps (Figure 5b), the starting point was the skeleton
graph. Pore orientation was computed by first fitting ellipses to each pore and was subsequently obtained
by measuring the angle i between the horizontal axis and the major ellipse axis. Pore median value was
then subtracted from each i to remove image rotations from the analysis. Finally, the inverse absolute
value of the resulting individual score per pore (indicative of the directionality) was assigned to all pixels
filling its corresponding surface, and subsequently smoothed out with a Gaussian kernel. High values
within the pore directionality maps correspond to those regions inwhich pores are oriented similarly to the
median pore angle, ultimately indicating regions characterized by a predominant pore orientation.

To complement these analyses, we developed a graphical user interface (GUI) for the analysis of a
single image/batch displaying fiber networks. Fibers are enhanced using Gabor filters and represented by
graphs. Parametric maps, such as fiber length and pore directionality maps can subsequently be derived.
The output results can be written into .png image files, while the fiber specific graph/Gabor-derived
features are collected in .csv files. TheMATLAB source code and sample images for testing can be found
on the GitHub platform, at github.com/aigrapa/ECM-fiber-graph.

4.3. Test for anomaly detection using fiber network simulations

To simulate fiber networks, we considered a set of scattered point patterns Pd, where Pd is the set of points
ðx+ nx∗d,y+ ny∗dÞ, for ny odd, and ðx+ nx∗d,y+ ðny + 0:5Þ∗dÞ for ny even, nx,ny,d ∈ℕ. Random noise

was added at the points’ location : ∀p = X ,Yð Þ∈Pd ,p0 = X + ηx,Y + ηy
� �

, where ηx and ηy follow a uniform

law between 0 and N, N ∈ℕ. In this way, we generated two patterns P1 and P2 using different values for d,
as well as a maskM (for the second scenario), which is an image equal to zero except for specific areas (e.g.,
ellipses Figure 6a). We consider P as: x,yð Þ∈P1 :M x,yð Þ= 0f gS x,yð Þ∈P2 :M x,yð Þ ≠ 0f g . The fibers
were subsequently defined by the edges of the Delaunay graph of P.

The first isotropic fiber network corresponds to a “normal” example (d = 30, N = 20), while the fiber
network with local defects (i.e., fibers are more elongated in the regions containing “defects,” corres-
ponding to the three regions within the mask) is considered here an “abnormal” example (d ∈ 40,50f g,
N = 20) (Figure 6a). Fibers were detected as explained in 4.1, and fiber graphs were correspondingly
derived for both images (Figure 6b). Starting from the graph-based fiber representation, fiber length
parametric maps were generated accordingly, as described in 4.2 (Figure 6b), and subsequently
“gaussianised,” as explained in 2.3. We were interested in applying the same principle described in
2.2, in order to detect the three regions of fiber length variation corresponding to the proposed ground-
truth mask (Figure 6a). According to this principle, the null hypothesis is that clusters of pixels in the
parametric map, computed at different thresholds in the abnormal example, belong to a realization of the
same GRF as the normal sample. The method learns the GRF model parameters from the parametric map
corresponding to the reference-normal example, and then uses these parameters to compute the two
probabilities of belonging to GRF, for each region at various thresholds, in the abnormal sample’s
parametric map, using an intensity or surface-based criterion. Different regions were identified at various
thresholds, for both intensity and surface-based detection (Figure 6c), at a pval ≤ 0:05. By only keeping
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the regions which were detected at a certain threshold (surface-based detection) having a non-null
intersection with the clusters detected according to the intensity-based criterion, we were able to
accurately detect the three regions of fiber length variation, as well as two additional false positive
smaller regions within the parametric map of the fiber network with local defects.

5. Results—Statistical Analysis of Fiber Parametric Maps

The graph-based representation of FN networks enabled the subsequent design of a novel framework to
perform a spatial statistical analysis of ECM patterns, using graph-derived SPMs. This methodology was
applied for a quantitative and qualitative analysis of fiber length and pore directionality differences, across
all FN variant networks in normal and tumor-like states. We were thus interested in determining whether

Figure 6. Anomaly detection within parametric maps of simulated fiber networks (a) Simulations of fiber
networks (1024x1024 pixels), isotropic (left) and with local defects (center), ground-truth mask (right).
(b) Graph-based representations of fiber networks, and corresponding fiber length parametric maps for
both samples. (c) Detection of anomalous clusters with respect to the normal GRFmodel (at pval ≤ 0:05),
at various thresholds, on the parametric map containing defects, for intensity-based (left) and surface-
based criteria (center). The regions detected at a threshold of 20, based on a surface-based criterion
having a non-null intersection with those detected at a threshold of 35, according to an intensity-based

criterion (right).
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the proposed SPM analysis of the selected spatial fiber features could reveal significant variant-specific
differences between the FN variant networks in normal (N) and tumor-like (T) states.

