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The rebound of droplets impacting a deep fluid bath is studied both experimentally and
theoretically. Millimetric drops are generated using a piezoelectric droplet-on-demand
generator and normally impact a bath of the same fluid. Measurements of the droplet
trajectory and other rebound metrics are compared directly with the predictions of a linear
quasipotential model, as well as fully resolved direct numerical simulations of the unsteady
Navier–Stokes equations. Both models resolve the time-dependent bath and droplet shapes
in addition to the droplet trajectory. In the quasipotential model, the droplet and bath
shape are decomposed using orthogonal function decompositions leading to two sets of
coupled damped linear harmonic oscillator equations solved using an implicit numerical
method. The underdamped dynamics of the drop are directly coupled to the response
of the bath through a single-point kinematic match condition which we demonstrate to
be an effective and efficient model in our parameter regime of interest. Starting from
the inertio-capillary limit in which both gravitational and viscous effects are negligible,
increases in gravity or viscosity lead to a decrease in the coefficient of restitution and
an increase in the contact time. The inertio-capillary limit defines an upper bound on
the possible coefficient of restitution for droplet–bath impact, depending only on the
Weber number. The quasipotential model is able to rationalize historical experimental
measurements for the coefficient of restitution, first presented by Jayaratne & Mason (Proc.
R. Soc. Lond. A, vol. 280, issue 1383, 1964, pp. 545–565).
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1. Introduction

Droplet impacts occur frequently in both natural and industrial settings. Rain drops
impacting on leaves have been shown to be a primary mechanism for pathogen transport
among plants (Kim et al. 2019) and birds with superhydrophobic feathers stay warmer
in a cold rain due to a reduced droplet contact time (Shiri & Bird 2017). Spray cooling
devices have attracted the attention of researchers due to the large heat transfer rates
and high uniformity of heat transfer (Kim 2007). Wet scrubbing of exhaust gases relies
on the inertial impaction of small particles and aerosols on the surface of freely falling
droplets (Park et al. 2005). Various other drop impact phenomena, such as splashing, were
experimentally documented by Worthington at the start of the 20th century (Worthington
1908). More recently, droplets bouncing repeatedly on a vertically oscillated bath have
received considerable interest as a macroscopic pilot-wave system capable of reproducing
some behaviours reminiscent of quantum particles (Couder et al. 2005b; Bush & Oza
2020). For instance, bouncing droplets confined to submerged cavities can exhibit
wave-like statistical behaviour analogous to electrons in quantum corrals (Harris et al.
2013; Sáenz, Cristea-Platon & Bush 2018). Droplet impact onto solid surfaces is also
an extremely well-studied field (Yarin 2006; Josserand & Thoroddsen 2016), with the
combination of high quality experiments and direct numerical simulation (DNS) leading
to a deep understanding of the multiscale dynamics.

The problem of droplet coalescence onto a bath of the same fluid has also been studied
extensively over the last century and a half, beginning with Rayleigh (1879) and Thomson
& Newall (1886). These early works included sketches of drop–interface coalescence, as
well as a detailed description of the vortices that are formed in the fluid bath. Preceding
coalescence, the thin gas film that forms between the two interfaces drains until van der
Waals forces act to initiate coalescence. Coalescence of a drop into a bath occurs when
the film is of the order of 100 nm thick (Couder et al. 2005a; Yarin 2006; de Ruiter
et al. 2012; Kavehpour 2015). The development of accessible high-speed photography and
high-performance computing has ushered in a rapid expansion in quantity and quality of
data on these free surface problems. Thoroddsen & Takehara (2000) used a high-precision
and high-speed visualization set-up to quantify the coalescence time of droplets on an
air–liquid interface. Tang et al. (2019) studied the dynamics of the gas layer on a liquid
bath whose depth was similar to that of the droplet radius. The rich class of outcomes and
dynamics that arise from such a simple interaction between droplet, surrounding gas and
interface proves that these fundamental problems merit considerable attention.

