HIRONAKA'S ADDITIVE GROUP SCHEMES

HIROYUKI MIZUTANI

In [1] and [2], Hironaka referred to the importance of an additive group scheme $B_{p_n,\nu}$, which is associated with a point \mathfrak{p} in P_n , in connection with the resolution of singularities in characteristic p>0. Also he showed that if the dimension of $B_{p_n,\nu}$ is not greater than p, then it is a vector group.

By Oda [3], these schemes can be characterized in terms of vector spaces and differential operators of the coefficient field, as we recall in section 1. Moreover Oda classified these schemes in dimension ≤ 5 completely and conjectured that;

- (1) If dim $B_{p_n,p} < 2p 1$, then it is a vector group,
- (2) If dim $B_{p_n,\nu} = 2p-1$ and $B_{p_n,\nu}$ is not a vector group, then its type is unique.

In this paper we see that this conjecture is true, using some tools in Oda [3].

The author wishes to thank Professor T. Oda who taught this concept to him and gave him many suggestions.

Section 1.

Let $S=k[X_0,\cdots,X_n]=\sum\limits_{m\geq 0}S_m, P_n=\operatorname{Proj}(S), \text{ and } \mathfrak{p}\in P_n.$ A graded subalgebra $U(\mathfrak{p})=\sum_{m\geq 0}U_m(\mathfrak{p})$ of S is defined as follows:

$$U_m(\mathfrak{p}) = \{ f \mid f \in S_m, \operatorname{mult}_{\mathfrak{p}} (\operatorname{Proj} (S/fS)) \ge m \}.$$

Then $U(\mathfrak{p})$ is generated as a k-algebra by purely inseparable forms in S, i.e. elements of the form $a_0X_0^{p^e}+\cdots+a_nX_n^{p^e}$ with $a_i\in k, p=\mathrm{ch}(k)$. (See [2], Th. 1, Cor.)

DEFINITION 1.1. A Hironaka scheme $B_{p_n, p}$ associated with p in P_n is a homogeneous additive subgroup scheme of the vector group Spec(S) defined by

Received June 18, 1973.

$$B_{p_n,\mathfrak{p}} = \operatorname{Spec}\left(S/U_+(\mathfrak{p}) \cdot S\right)$$
 , where $U_+(\mathfrak{p}) = \sum\limits_{m>0} U_m(\mathfrak{p})$.

For simplicity, we call $B_{p_n,p}$ the H-scheme associated with p.

In order to mention the following theorem, which is the main theorem of Oda's characterization in [3], we recall some terminologies.

- (a) $L = \sum_{i \geq 0} L_i$ is a graded k-subspace of S, where L_i is the subset of S_{p^i} consisting of all the purely inseparable forms of degree p^i . Then L is a graded left k[F]-module, with F acting as the p-th power map.
- (b) Diff(k) and Diff_m(k) are the left k-vector spaces of differential operators over Z of k into itself, and those of order $\leq m$, respectively. When V is a subset of L_e , the following vector subspaces of L_e are defined for $i \leq e$:

$$\mathcal{D}_{i}(V) = \operatorname{Diff}_{p^{i-1}}(k)V$$

$$\mathcal{N}_{i}(V) = \{f \mid f \in L_{i}, \mathcal{D}_{i}(f) \subset k \cdot V\}.$$

- (c) When $Q = \sum_{i \geq 0} Q_i$ is a graded left k[F]-submodule of L, we can find an integer e such that $Q_{i+1} = k \cdot FQ_i$ ($i \geq e$) and $Q_e \supseteq k \cdot FQ_{e-1}$. We call such e the exponent of Q and write e(Q). We define the exponent of $B_{p_n, p}$ to be $e(U(p) \cap L)$.
- (d) We call $\mathfrak p$ in P_n the most generic point associated with an H-scheme B in Spec (S) when $B_{p_n,\mathfrak p}=B$ and an arbitrary $\mathfrak p'\in P_n$, which satisfies $B_{p_n,\mathfrak p'}=B$, contains $\mathfrak p$.

Remark 1.2. B is a vector group if and only if the exponent of B equals 0.

