ON HERSTEIN'S THEOREM CONCERNING THREE FIELDS

CARL FAITH ${ }^{1)}$

Let $L>K \geqq \mathscr{D}, L \neq K$, be three fields such that: (1) L / K is not purely inseparable, and (2) L / Φ is transcendental. Then Herstein's theorem [2] asserts the existence of $u \in L$ such that $f(u) \notin K$ for every non-constant polynomial $f(X) \in \mathscr{D}[X]$. Thus Herstein's theorem can be given the following equivalent form:

Theorem (Herstein). If L, K, and Φ are three fields satisfying (1) and (2), $L \neq K$, then there exists $u \in L$ which is transcendental over \emptyset such that $K \cap \mathscr{\oplus}[u]$ $=\varnothing$, where $\mathbb{D}[u]$ is the subring generated by \emptyset and u.

The main part of Herstein's proof depends on a lemma of Nagata, Nakayama, and Tsuzuku in valuation theory of fields [On an existence lemma in valuation theory, Nagoya Math. Journal, vol. 6 (1953)]; the proof of this lemma in turn requires a knowledge of arithmetic in "algebraic number and function fields". In the present note I present an elementary proof of Herstein's theorem in which only the most basic properties of simple transcendental fields are used. In this development the result for the case $L=\mathscr{D}(x)$ is sharpened: then there exists a polynomial $q=q(x) \in \mathscr{D}[x]$ not in \varnothing such that $K \cap \emptyset[q]=\varnothing$.

Herstein's elementary reduction to the pure transcendental case constitutes a reduction for the theorem as stated above so we can assume that $L=\mathscr{\emptyset}(x)$. In this case it is known ${ }^{2)}$ that $K \cap \emptyset[x]$ is finitely generated over \varnothing as a ring, for any intermediate field K. The proposition below gives a new proof and at the same time sharpens this result: Then $K \cap \emptyset[x]$ has a single generator over \emptyset.

[^0]Proposition 1. Let $L=\Phi(x)$ be a simple transcendental field extension, and let $K=\Phi\left(H_{/} G\right)$ be any intermediate field ${ }^{3)} \neq \Phi$, where $H, G \in \Phi[x],(H, G)=1$, and $H \notin \Phi$. Then a necessary and sufficient condition that $K \cap \Phi[x] \neq \varnothing$ is that $K=\Phi(H)$. Then $: K \cap \Phi[x]=\Phi[H]$, and $G=a H+b$, with $a, b \in \Phi$.

Proof. Let $P(x) \in \mathscr{D}[x], P(x) \notin \Phi$, and assume that

$$
\begin{equation*}
P=h(H / G) / g(H / G) \in K \tag{1}
\end{equation*}
$$

where $h(X), g(X) \in \mathscr{D}[X],(h, g)=1$, and X a new indeterminant. It can, and will, be assumed that both $h(X)$ and $g(X)$ have leading coefficient $=1$. First suppose that $g(X) \in \Phi$ (then $g(X)=1$) and write

$$
h(X)=X^{q} \sum_{i=0}^{k} a_{i} X^{i}
$$

where $a_{0} a_{k} \neq 0$. Then,

$$
\begin{equation*}
G^{k+q} P=H^{q} \sum_{i=0}^{k} a_{i} G^{k-i} H^{i} \tag{2}
\end{equation*}
$$

Since $(H, G)=1$, necessarily $\left(G, \sum_{0}^{k} a_{i} G^{k-i} H^{i}\right)=1$. Since $H(x) \notin \Phi, k+q$ $=\operatorname{deg} H(x) \neq 0$. It follows, since G divides the left side but is prime to the right side of (2), that $G \in \Phi$, that is, $G=0 \cdot H+b \in \Phi, K=\varnothing(H)$ as required.

Now assume that $g(X) \notin \Phi$. I am indebted to R. Kiehl for the following neat proof of this case. Let A denote the algebraic closure of Φ, and, over A, factor

$$
\begin{equation*}
g(X)=\prod_{j=1}^{m}\left(X-b_{j}\right) \tag{3}
\end{equation*}
$$

Furthermore over A,

$$
\begin{equation*}
h(X)=\prod_{i=1}^{n}\left(X-a_{i}\right) \quad(\text { or, } h(X)=1 .) \tag{4}
\end{equation*}
$$