During contact, the combined effects of inertia, surface tension, gravity and viscosity
govern the hydrodynamic interaction between the droplet and the interface, and the
complex balance of forces within this regime creates a variety of distinct phenomena.
The Weber number We = ρV2

0 R/σ , the Bond number Bo = ρR2g/σ and the Ohnesorge
number Oh = μ/

√
σRρ are often used to describe these capillary-scale dynamics. In

this work, R represents the undeformed droplet radius, ρ, σ , μ are the density, surface
tension and viscosity of the fluid in both the droplet and bath, V0 is the impact velocity
of the droplet and g is the gravitational acceleration. The present work focuses on the
inertio-capillary regime, where fluid inertia and surface tension dominate viscous and
gravitational effects (specifically, Oh � 1 and Bo � 1). During impact, a thin gas film
develops between the free interface and surface of the droplet. The drainage of this thin
film plays a crucial role in determining the fate of the droplet: specifically, whether it
rebounds from or coalesces with the underlying bath (de Ruiter et al. 2012). At sufficiently
low We, the droplet and the interface never come into physical contact and remain
separated by a stable air film. The droplet then levitates on this thin film and can eventually
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rebound due to the relaxation of the bath and droplet interface. Droplets bouncing on a free
interface were first documented by Reynolds in 1881, when he noted that drops can ‘float’
on a bath of the same liquid if the impact velocity is sufficiently small (Reynolds 1881).

In cases of droplet–bath impact, as well as droplet–droplet impact, there exists a
parameter regime where droplets bounce completely (figure 1). The bouncing–coalescence
threshold is often characterized by a critical We that depends sensitively on all parameters
in the problem (Tang et al. 2019). Droplet bouncing on an undisturbed interface at variable
impacting angles was first studied in detail by Jayaratne & Mason (1964) experimentally.
They were able to determine a relationship between the drop radius, impact speed and
impact angle at which the bouncing–coalescence threshold occurs between uncharged
drops. Building on the work of Gopinath & Koch (2001), Bach, Koch & Gopinath (2004)
studied the droplet impact of small (R ≤ 50 μm) aerosol droplets impacting a fluid bath.
They developed a rarefied gas model to describe the dynamics of the gas layer separating
the droplet and bath, and used an inviscid potential flow model to describe the transfer
of energy from the droplet to the bath during impact. The authors determined that the
criterion for drop bouncing is more sensitive to gas mean-free path and gas viscosity than
to the Weber number itself. Zou et al. (2011) investigated water droplets bouncing on
an air–water interface, and examined the role of bath depth in bounce-back behaviour.
They determined that the contact time was independent of the impact velocity for a large
range of Bond numbers. Wu et al. (2020) used a drop-on-demand generator to study the
bouncing of water droplets, developed a model for the maximum penetration depth, and
compared it with their experimental study. They varied the droplet diameter, and found that
the maximum rebound height decreased with increasing diameter. An experimental work
utilizing three different fluids was completed by Zhao, Brunsvold & Munkejord (2011).
They chose water, 1-propanol and ethanol as the working fluids and found good agreement
in measured contact times with Jayaratne & Mason (1964). Also, they determined that the
contact time of the droplet was relatively independent of the impact velocity, similar to
that found by Richard, Clanet & Quéré (2002) for a droplet impacting a non-wetting, dry
surface. In the variety of experimental work on this particular problem, the scaling for
contact time tc of the droplet appears to be mostly independent of We, except at very low
We (Zhao et al. 2011; Zou et al. 2011; Wu et al. 2020). Additionally, numerous papers
report a saturation of translational energy recovery by the droplet at intermediate We, as
measured by the coefficient of restitution α (Jayaratne & Mason 1964; Bach et al. 2004;
Zhao et al. 2011; Zou et al. 2011; Wu et al. 2020). These observations have neither yet
been fully explained nor their parametric dependencies clearly elucidated to the best of the
current authors’ knowledge. This motivates the development of a first principles model
that can accurately and efficiently describe the dynamics of both the droplet and the fluid
bath over the physically relevant parameter regime.