THEOREM 1.3. (Oda [3], Th. 2.5). Let N be a graded left k[F]-submodule of L. Then $\operatorname{Spec}(S/N \cdot S)$ is an H-scheme of exponent e if and only if e(N) = e, $N_e \subseteq L_e$, $\mathcal{N}_e \mathcal{D}_e(N_e) = N_e$ and $N = \operatorname{rad}_L(k[F]N_e)$, where we define $\operatorname{rad}_L(Q) = \{f \in L \mid \text{there exists a non-negative integer } f$ such that $F^j f \in Q\}$. Moreover $\operatorname{rad}_S(\mathcal{D}_e(N_e) \cdot S)$ is the most generic point associated with $\operatorname{Spec}(S/N \cdot S)$ and $\operatorname{dim}(\operatorname{Spec}(S/N \cdot S)) = \operatorname{dim}_k(L_e/N_e)$.

By this theorem H-schemes can be written in terms of vector spaces and differential operators as follows:

(*) Let W be a finite dimensional k^q -vector space and let V be a k-subspace of $k \underset{kq}{\otimes} W$, with $q = p^e$. Then an H-scheme of exponent e is

in one to one correspondence with a pair (V, W) satisfying the following conditions:

- (i) $\mathcal{N}_e \mathcal{D}_e(V) = V$,
- (ii) $V \subseteq k \bigotimes_{kq} W$,
- (iii) $V \supseteq k(V \cap (k^p \bigotimes_{k^q} W))$ if $e \ge 1$.

Here $\dim(H\text{-scheme}) = \dim_k (k \bigotimes_{k^q} W/V)$. Since $\mathrm{Diff}_{q-1}(k)$ acts trivially on k^q , it is considered to act on $k \bigotimes_{k^q} W$ through the first factor. In this paper H(V,W) means an H-scheme which is determined by a pair (V,W) satisfying (i) (ii) (iii). Also, when $e \ge 1$, we sometimes assume the condition (iv) below for the sake of convenience,

(iv) $V \cap W = 0$ and W is minimal (i.e. $k \bigotimes_{kq} W' \not\supset V$, for any proper k^q -subspace W' of W).

The former condition of (iv) means that we are dealing with the smallest ambient vector group containing the H-scheme, and the latter means that we neglect the part of the vector group when we represent the H-scheme as (vector group) \times (not vector group).

Remark 1.4. When $e \ge 1$, it is evident that if (V, W) satisfies (iii) then (V, W) automatically satisfies (ii).

(V,W) and (V',W') are said to be of the same type when there exist a field automorphism σ of k and a k^q -semi-linear isomorphism $\psi:W\to W'$ such that the induced map $\sigma\otimes\psi:k\otimes_{k^q}W\to k\otimes_{k^q}W'$ sends V onto V'.

Section 2.

EXAMPLE 2.1. (See Oda [3].) Let W be a k^p -vector space of dim W=2p with basis X_i, Z_i ($i=0,\cdots,p-1$). Let c_1 and c_2 be elements of k, p-independent over k^p . If $V=k\cdot f$ with $f=\sum_{i=0}^{p-1}c_1^i(X_i+c_2Z_i)$, then H=H(V,W) is an H-scheme of exponent e(H)=1 and dim H=2p-1. Furthermore $\mathscr{D}_1(V)=\sum_{i=0}^{p-1}k\cdot (X_i+c_1^{p-1-i}c_2Z_{p-1})\oplus \sum_{i=0}^{p-2}k\cdot (Z_i-c_1^{p-1-i}Z_{p-1})$. The H-scheme corresponding to this pair is

$$\operatorname{Spec}\Bigl(k[x_i,z_i]igg/\sum\limits_{i=0}^{p-1}c_1^i(x_i^p\,+\,c_2z_i^p)\Bigr)$$
 ,

with x_i, z_i $(i = 0, \dots, p-1)$ indeterminates. This is the most typical example of those H-schemes which are not vector groups and associated with a closed point in P_{2p-1} .

Now let W^* be the dual space of a k^q -vector space W with $q=p^e$. Since $\mathrm{Diff}_{q-1}(k)$ acts on $k \otimes_{k^q} W^*$, we can define \mathscr{D}_i^* and \mathscr{N}_i^* in the same way as \mathscr{D}_i and \mathscr{N}_i for $i \leq e$.

DEFINITION 2.2. For a pair (V, W) we define (V^*, W^*) to be a pair where W^* is the dual k^q -vector space of W and $V^* = \mathcal{D}_e(V)^{\perp}$. We define conditions (i*) (ii*) (iii*) (iv*) in the same way as in (*) of § 1.