To apply our framework to the available data, we first divided the available sets of confocal images
(1024 x 1024 pixels, 0.27 μm/pixel; 70 images/variant for normal FN (N) and 65 images/variant for
tumor-mimicking FN networks) as follows. For comparison of (N) vs (T) FN networks, we considered
50 (N) samples as the learning dataset, 20 (N) as a test set for normal, and 65 (T) as a test set for
disease-like networks. In all scenarios, a cluster is considered significantly different from the normal
GRF model at pval ≤ 0:05. Anomalies in fiber length (Figure 7a) detected using either intensity or
surface-based criteria (Figure 7b,c) and pore directionality maps (Figure 8a–c) were detected at a few
intensity thresholds (e.g., 70,80,90) and (10,12,14), respectively (Figures 7, 8). Thus, using our
approach, differences in fiber length and pore directionality could be localized in regions formed at
different intensity thresholds. This property is very useful for obtaining a qualitative analysis of
parametric maps, where clusters of pixels that are statistically different from a normal model can be
localized.

For the quantitative analysis of tissue parametric variations, we set out to determine significant
differences between FN variant networks through the average number of identified foreign clusters, as
well as the average cluster area per image. It is noteworthy that the group for which anomalous clusters
were found at superior thresholds, had higher parametric values than in the normal model. For example, if
significantly different regions occur in the tumor-mimicking matrices compared to the normal ones, with
respect to fiber length, then fibers are statistically more elongated within former networks than normal
counterparts. As shown in Figures 7, 8, we found both fiber length and pore directionality to be
significantly different for pairwise comparisons of normal and tumor-like FN variant networks. Essen-
tially, the latter type of FN architecture relative to normal ECM, is represented by statistically longer fibers
(Table 1) with a more pronounced pore directionality (Table 2). The increased length of FN fibers is
consistent with the elongated phenotype of the TGF-β1-treated fibroblasts that assemble them. The
statistically significant increase in pore directionality of tumor-like matrices compared to normal FN
matrices is in agreement with published reports(26) of higher FN alignment in cell-derived matrices from
cancer-associated fibroblasts and in tumor tissue. Detailed results, including the average area and number
of identified anomalous clusters, at multiple thresholds, for four FN variants, are presented in Supple-
mentary Tables S1–S8.

6. Discussion and Conclusion

The proposed methodology was designed to quantify the differences in terms of spatial organization
between normal and disease-like architectures of variant-specific FNmatrices generated in vitro.We have
previously been able to discriminate thematrix patterns of four alternatively spliced FN variants deposited
by cultured fibroblasts using different learning approaches and relying on graph-based feature analysis.
The pipeline which includes steps for fiber detection and representation(11), and generation of parametric
fiber maps is available with a MATLAB GUI: both graph and Gabor filter-based fiber features can be
extracted from different images representing fiber networks (e.g., ECM-specific proteins) for downstream
analysis. In principle, the steps required for the characterization of ECM (i.e., fiber detection and
representation using graphs) in cell-derived matrices generated by cells of different origin remain the
same. However, in the case of tissue samples, the ECM is more complex and heterogeneous, and further
pre-processing steps may be needed to filter structures that are normally found in tissues (e.g., blood
vessels). The number and type of additional steps, however, is dependent on the type of organ/tissue, the
pathology under evaluation, and the staining procedure.

Here, we developed an SPM framework for the quantitative and qualitative analysis of fibers, capable
of simultaneously detecting andmeasuring variations of specific ECM features within two different tissue
conditions. Importantly, our approach can be evaluated on parametric maps at different thresholds,
producing results that are more reliable and statistically relevant (by providing a pval) than a simple
hard thresholding of the parametric maps. Our framework was tested using two relevant fiber features,
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fiber length and pore directionality, whose parametric maps revealed significant differences between
normal and disease-mimicking states. However, parametric maps can be extended to include other fiber or
pore-specific parameters (e.g., fiber density, width, length, orientation, waviness, and straightness), which
could be useful for differentiating among various biological networks in normal and pathological states.