The multiscale hydrodynamics present in these impact problems creates significant
challenges for numerical simulations, and all but eliminates analytical solutions to these
problems. Wagner (1932) proposed the first theoretical study of an object impacting on
an inviscid, incompressible fluid, utilizing linearized free-surface kinematic and dynamic
conditions to develop a theory that decomposed the fluid domain into two parts, one where
the applied pressure is unknown but the interface shape is known, and vice versa. The
so-called Wagner theory was extended to a solid of revolution by Schmieden (1953) and
eventually to three dimensions by Scolan & Korobkin (2001). These models assume that
the working fluid is ideal, and thus any waves generated upon impact are not subject to
viscous dissipation. Dias, Dyachenko & Zakharov (2008) derived a theory to include
the effects of weak damping in free surface problems, which appear as leading-order
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Figure 1. A small water droplet (R ≈ 0.4 mm) rebounds from a bath of the same fluid.

corrections in the free surface boundary conditions. The inclusion of damping in this
method provides a mechanism for the waves generated by impact to decay in time. The
Dias et al. (2008) theory is valid in the weakly viscous regime and represents a rigorous
derivation of a linearized free surface model first proposed by Lamb (1895).

More recently, Galeano-Rios, Milewski & Vanden-Broeck (2017), Galeano-Rios,
Milewski & Vanden-Broeck (2019) and Galeano-Rios et al. (2021) applied the
quasipotential model of Dias et al. (2008) to free surface impact problems and solve
the problem of the unknown, time evolving contact region through the use of a so-called
‘kinematic match’. In the kinematic match framework, the free surface shape within the
region of contact is determined by the geometry of the problem, and the extent of this
region can be computed with the use of a tangency boundary condition. The model in
Galeano-Rios et al. (2017) worked well in determining the trajectory of the droplet in
some cases; however, it neglected any deformations of the droplet. Blanchette (2016, 2017)
modelled the impact of a droplet onto a still and oscillating bath, where a simplified
version of the kinematic match concept was used by assuming that the shape and radial
extent of the pressure distribution in the contact region are known a priori. Additionally,
droplet deformations were modelled as a vertical spring or as an octahedral network of
springs and masses. For still bath impacts, only very limited direct comparison with
experimental measurements were made, with mixed success. Moláček & Bush (2012)
developed a quasistatic model for a droplet impacting on a non-wetting rigid solid surface
with fixed curvature. They compared this quasistatic model with a dynamic model that
described the droplet–air interface using spherical harmonics derived from a balance
of surface, kinetic and potential energies and found good agreement between the two
at low We numbers, as compared with experiments and the model of Okumura et al.
(2003). However, these models do not predict the energy transfer and time dependent
waves on a fluid bath. Terwagne et al. (2013) wrote a linear mass–spring–damper model
for a bouncing droplet on a vertically oscillated bath. Similarly, this model assumed
that the bath surface was non-deformable. Additionally, Moláček & Bush (2013) studied
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silicone oil droplets bouncing on a vertically oscillated bath and developed linear and
logarithmic spring models to classify bouncing dynamics. While efficient to solve, these
models require the input of free parameters determined from experimental data and thus
cannot independently predict bouncing metrics such as the coefficient of restitution or
contact time. Other linear spring-type models have been proposed in the literature, but
again such models generally rely on fitting parameters obtained from experimental data or
DNS (Sanjay et al. 2022a). DNSs of free surface impact problems have been completed
in other recent works (Pan & Law 2007; He, Liu & Qiao 2015; Sharma & Dixit 2020;
Fudge, Cimpeanu & Castrejón-Pita 2021), and provide very good results, even in regimes
presently inaccessible to experiments. From these simulations the droplet shape, trajectory
and waves, as well as the flow within the droplet and bath, can be captured and analysed
in detail. However, due to the high computational cost of these free surface flow problems,
the vast parameter space encompassed by this problem renders large sweeps impractical
for direct simulation, and leaves much to be understood about the overall dynamics over a
more complete space.

In this work, we develop an efficient model that accurately predicts the trajectory of
the impacting droplet, the instantaneous droplet shape, and the transient waves generated
on the bath interface by impact, without any adjustable parameters. First, we use the
Navier–Stokes equations with linearized free surface conditions and include viscosity as
leading-order corrections to these boundary conditions, which holds in the limit of large
Re. We then derive a set of ordinary differential equations (ODEs) to describe the motion
of the bath interface. The droplet shape is modelled by another set of ODEs that govern
the weakly damped oscillation of individual modes on the droplet interface that hold
for small Oh. Both the bath and droplet models are the result of linearizing about their
undeformed states, and thus we anticipate best agreement when deformations are small.
The bath and drop models are coupled using a single-point kinematic match condition and
evolved simultaneously in time. We validate this model with new experimental data as
well as DNSs. We then apply the validated model over a wide range of parameters where
the relative influence of the hydrodynamic, surface tension, and gravitational forces on the
rebound behaviour of the bouncing droplet will be elucidated.