LEMMA 2.3. (Oda [3], Lemma 2.8.). For a k-subspace U of $k \bigotimes_{k^q} W$, we have

$$\mathcal{N}_i(U)^\perp = \mathcal{D}_i^*(U^\perp) \quad and \quad \mathcal{D}_i(U)^\perp = \mathcal{N}_i^*(U^\perp) \ .$$

LEMMA 2.4. When $q = p^e$ and $q' = p^{e'}$ with $e' \leq e$, we have $\mathcal{D}_e(V) = \mathrm{Diff}_{q-q'}(k)\mathcal{D}_{e'}(V)$.

Proof. Since $k \cdot V$ is a finite dimensional k-vector space, we can choose a base f_{β} ($\beta = 1, \dots, s$). There exists a finite set c_1, \dots, c_m of elements of k, p-independent over k^p so that $K = k^q(c_1, \dots, c_m)$ contains the coefficients of f_{β} ($\beta = 1, \dots, s$). Since $\mathrm{Diff}_{q-1}(k)V = k \cdot \mathrm{Diff}_{q-1}(K/k^q)V$, it is enough to show

$$\operatorname{Diff}_{q-1}(K/k^q) = \operatorname{Diff}_{q-q'}(K/k^q) \operatorname{Diff}_{q'-1}(K/k^q)$$
.

Let D_{ij} $(1 \le i \le m, 0 \le j \le e-1)$ be the k^q -linear map of K into itself defined by

$$D_{ij} \Big(\prod_{1 \leq \alpha \leq m} c_{\alpha}^{t_{\alpha}} \Big) = \begin{cases} 0 & (t_i < p^j) \\ \binom{t_i}{p^j} c_i^{t_i - p^j} \prod\limits_{1 \leq \alpha \leq m} c_{\alpha}^{t_{\alpha}} & (t_i \geq p^j) \end{cases}.$$

Then D_{ij} is a differential operator of K over k^q of order p^j . Moreover D_{ij} 's commute with each other. When t_{ij} $(1 \le i \le m, 0 \le j \le e-1)$ vary among integers satisfying

$$0 \le t_{i,i} \le p-1$$

and

$$\sum\limits_{\substack{1 \leq i \leq m \ 0 \leq j < e}} t_{ij} p^j \leqq p^e - 1$$
 ,

the operators $D = \prod D_{ij}^{iij}$ $(1 \le i \le m, 0 \le j < e)$ form a K-basis of $\operatorname{Diff}_{q-1}(K/k^q)$. Then we see easily that D can be written as D'D'' with

D' in $\operatorname{Diff}_{q-q'}(K/k^q)$ and D'' in $\operatorname{Diff}_{q'-1}(K/k^q)$. Thus the lemma is proved.

PROPOSITION 2.5. (V, W) satisfies (i) of (*) in §1 if and only if (V^*, W^*) satisfies (i*). Under this condition, when $e \ge 1$, (V, W) satisfies (iii) (resp. (iv)) if and only if (V^*, W^*) satisfies (iii*) (resp. (iv*)).

Proof. If $\mathcal{N}_{e}\mathcal{D}_{e}(V)=V$, we have by Lemma 2.3 $\mathcal{D}_{e}^{*}(V^{*})^{\perp}=\mathcal{D}_{e}^{*}(\mathcal{D}_{e}(V)^{\perp})^{\perp}=\mathcal{N}_{e}\mathcal{D}_{e}(V)=V$, and $\mathcal{N}_{e}^{*}\mathcal{D}_{e}^{*}(V^{*})=\mathcal{N}_{e}^{*}(V^{\perp})=\mathcal{D}_{e}(V)^{\perp}=V^{*}$. Thus the equivalence of (i) and (i*) is proved. To prove the equivalence of (iii) (resp. (iv)) with (iii*) (resp. (iv*)) it is enough to show the only if parts. If $V^{*}=k\cdot(V^{*}\cap(k^{p}\otimes W^{*}))$, then we have $\mathcal{D}_{e}^{*}(V^{*})=k\cdot(\mathcal{D}_{e}^{*}(V^{*})\cap(k^{p}\otimes W^{*}))$ by the fact in the proof of Lemma 2.4. Thus $V^{\perp}=k\cdot(V^{\perp}\cap(k^{p}\otimes W^{*}))$ and $V=k\cdot(V\cap(k^{p}\otimes W))$, and hence (iii) and (iii*) are equivalent. If (V,W) satisfies (i), we have $V\cap W=\mathcal{D}_{e}(V)\cap W$ and similarly in the dual space $V^{*}\cap W^{*}=V^{\perp}\cap W^{*}$ by the remark below Proposition 3.1 in Oda [3]. Thus W is not minimal if and only if there exists $0\neq f\in W^{*}$ such that $\langle V,f\rangle=0$, i.e. if and only if $\{0\}\neq V^{\perp}\cap W^{*}=V^{*}\cap W^{*}$. Thus W is minimal if and only if $V^{*}\cap W^{*}=\{0\}$. By the duality the equivalence of (iv) and (iv*) is proved.