Hence, by (1) and (3),

$$
\begin{equation*}
\prod_{\jmath-1}^{m}\left(H-b_{j} G\right)=G^{t} \prod_{t=1}^{n}\left(H-a_{i} G\right) \quad\left(\text { or, }=G^{t}\right) \tag{5}
\end{equation*}
$$

where $t=m-n$ (or, $t=m$). Since $(H, G)=1$, clearly

$$
\begin{equation*}
\left(H-b_{1} G, G\right)=1 \tag{6}
\end{equation*}
$$

[^1]and,
\[

$$
\begin{equation*}
d_{j}=\left(H-b_{1} G, H-a_{j} G\right)=1 . \tag{7}
\end{equation*}
$$

\]

To justify (7), note, (since $(h, g)=1$) that $a_{j} \neq b_{1}, j=1,2, \ldots m$, and write

$$
\begin{equation*}
H-b_{1} G=\left(H-a_{i} G\right)+\left(a_{j}-b_{1}\right) G \tag{8}
\end{equation*}
$$

From (8) it follows that d_{j} divides G, whence d_{j} divides $1=(H, G)$, that is, $d_{j}=1$. Now (5)-(7) show that $H-b_{1} G$ divides the left side but is prime (even in the case $h(X)=1$) to the right side of (5). Thus,

$$
\begin{equation*}
H-b_{1} G=c_{1} \in A \tag{9}
\end{equation*}
$$

Inspection of the coefficients in (9) reveals that $b_{1}, c_{1}, \in \mathscr{D}$, and, hence,

$$
\begin{equation*}
G=b_{1}^{-1} H-c_{1} b_{1}^{-1} \tag{10}
\end{equation*}
$$

has the required form ; $K=\mathscr{D}(H)$.
Finally, since $K=\varnothing(H)$, (1) can be rewritten

$$
\begin{equation*}
P(x)=h(H) / g(H) \tag{11}
\end{equation*}
$$

The results above, and the form of (10), show, by assuming G in (1) is a constant, that $g(X) \in \mathscr{D}$. Thus, $P(x)=h(H) \in \mathscr{D}[H]$, whence, $K \cap \mathscr{D}[x] \subseteq \mathscr{D}[H]$. The reverse inclusion is trivial, so that the last statement in the proposition is proved.

Lemma 2. Let $L=\mathscr{D}(x)$ be a simple transcendental field extension, and let $K=\mathscr{D}(H)$, where $H=H(x) \in \mathscr{D}[x]$ is such that x divides $H(x)$, and $K \cap \mathscr{D}[x H]$ $\neq \emptyset$. Then, $H(x)=a x^{n}, a \in \mathbb{D}$.

Proof. By Proposition 1, $\Phi[H] \geqq \Phi[x H] \cap K$. Let $f(X)=\sum_{0}^{m} a_{i} X^{i}, g(X)$ $=\sum_{0}^{m} b_{i} X^{i}$, where m is chosen such that one of $a_{m}, b_{m} \neq 0$, be such that $f(x H)$ $=g(H) \in \mathscr{D}[x H]$ not in \emptyset. Then

$$
\begin{equation*}
0=g(H)-f(x H)=\sum_{0}^{m}\left(a_{i}-b_{i} x^{i}\right) H^{i} \tag{1}
\end{equation*}
$$

If q is the smallest integer such that one of $a_{q}, b_{q} \neq 0$, then (1) is divisible by H^{q}, so that

$$
\begin{equation*}
0=\sum_{q}^{m}\left(a_{i}-b_{i} x^{i}\right) H^{i-q} \tag{2}
\end{equation*}
$$

From (2) one sees that H divides $\left(a_{q}-b_{q} x^{q}\right)$. Since $H \notin \mathscr{Q}, q \neq 0$. Since x divides H, necessarily $a_{q}=0$, whence H divides x^{q}, that is, $H(x)=a x^{n}, a \in \mathscr{D}$, $n \leqq q$, as needed.

I am now in a position to complete the proof of Herstein's theorem (in its sharpened form in the pure transcendental case.)

Theorem 3. If $\bar{L}=\mathscr{D}(x)$ is a simple transcendental field extension and if K is any intermediate field $\neq L$ such that L / K is not purely inseparable, then there exists $u \in \mathscr{D}[x]$ not in \emptyset such that $K \cap \emptyset[u]=\varnothing$.

