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A GENERALISED EXCHANGE THEOREM FOR MATROID BASES

JOHN DONALD AND MALCOLM TOBEY

Let b and c be bases of a matroid. Then for any integer r , there exists an injection
<r from r-subsets / of 6 to r-subsets <r{I) of c such that b — I + <r{I) is a base
for all / . This result has implications for the structure of matroid base graphs.

1. GENERALISED BASE EXCHANGE

Given bases 6 and c of a matroid M, and an element t €E b, there always exists
an element j £ c such that, with the obvious notational conventions, b — i+j is a base
of M. This base exchange property of matroids implies stronger exchange properties.
For example, Brualdi proved in [1] that there always exists an injection <r from b to c
such that for all t in 6, b — i + <r(i) is a base of M. In this note we generalise Brualdi's
result to arbitrary finite subsets of b.

Brualdi's proof depends on Hall's theorem on distinct representatives ([1] or [5,
p.505]); indeed, the exchange property appears tailor-made for that theorem. To in-
troduce our ideas we sketch an alternative proof, also depending on Hall's theorem,
that avoids using circuits. Hall's theorem states the following: finite sets X(I) have
distinct representatives, / ranging over any index set, if and only if the union of any
finite number m of the X(I) contains at least m elements.

To use Hall's theorem, first we define our indexed sets. Accordingly, for each i £ b
let X(i) denote {j £ c \ b — i + j is a base }. The desired injection cr from 6 to c
corresponds to a choice of distinct representatives for the X(i). By Hall's theorem, it
suffices to show that for any finite m the union X of m distinct X(i) contains at least
m elements. Let / denote the m elements of 6 involved, and for convenience assume I
disjoint from c. Then there exists, by repeated exchange, a base b — I + J, J a subset
of c — 6 of size m. Again by repeated exchange we may delete the elements of J in
any order as we move back toward b. In particular, for each j in J, there exists a base
b — i + j for some i in I. Since each of these distinct bases is in X, X contains at
least m elements.

Through a further application of Hall's theorem, we generalise Brualdi's result to
subsets of b.
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THEOREM 1 . Let b and c be bases of a matroid M with bases B. Then there
exists an injection a from r-subsets I of b to r-subsets J of c such that b — I -f- tr(/)
is always a base.

PROOF OF THEOREM 1: We note that the case r = 1 is known ([1], or as sketched
above) and use induction. Henceforth we assume r > 1.

For any r-subset I of b let X(I) denote {J \ c D J and b — I + J in B}. Any set
of distinct representatives for the X(I) will define the desired injection, so we try to
use Hall's theorem.

Accordingly it suffices to verify the hypothesis of Hall's theorem: given any m
r-subsets I\, ..., Im of 6, and denoting the union of the associated X(Ij) by X, we
must have \X\ ^ m. We now get a lower bound on the size of that union in two steps.
First we label a bunch of elements of that union, and secondly we show that not too
many labels denote the same subset.

Each Ij , j = 1, . . . , m, contains r (r — l)-subsets, which of course may be (r — 1)-
subsets of other 7*, k ^ j . Let K\, ..., Kt be a listing, without repetition, of all the
(r — l)-subsets of all the Ij, and suppose each Kp is contained in np distinct Ij. Let,
by induction, TT be a bijection between (r — l)-subsets K of b and ir(K) of c such
that b — K + ir{K) is a base. Then each b — Kp + n(Kp) is a base. Let 5"p denote the
set of Ij containing Kp, p = 1, . . . , t. By the case r = 1 applied separately to each
of the bases b — Kp + ir(Kp) and c, there are np distinct yjp in c such that for Ij in
Sp, b — Ij + n(Kp) + yjp is a base. We now have a labelled collection of not necessarily
distinct subsets ir(Kp) + yjp belonging to X. The number of such labels is, of course,
£) np. It is also mr, because there are r distinct Kp contained in each of the m Ij .

Suppose two labels denote the same set:

If p = q, then by construction yjp — zkq. If p ^ q, then by the injective property
of 7T, ir(Kp) ^ ir(Kq). Consequently Zkq is in n(Kp), so there are at most r — 1
choices for Zkq, whence there are at most r — 1 choices for it{Kq) + z^q, again by the
injective property of 7r. Thus there can be at most r equalities of the form (*) for
fixed n(Kp) + j / ; - p . Because there are mr such labels, the labels must denote at least
m distinct subsets. Thus |X| ^ m. u

Curiously, our proof does not establish the existence of an injection from b to c
by which the injection from r-subsets to r-subsets is induced. Obviously a particular

injection of r-subsets need not result from an injection of the underlying elements, so
we may ask whether there necessarily exists any injection of r-subsets induced in this
way. The associated underlying injection would have to vary with r , as shown by the
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example in [1]. For that example, however, underlying injections exist, separately for

each r , the only new case being r = 2 .

2. IMPLICATIONS FOR BASE GRAPHS

Given a matroid M with collection of finite bases B, we say that bases b and c of

B are adjacent if they differ by one element; that is, if \b — c\ = \c — b\ = 1. Nonadjacent

bases are independent. More generally we define the distance d(b, c) between arbitrary

bases b and c of B to be the number of elements by which they differ: d{b, c) =

\b — c\ = \c — b\. We denote by N,(b) the set of bases a distance s from the base 6.

The matroid property imposes a certain combinatorial complexity on the sets

N,(b). In particular if d(b, c) = d, then we can ask about the joint neighbourhood

Nr(b) D Nd-r(c) consisting of certain bases between b and c. For example, it is nearly

obvious that for d = 2, JV1(6) PI Ni(c) contains a pair of independent bases. This fact

along with other graph-theoretical properties has played a role in various attempts to

characterise the adjacency properties of matroid bases [2, 3, 4]. Less obviously, but

equivalent to the bijection result of [1], Ni(b)nNd-i(c) contains a set of d independent

bases, for arbitrary finite d. Theorem 1 directly yields a further generalisation.

THEOREM 2 . Let M be a matroid with bases b and c, and suppose the distance

d(b, c) = d. Then Nr(b) fl Nd-r(c) contains a collection of C(d, r) independent bases,

where C(d, r) denotes the r th binomial coefficient, "d choose r ".

PROOF OF THEOREM 2: If 7i ^ h are r-subsets of 6 and <r is the bijection of

Theorem 1, then <r(I{) ^ <r(h)- Thus b—Ii+<r(Ii) and b—h+or^h) are nonadjacent. D

One may neatly visualise the bases B of a matroid M as providing the vertices of

a graph B(M), the matroid base graph of M, whose adjacencies are the same as the

adjacencies of the bases [2, 4]. From that point of view, a particularly simple matroid

results from the d-fold product of a 2-base matroid. Its base graph is the d-cube, for

which Theorem 2 is tight, albeit trivial. At an opposite extreme one has the complete

matroid Bd,d consisting of all ({-subsets of a 2<£-set. For example, in £4,4 bases b and

c at a distance 4 admit 12 nonadjacent bases in ^2(6)1"! A^c). If the union of shortest

paths between bases a distance d apart always contained a d-cube, Theorem 2 would be

an immediate corollary. Examples like that in [1] show, however, that there need be no

such d-cube. We have no direct explanation for the presence of so much independence

in the joint neighbourhoods of matroid base graphs.
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