Thus, when $e \ge 1$, we can associate the dual H-scheme $H(V^*, W^*)$, which we denote also by H^* , with H = H(V, W). Evidently we have $e(H) = e(H^*)$ and $H^{**} = H$.

As was seen in Oda [3], $V \cap W = \mathcal{D}_e(V) \cap W$ is one of the handiest necessary conditions for a pair (V, W) to correspond to an H-scheme.

LEMMA 2.6. (Oda [3], Proposition 3.1.) Let H = H(V, W) be an H-scheme with dim H = d, e(H) = e and dim_k (V) = v. Then there exists a k^{pe} -basis $\{X_i, Y_j\}_{(i=1,\dots,d,j=1,\dots,v)}$ of W and a k-basis $\{f_j\}_{j=1,\dots,v}$ of V such that

$$f_j = Y_j + c_{1j}X_1 + \cdots + c_{dj}X_d(c_{ij} \in k)$$
 and $\mathcal{N}_e \mathcal{D}_e(f_j) = k \cdot f_j$.

Moreover we can choose f_1 so that $H_1 = H(k \cdot f_1, k^{p^e} \cdot Y_1 \oplus \sum_{i=1}^d k^{p^e} \cdot X_i)$ is an H-scheme with dim $H_1 = d$ and $e(H_1) = e$.

LEMMA 2.7. Let H=H(V,W) be an H-scheme with $e(H) \ge 1$. When $0 \le e' \le e, H' = H(V,W')$ is an H-scheme with e(H') = e' and $\dim H' = \dim H$, where $W' = k^{p^e} \bigotimes_{k^{p^e}} W$.

Proof. The conditions (ii) (iii) of (*) being trivially verified, it is enough to show that $\mathcal{N}_{e'}\mathcal{D}_{e'}(V) = V$ if $\mathcal{N}_{e}\mathcal{D}_{e}(V) = V$. By Lemma 2.4 above and Lemma 2.9 in Oda [3], we have $\mathcal{D}_{e}\mathcal{N}_{e'}\mathcal{D}_{e'}(V) = V$

Diff $_{p^e-p^{e'}}(k)\mathcal{D}_{e'}\mathcal{N}_{e'}\mathcal{D}_{e'}(V)=$ Diff $_{p^e-p^{e'}}(k)\mathcal{D}_{e'}(V)=\mathcal{D}_{e}(V).$ Thus $\mathcal{N}_{e'}\mathcal{D}_{e'}(V)\subset \mathcal{N}_{e}\mathcal{D}_{e}(V)=V.$ The inverse inclusion is trivial. The exponent and the dimension are easy to calculate.

This lemma means that the image H' of H by the Frobenius morphism $F^{e-e'}$ of the ambient vector group defined by $(x_0, \dots, x_n) \to (x_0^{p^e-e'}, \dots, x_n^{p^{e-e'}})$ is again H-scheme of exponent e'.

THEOREM 2.8. If H = H(V, W) is not a vector group (i.e. $e(H) \ge 1$), then $\dim H \ge 2p-1$. Moreover if $\dim H = 2p-1$ and H is not a vector group with $V \cap W = \{0\}$, then H is of the same type as Example 2.1.

Proof. Let m be the smallest dimension of H-schemes with positive exponents. Then by Lemma 2.6 and Lemma 2.7 there exists $H_f = H(k \cdot f, W)$ such that $\dim H_f = m$ and $e(H_f) = 1$. Moreover it is an immediate consequence of the minimality of m that H_f satisfies (iv) of (*), hence in particular $\mathcal{D}_1(f) \cap W = \{0\}$. Now let us observe dimensions over k of the sequence

$$k \cdot f \subset \operatorname{Diff}_{1}(k) f \subset \operatorname{Diff}_{2}(k) f \subset \cdots \subset \operatorname{Diff}_{n-1}(k) f = \mathscr{D}_{1}(f)$$
.