Figure 7.Qualitative analysis—Anomalous cluster detection (with respect to the normal statistical model),
applied to two samples of fiber length map (FN B-A+ tumor-like), 1024x1024 pixels, 0.27 μm/pixel (a),
(b) and (c) depict the anomalous clusters (pval ≤ 0.05) at various intensity thresholds (70,80,90).
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Computational analyses of ECM structures can provide essential information about their role in
shaping the cellular microenvironment topology in health and during disease progression. Prognostic
ECM-specific signatures have already been inferred in cancer-related studies, and in diseases with
prominent fibrosis(27–29). There is also a growing interest in the integration of cell and ECM analyses

Figure 8.Qualitative analysis—Anomalous cluster detection (with respect to the normal statistical model),
applied to two samples of pore directionality map (FN B-A+ tumor-like), 1024x1024 pixels, 0.27 μm/pixel

(a), (b) and (c) depict the detected clusters (pval ≤ 0.05) at various intensity thresholds (10,12,14).
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in a spatially resolved manner to further understand the interactions between cells and their matrix
microenvironment(30). Indeed, the present work proposing a versatile pipeline for the analysis of ECM
produced by cultured fibroblasts, is being extended to studies of ECMorganization in human tumor tissue
and aims to integrate the phenotypes of cellular components. Hence, a combined local analysis of
parametric maps and metrics describing the organization/morphology of adjacent cells (e.g., tumor,
immune, vascular cells) will potentially help elucidate the complex interplay between cellular and non-
cellular components of the tumor microenvironment.

7. Materials and Methods

7.1. Materials and FN preparations

Recombinant human TGF-β1was fromR&DSystems Inc. (Minneapolis, MN, USA). All other chemicals
and reagents were purchased from Sigma Aldrich (St Louis, MO, USA) unless otherwise stated. Purified
recombinant FN variants were produced as previously described(11).

7.2. Cells and culture conditions

Fn1 -/- mouse kidney fibroblasts were generated and cultured as previously described(11). For experi-
ments, FN was depleted from fetal calf serum using gelatin sepharose-4B columns (GE Healthcare,
Uppsala, Sweden), and the culture medium was supplemented with Penicillin-Streptomycin 100 U/ml
and, where indicated, TGF-β 1 (5 ng/ml). Absence of Mycoplasma sp. contamination was routinely
verified by PCR as described elsewhere(31).

Table 1. Quantitative analysis for detection of differences in fiber length—Anomalous cluster
quantification (with respect to the normal statistical model, at pval ≤ 0:05), for the comparison of

normal (N) and tumor-like (T) FN (1024x1024 pixels, or 276.48 μm x 276.48 μm).

FN variant Average number of clusters for (N) vs (T) FN

B-A- 0.43 (surface)
B+A- 0.88 (intensity); 0.92 (surface)
B-A+ 0.72 (intensity); 0.78 (surface)
B+A+ 0.94 (intensity); 0.94 (surface)

Note.The average number of significant clusters per test database for each variant is shown here, for either surface or intensity criteria, if higher than for
the normal model, at any selected threshold). Average number of clusters detected in fiber length maps, for normal vs tumor-mimicking FN, for one of
the test thresholds (70,80,90).

Table 2. Quantitative analysis for detection of differences in pore directionality—Anomalous cluster
quantification (with respect to the normal statistical model, at pval ≤ 0:05), for the comparison of

normal (N) and tumor-like (T) FN ( 1024x 1024 pixels, or 276.48 μm x 276.48 μm).

FN variant Average number of clusters for (N) vs (T) FN

B-A- 0.12 (intensity)
B+A- 0.22 (surface)
B-A+ 0.14 (intensity); 0.34 (surface)
B+A+ —

Note.The average number of significant clusters per test database for each variant is shown here, for either surface or intensity criteria, if higher than for
the normal model, at any selected threshold). Average number of clusters detected in pore directionality maps, for normal vs tumor-mimicking FN, for
one of the test thresholds (10,12,14). ‘—‘ is recorded if no significant detection was present.
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7.3. Generation of fibroblast-derived matrices, immunofluorescence staining and microscopy

Fibroblast-derived matrices were generated as described previously. For FN immunostaining, primary
antibody (rabbit polyclonal anti-FN) was from Merck-Millipore (Darmstadt, Germany). Fluorescently-
labeled (Alexa Fluor 488-conjugated) secondary antibody was from Thermo Fisher Scientific (Waltham,
Massachusetts). After staining, the coverslips were mounted in ProLong Gold antifade reagent (Thermo
Fischer Scientific). Confocal imaging was performed on a Zeiss LSM710 confocal system equipped with
a 10X/0.45 NA objective. For visual representation, image treatment was performed using Fiji(32).
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