Proof. If the theorem is denied, then by the proposition, $K=\varnothing(H)$ with $H=H(x) \in \mathscr{D}[x]$. It can be assumed that x divides $H(x)$. Now $K \cap \emptyset[x H] \neq \varnothing$, so that $K=\mathscr{D}\left(x^{n}\right)$ by the lemma. Let $y=x-1$, note that $L=\mathscr{D}(y)$, that $K=\mathscr{D}\left(x^{n}-1\right)$, and assume that

$$
K \cap \varnothing\left[(x-1)\left(x^{n}-1\right)\right] \neq \varnothing,
$$

that is, that

$$
\mathscr{D}\left((y+1)^{n}-1\right) \cap \varnothing\left[y\left((y+1)^{n}-1\right)\right] \neq \varnothing .
$$

Then, since y divides $(y+1)^{n}-1$, one can apply Lemma 2 again to see that

$$
(y+1)^{n}-1=y^{n},
$$

or,

$$
(y+1)^{n}=y^{n}+1,
$$

which, since $n>1$, is possible only if \mathscr{D} has characteristic p, and $n=p^{e}$. Then $K=\mathscr{D}\left(x^{n}\right)=\varnothing\left(x^{p^{e}}\right)$, so that L / K is purely inseparable, contrary to the hypothesis. This completes the proof.

Proposition 4. Let $L=\emptyset(x)$ be a simple transcendental field extension, and let $P, Q \in \mathscr{D}[x]$ be such that $\mathscr{D}(P) \cap \emptyset(Q) \neq \emptyset$. Then $\emptyset[P] \cap \emptyset[Q] \neq \emptyset$.

Proof. Let (1) $h(P) / g(P)=p(Q) / g(Q)$ be a nonconstant element in $M=\emptyset(P) \cap \emptyset(Q)$, where $h(X), g(X), p(X), q(X) \in \Phi[X]$, and $(h, g)=(p, q)=1$. Then, (2) $h(P) q(Q)=p(Q) g(P)$. Since $(q(Q), p(Q))=(h(P), g(P))=1$, it follows that (3) $h(P)=p(Q) \in M$, and (4) $q(Q)=g(P) \in M$, so that, by (1), one of (3) and (4) lies outside of \emptyset.

Theorem 5. Let $L=\emptyset(x)$ be a simple transcendeutal field extension, and let K be an intermediate field such that $L \neq K$, and L / K is not purely inseparable.

Then, if $K=\emptyset(F(x))$, where $P(x) \in \Phi[x]$, there exists $Q(x) \in \Phi[x], Q(x) \notin \Phi$, such that $K \cap \varnothing(Q)=K \cap \emptyset[Q]=\varnothing$.

Proof. If $\Phi(Q) \cap K \neq \Phi$, for all Q in $\Phi[x]$ not in Φ, then by the proposition, $\Phi[Q] \cap K \neq \Phi$, for all such Q. But this violates Theorem 3 , unless L / K is purely inseparable. But this is ruled out by hypothesis, completing the proof.

In [1] Herstein's method of [2] is employed to show that the element u in the statement of his theorem can be chosen such that

$$
K \cap \emptyset(u)=K \cap \varnothing[u]=\varnothing .
$$

Theorem 5, then, represents a special case of this more general result. It would be interesting therefore to know if the more general statement also has an elementary proof.

In [1] Herstein's theorem is used in the proof of the following result: If A is a transcendental division algebra over the field \varnothing, and if B is a subalgebra $\neq A$ such that to each $a \in A$ there corresponds a non-constant polynomial $f_{a}(x) \in \Phi[x]$ such that $f_{a}(a) \in B$, then A is a field. A consequence of the present note is that this result now also has an elementary proof.

References

[1] Carl Faith, A structure theory for semialgebraic extensions of division algebras, Journal für die reine und angewandte Mathematik, (1961).
[2] I. N. Herstein, A theorem concerning three fields, Canadian Journal of Mathematics, vol. 7 (1955), 202-203.
[3] B. L. van der Waerden, Algebra I, Vierte Auflage, Berlin-Göttingen-Heidelberg, 1955.
[4] O. Zariski, Interprétation algébrico-géométriques du quatorzième problème de Hilbert, Bull. Sci. Math. vol. 78 (1954), 155-168.

Institute for Advanced Study,
Princeton, N. J.

[^0]: Received March 22, 1961.
 ${ }^{1)}$ North Atlantic Treaty Organization (U.S.A.) Postdoctoral Fellow in the Mathematical Institute, Heidelberg University, on leave from Pennsylvania State University.
 ${ }^{2)}$ This is the one dimensional solution to Hilbert's Fourteenth Problem. See [4] for Zariski's generalization and solution to the one and two dimensional cases of Hilbert's problem.

[^1]: ${ }^{3)}$ This is Lüroth's theorem [3, p. 126].