We claim $\dim_k \operatorname{Diff}_{i+1}(k)f \geq \dim_k \operatorname{Diff}_i(k)f + 2$ $(i=0,\cdots,p-2)$. If $\dim_k \operatorname{Diff}_i(k)f = t$, then we may assume that $\operatorname{Diff}_i(k)f$ is generated by $X_j + h_j$ $(j=0,\cdots,t-1)$ over k, where h_j is a k-linear combination of X_t,\cdots,X_m and $\{X_j\}_{j=0,\cdots,m}$ is a k^p -basis of W. We define c(g) to be the k^p -vector subspace of k spanned by the coefficients of $g \in k \otimes_{k^p} W$. There are the following three possibilities:

- (1) There exists j ($0 \le j < t$) such that there is no intermediate subfield of the form $k^p(a)$ containing $c(X_j + h_j)$. In this case, we may assume that there exist D_1, D_2 in $\operatorname{Der}(k/k^p)$ with $D_1(X_j + h_j) = X_t + h'$ and $D_2(X_j + h_j) = X_{t+1} + h''$, where h' and h'' are linear combinations of X_{t+2}, \dots, X_m . The above statement is obvious in this case.
- (2) For each j there exists an intermediate subfield $k^{p}(a_{j})$ containing $c(X_{j} + h_{j})$.
- (i) If there exist $j \neq j'$ such that $k^p(a_j) \neq k^p(a_{j'})$, then we can choose $D_j, D_{j'}$ in $\text{Der } (k/k^p)$ satisfying $D_j(a_j) = 1$ and $D_{j'}(a_{j'}) = 1$. It is enough to show that $D_j(h_j)$ and $D_{j'}(h_{j'})$ are linearly independent over k. If $D_j(h_j) = u \cdot D_{j'}(h_{j'})$ with $u \in k$, then

$$c(D_j(h_j)) = u \cdot c(D_{j'}(h_{j'})) \subset k^p(a_j) \cap u \cdot k^p(a_{j'}).$$

But it is easy to show that

$$\dim_{k^p} (k^p(a_i) \cap u \cdot k^p(a_{i'})) \leq 1$$
.

Hence we readily get a contradiction in view of the property $\mathcal{D}_1(f) \cap W = \{0\}.$

(ii) For all $j, k^p(a_j) = k^p(a)$ with $a \in k$.

Then $\mathcal{D}_1(f) = k \cdot (\mathcal{D}_1(f) \cap (k^p(a) \otimes W))$ and thus we have $(k \cdot f)^* = k \cdot ((k \cdot f)^* \cap (k^p(a) \otimes W))$, since $(k \cdot f)^* = \mathcal{D}_1(f)^\perp$. Hence $(k \cdot f)^\perp = \mathcal{D}_1^*((k \cdot f)^*) = k \cdot (\mathcal{D}_1^*((k \cdot f)^*) \cap (k^p(a) \otimes W))$. Thus we may assume $c(f) \subset k^p(a)$. If D is a derivation with D(a) = 1, there exists an integer $s \leq p-1$ such that $D^s(f) \neq 0$ and $D^{s+1}(f) = 0$. So $0 \neq D^s(f) \in \mathcal{D}_1(f) \cap W$, a contradiction. Hence (ii) does not happen.

Thus we conclude that $\dim \mathcal{D}_1(f) \geq 2p-1$ and $\dim W \geq 2p$. Hence $\dim H_f = \dim W - \dim k \cdot f \geq 2p-1$ and $m \geq 2p-1$. But the dimension of the H-scheme in Example 2.1 is 2p-1, hence m=2p-1. The first part of the theorem is thus proved. Now let us prove the second part of Theorem 2.5. When p=2, Hironaka already proved this theorem (Hironaka [2], Th. 3.). From now on we assume $p \neq 2$.