2. Experimental methods

2.1. Experimental set-up
A series of droplet impact experiments were conducted utilizing two working fluids:
deionized water and silicone oil with viscosity of 5 cSt. Ranges of experimental parameters
are summarized in table 1. A drop-on-demand generator is used to reliably produce
droplets with a maximum variation in the diameter of less than 1 % (Ionkin & Harris 2018).
This device, along with a schematic of the experimental set-up, is shown in figure 2(a).
The drop generator is entirely three-dimensionally printed (3D-printed), with the exception
of a small piezoelectric disk, hardware and connective tubing. The deformation of the
piezoelectric disk due to an applied voltage pulse acts to expel fluid through a small
nozzle. As the fluid exits the nozzle, the piezoelectric disk relaxes, initiating pinch off
of the droplets. The droplets then fall under the action of gravity towards the bath.
Two visualizations of droplet impact and rebound are shown in figure 2(b,c). The drop
generator is mounted on a 3D-printed translation stage, allowing for repeatable changes to
the impacting velocity via height increases of the droplet generator. Directly underneath
the drop generator is a 3D-printed fluid bath. The bath is 70 mm in width and length,
and 50 mm deep. The impact location was 25 mm from the front wall of the bath.
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Parameter Symbol Definition Value
Impact speed V0 — 20–100 cm s−1

Droplet radius R — 0.035 cm
Density (water) ρ — 0.998 g cm−3

Surface tension (water) σ — 72.2 dynes cm−1

Kinematic viscosity (water) ν — 0.978 cSt
Density (silicone oil) ρ — 0.96 g cm−3

Surface tension (silicone oil) σ — 20.5 dynes cm−1

Kinematic viscosity (silicone oil) ν — 5 cSt
Gravitational acceleration g — 981 cm s−2

Weber Number We ρV2
0 R/σ 0.5–8.0

Bond Number Bo ρgR2/σ 0.017–0.056
Ohnesorge Number Oh μ/

√
σRρ 0.006–0.057

Reynolds Number Re = √
We/Oh ρV0R/μ 15–280

Table 1. Relevant parameters and their range of values in our experimental study.

High-speed camera

Droplet generator Piezoelectric disk

Nozzle

Fluid bath

r

z = 0

η (r, t)

g

Backlight

ξ (θ, t)

θ

(b)

(a)

(c) (d )

Figure 2. (a) A rendering of the experimental set-up. (b) Experimental montage of impact of a deionized water
droplet on a bath of the same fluid. Images are spaced 0.7 ms apart. (c) Spatiotemporal diagram of a deionized
water droplet bouncing. The image is constructed by taking a single-pixel-wide stripe of the raw movie footage,
and plotting time along the x-axis. Panels (b,c) correspond to an impact of deionized water on a bath of the
same fluid with We = 0.7, Bo = 0.017 and Oh = 0.006. (d) Schematic of the problem.

This impact location allowed for consistent focus above and below the free surface yet
was still sufficiently far from the front panel that the waves created during impact do
not have time to reflect and interact with the droplet during contact. For the water
experiments, the front and rear walls are constructed using polystyrene that has an
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equilibrium contact angle of 87.4◦ (Ellison & Zisman 1954). Being close to 90◦, this
creates a negligibly small meniscus that allows for detailed photography of the impact
from the side (Galeano-Rios et al. 2021). For the silicone oil experiments, we use a
shorter bath window panel, constructed of extruded acrylic and a thin transparent plastic
sheet. The bath was brim-filled to the height of the acrylic window panel, such that the
contact line was pinned with angle held at approximately 90◦. The drops are imaged
using a high-speed camera (Phantom Miro LC 311) and illuminated by a Phlox LED-W
back light. Movie data is taken at 10 000 frames-per-second (f.p.s.) with an exposure time
of 99.6 μs.