Step (I): The case where the H-scheme is of the form $H=H(k\cdot f,W)$ with $\dim H=2p-1$ and e(H)=1. (Then H automatically satisfies (iv) of (*).) In this case the codimension of $\mathscr{D}_1(f)$ in $k\otimes_{k^p}W$ equals 1, i.e. the most generic point associated with H is a closed point, since $\dim_{k^p}W=\dim W^*=2p$ and $(k\cdot f)^*\neq 0$, thus $2p-1\leq \dim H^*<2p$, hence $\dim H^*=2p-1$ and $\operatorname{codim}_k\mathscr{D}_1(f)=\dim_k(k\cdot f)^*=1$. By the proof of the first part, the sequence of the dimensions of $k\cdot f\subset \operatorname{Diff}_1(k)f\subset \cdots\subset \operatorname{Diff}_{p-1}(k)f$ is necessarily $1,3,5,\cdots,2p-1$. In particular

$$\dim \operatorname{Diff}_{1}(k) f = 3$$
 and $\dim \operatorname{Diff}_{2}(k) f = 5$.

We put $K = k^p(c(f))$. Then $[K:k^p] = p^2$, since dim $\mathrm{Diff}_1(k)f = r+1$ if $[K:k^p] = p^r$. Since $\mathrm{Diff}_i(k)f = k \cdot \mathrm{Diff}_i(K/k^p)f$ with arbitrary $i \geq 0$, we have

$$\dim_k \operatorname{Diff}_2(k) f = \dim_K \operatorname{Diff}_2(K/k^p) f = 5$$
.

But $\dim_K \operatorname{Diff}_2(K/k^p) = 6$, thus there exists D in $\operatorname{Diff}_2(K/k^p)$ such that $D \neq 0$ and D(f) = 0. Since W is minimal, we have

$$\dim_{k^p} c(f) = \dim_{k^p} W = 2p.$$

We may assume $c(f) \ni 1$. Hence by Lemma 2.9 below there exists D_0 in $\mathrm{Der}\,(K/k^p)$ such that $D=u\cdot D_0^2$ with $u\in K$ and $D_0(c_1)=0$, $D_0(c_2)=1$ where $K=k^p(c_1,c_2)$. Thus

$$c(f) = k^p(c_1) \oplus c_2 \cdot k^p(c_1) ,$$

and H is of the same type as Example 2.1.

Step (II): The general case H=H(V,W) with $\dim H=2p-1$, e(H)=1, and $V\cap W=\{0\}$. Then H-schemes $H_j=H(k\cdot f_j,k^pY_j\oplus\sum_{i=1}^{2p-1}k^p\cdot X_i)$ of dimension 2p-1 in Lemma 2.6 $(j=1,\cdots,v)$ have exponent $e(H_j)=1$, since $V\cap W=\{0\}$. Thus the codimension of $\mathscr{D}_1(V)$ in $k\otimes W$ is 1, since by the proof of step (I) $\mathscr{D}_1(f_j)$ are of codimension one in $k^p\cdot Y_j\oplus\sum_{i=1}^{2p-1}k^pX_j$ and have the property $\mathscr{D}_1(f_j)\cap W=\{0\}$ for all j. Hence $V^*=k\cdot f^*$ and $\dim \mathscr{D}_1^*(f^*)=\dim V^\perp=\dim H=2p-1$. By applying the proof of the first part to $H(k\cdot f^*,W^*)$, we have

dim Diff₁
$$(k)f^* = 3$$
 and dim Diff₂ $(k)f^* = 5$.

Thus by Lemma 2.9 below $\dim c(f^*) \leq 2p$. Since $V \cap W = \{0\}$ if and only if W^* is minimal, we have $2p \geq \dim c(f^*) = \dim W^* = \dim W$, hence $\dim V = v = 1$. (II) is thus reduced to (I).

Step (III): The case H=H(V,W) where $\dim H=2p-1$ and e(H)=e>1. If there exists such H(V,W), then by Lemma 2.6 there exists $H'=H(k\cdot f,W')$ with $\dim H'=2p-1$ and e(H')=e satisfying (iv). Then by Lemma 2.7 and the minimality of 2p-1, $H''=H(k\cdot f,W'')$ satisfies $\dim H''=2p-1$, e(H'')=1 and (iv), where $W''=k^p\otimes_{k^{pe}}W'$. Thus by (I) H'' is of the same type as Example 2.1. But it is easy to calculate that

$$\mathscr{D}_{e}(f) \supset \operatorname{Diff}_{p}(k) f = k \bigotimes_{kp} W'' = k \bigotimes_{kpe} W'$$
.

Thus we have a contradiction to the property $\mathcal{D}_e(f) \cap W' = \{0\}.$

It remains to prove the following lemma to conclude the proof of Theorem 2.8.

LEMMA 2.9. Let $k \supset K \supset k_p$ with $[K:k_p] = p^2$ and $p \neq 2$, and let D be an element of $\mathrm{Diff}_2(K/k_p)$ with $D \neq 0$ and D(1) = 0. Then D satisfies the followings:

(1) $\dim_{k^p} \ker(D) \leq 2p$ when D is considered to be a k^p -linear map from K to itself,

(2) the equality holds if and only if there exists $D_0 \in \operatorname{Der}(K/k^p)$ with the property $D_0(c_1) = 0$ and $D_0(c_2) = 1$ where $k^p(c_1, c_2) = K$, such that $D = u \cdot D_0^2$ with $u \in K$.

Proof. We put $T=\ker(D)\subset K$. Then T contains 1. If T is contained in a proper subfield of K, then (1) is obvious. Otherwise we may choose elements t_1 and t_2 of T with $k^p(t_1,t_2)=K$. Let D_1,D_2 be elements of $\operatorname{Der}(K/k^p)$ defined by $D_i(t_j)=\delta_{i,j}$ (i,j=1,2). Then $D=a'D_1^2+b'D_1D_2+c'D_2^2$. If a'=c'=0, then $\dim T=2p-1$. We may thus assume

$$D = D_1^2 + aD_1D_2 + bD_2^2$$
 with a, b in K .

To an element $\Delta = \sum_{i,j=1}^p a_{i,j} D_2^{i-1} D_1^{j-1}$ of Diff (K/k^p) we associate a (p,p)-matrix $\rho(\Delta) = (a_{i,j})$. Then ρ is an isomorphism from Diff (K/k^p) to the set $\mathfrak{M}(K;p,p)$ of (p,p)-matrices with coefficients in K as vector spaces over K. Then

$$ho(D) = egin{pmatrix} 0 & 0 & 1 \ 0 & a \ b & 0 \end{pmatrix}.$$

Let I be the left ideal Diff $(K/k^p) \cdot D$ of the ring Diff (K/k^p) . Then $\rho(\Delta_{i,j})$ is of the form

where $\Delta_{i,j} = D_2^{i-1}D_1^{j-3}D$ is an element of I $(1 \le i \le p, 3 \le j \le p)$. Since $\rho(\Delta_{i,j})$ $(i = 1, \dots, p, j = 3, \dots, p)$ are linearly independent over K, we have $\dim_K I \ge p(p-2)$.

By a theorem of Jacobson, we can identify the ring Diff (K/k^p) with $\operatorname{Hom}_{k^p}(K,K)$. Let $\pi\colon K\to K/T$ be the natural projection and let n=

 $\dim_{k^p} T$. From the exact sequence

$$0 \longrightarrow \operatorname{Hom}_{kp}(K/T,K) \stackrel{\pi^*}{\longrightarrow} \operatorname{Hom}_{kp}(K,K) \longrightarrow \operatorname{Hom}_{kp}(T,K) \longrightarrow 0$$

we get $\pi^*(\operatorname{Hom}_{k^p}(K/T,K))\supset I$ and $\dim_K\operatorname{Hom}_{k^p}(K/T,K)=\dim_K\operatorname{Hom}_{k^p}(K,K)-\dim_K\operatorname{Hom}_{k^p}(T,K)=p^2-n.$ Thus $p^2-n=\dim_K\operatorname{Hom}(K/T,K)\geq\dim_KI\geq p(p-2).$ Hence $n\leq 2p$ and we get (1). Moreover n=2p if and only if $\dim_KI=p(p-2)$, hence I is generated by $\Delta_{i,j}$ $(i=1\cdots p,j=3\cdots p)$ as a K-vector space. To show (2) it is sufficient to show the existence of $D_0\in\operatorname{Der}(K/k^p)$ with $D=u\cdot D_0^2$, since $2p=\dim_{k^p}\ker(D)=\dim_{k^p}\ker(D_0^2)\leq 2\dim_{k^p}\ker(D_0)\leq 2p.$ Hence $\dim\ker(D_0)=p$ and $\dim(D_0)\supset\ker(D_0)\ni 1.$ Thus we can find such c_1,c_2 that $D_0(c_1)=0$, $D_0(c_2)=1$, and $k^p(c_1,c_2)=K.$ In order to seek such D_0 , we use a primitive method depending on complicated calculations, of which we indicate only an outline below.

Since
$$ho(D_1^{p-2}D) = \begin{pmatrix} 0 & 0 & \cdots & 0 \\ 0 & * & \cdots & * & a \\ * & \cdots & * & b & 0 \end{pmatrix}$$
 is in $ho(I)$, we can write $ho(D_1^{p-2}D) = \sum_{\substack{1 \le i \le p \\ 3 \le j \le p}} x(i,j) \cdot
ho(\Delta_{i,j})$ with $x(i,j) \in K$.

Comparing the (i, p-i+2)-components $(i=2, \cdots, p)$ of both sides, we get

$$(a^2 - 4b)^{1/2(p-1)} = 0$$
, hence $b = (\frac{1}{2}a)^2$. Thus

$$D = (D_1 + \frac{1}{2}aD_2)^2 - \frac{1}{2}(D_1(a) + \frac{1}{2}aD_2(a))D_2$$
 .

Similarly
$$\rho(I) \ni \rho(D_1^{p-1}D) = \begin{pmatrix} 0 & 0 & \cdots & \cdots & 0 \\ 0 & * & \cdots & * & , (p-1)D_1(a) \\ * & \cdots & * & (p-1)\frac{1}{2}aD_1(a), (\frac{1}{2}a)^2 \end{pmatrix}$$

is of the form $\sum_{\substack{1 \leq i \leq p \\ 3 \leq j \leq p}} y(i,j) \cdot \rho(\varDelta_{i,j})$ with $y(i,j) \in K$. From the comparison of

the (i, p-i+3)-components $(i=3, \cdots, p)$ and (i, p-i+2)-components $(i=2, \cdots, p)$, we get

$$(\frac{1}{2}a)^{p-2}(D_1(a) + (\frac{1}{2}a)D_2(a)) = 0$$
.

If a = 0, then $D = D_1^2$, and if $D_1(a) + (\frac{1}{2}a)D_2(a) = 0$, then $D = (D_1 + \frac{1}{2}aD_2)^2$. Thus Lemma 2.9 is proved.

Remark 2.10. In general let m(e) be the smallest dimension of H-schemes whose exponents are not less than e. By Lemma 2.7 we have $m(1) \leq m(2) \leq \cdots \leq m(e) \leq \cdots$. It is quite likely that $m(e) = 2p^e - 1$. This is in fact the case for e = 1 as we saw in Theorem 2.8, as well as for e = 0 (for obvious reasons). Now let $H = H(k \cdot f, \sum_{\alpha} k^p \cdot X_{\alpha})$ be an H-scheme with e(H) = 1 and $f = \sum_{\alpha} a_{\alpha} X_{\alpha}$, which is associated with a closed point. Suppose there exists a p-basis Λ of k over k^p such that a_{α} 's are in $k^{p^2}(\Lambda')$ with $\Lambda' \subseteq \Lambda$. Let c be an element of Λ not in Λ' , and define

$$F = \sum\limits_{eta=0}^{p-1} (c^p)^{eta} f_{eta} \quad ext{with} \quad f_{eta} = \sum\limits_{lpha} lpha_{lpha} Y_{lpha,eta} \; .$$

Then $H_2 = H(k \cdot F, \sum_{\alpha,\beta} k^{p^2} \cdot Y_{\alpha,\beta})$ is an H-scheme with $e(H_2) = 2$ and is associated with a closed point. If we take the H-scheme in Example 2.1 as H, then H_2 is an H-scheme with $e(H_2) = 2$ and dim $H_2 = 2p^2 - 1$. Thus inductively we can construct examples H_2, H_3, \dots, H_e such that

$$e(H_e) = e$$
 and $\dim H_e = 2p^e - 1$.

Obviously we no longer have the uniqueness of type when e > 1.

REFERENCES

- [1] H. Hironaka, Certain numerical characters of singularities, J. Math. Kyoto Univ., 10 (1970), 151-187.
- [2] —, Additive groups associated with points of a projective space, Ann. of Math., 92 (1970), 327-334.
- [3] T. Oda, Hironaka's additive group scheme, A volume dedicated to Prof. Y. Akizuki's 70th birthday.

Tokyo-Shibaura Electric, Inc.