2.2. Experimental procedure
Care must be taken to ensure that both the fluid interface and the fluid in the reservoir
of the drop generator are contaminant-free, as dust or surfactants can modify the physics
involved. Prior to each experiment, the bath and tubing are thoroughly cleaned with an
isopropyl alcohol solution, flushed with deionized water, and then left to dry in a fume
hood with particulate filtering for 30 min. The drop generator and nozzle are cleansed with
an ethanol solution, and then flushed with deionized water for five minutes. Gloves are
worn at all times to minimize contamination. The drop generator is controlled by an
Arduino Uno board, with a simple H-bridge circuit initiating the voltage switching of a
DC power supply (Ionkin & Harris 2018). The fluid within the bath is periodically flushed,
approximately after every 15 droplet impacts to reduce surface contamination (Kou &
Saylor 2008). Overflow from the flushing is caught by a small lip in the bottom of the
bath, which is then drained to a waste container. There are two syringes connected to the
bath, which allow for fine adjustments of the equilibrium bath depth after flushing.

We collect experimental data for the top and bottom of the droplet during free flight.
During contact, we track the height of the top of the droplet and that of the centre of
the deformed free surface. Since the air layer that separates the droplet and the interface
is negligibly thin relative to the scale of the droplet, we assume that this point is also
effectively the location of the droplet’s south pole. Just after the drop rebounds off the
surface, the axisymmetric surface wave created by the impact is partially in the line of sight
of the camera, and obscures the bottom of the droplet for a brief period during take-off.
These data points have been omitted from the bottom trajectory when reported. The raw
movie data are postprocessed using a custom Canny edge detection software implemented
in MATLAB 2021b, which quantifies the droplet trajectory, and then computes impact
parameters and bouncing metrics (Galeano-Rios et al. 2021).

There are several metrics of interest in our study, which we define in what follows.
The maximum penetration depth, δ, of a bounce is defined as the position of the bottom
of the droplet at the lowest point in the trajectory (relative to the undisturbed interface
height). In our experiment, the contact time, tc, is defined as the time duration from
which the top of the droplet crosses the height z = 2R to the time the top of the droplet
returns to that height. Due to the nature of visualization set-up it was impossible to
determine precisely when the droplets lost physical contact with the fluid; however, this
always occurred before the top of the drop returned to the level z = 2R. Each bounce
was also characterized by its coefficient of restitution, α, which is defined here as the
negative of the normal exit velocity, Ve, divided by the normal impact velocity, V0. This
parameter ranges between 0 and 1, and is related to the momentum exchange during
impact.

In order to determine the contact time (tc) and coefficient of restitution (α), a parabola
was fitted using a least-squares method to the incoming and outgoing trajectories,
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separately, with at least 30 data points prior to impact and at least 40 data points following
rebound. The analytical form of the parabolic fit was then used to extrapolate the time at
which the sphere crosses the still air–water interface height (which corresponds to a root
of the parabolic function). The derivative of the parabolic fit function was then computed
analytically and its value evaluated at these times in order to calculate the impact speed,
V0, and exit speed, Ve (Galeano-Rios et al. 2021).

3. Linearized quasipotential fluid model

In this section, we develop a model for droplet impact on a flat fluid interface from
first principles. First, we use the linearized Navier–Stokes equations to model the flow
within the bath and the shape of the bath interface. Then, we use an orthogonal function
decomposition of the bath model to derive a single set of linear ODEs that govern the
bath mode amplitudes. We then write a similar model for the droplet interface, which
reduces to another set of linear ODEs governing droplet mode amplitudes. Finally, we
propose a model for the pressure distribution and its extent acting on the bath and droplet
during contact, couple the two sets of ODEs together using a single-point kinematic match
condition, and solve the system implicitly using standard numerical integration techniques.
A schematic of the problem is illustrated in figure 2(d).

3.1. Bath interface model
The present work models the bath interface dynamics using a linearized, quasipotential
flow model following the work of Galeano-Rios et al. (2017). For the problem of a droplet
impacting on a free interface, the Navier–Stokes equations govern the flow generated by
the bath–droplet interaction. Assuming the flow to be incompressible, isothermal and
Newtonian, we can define the fluid velocity vector u = [u, v, w]T = ∇φ + ∇ × Ψ and
the bath interface shape η = η(r, Θ, t), Here, φ is the scalar potential and Ψ is the vector
stream function. We then linearize the governing equations and boundary conditions about
the undisturbed free surface z = 0. Utilizing the arguments presented in Galeano-Rios
et al. (2017) and Dias et al. (2008), we can recast the governing equations to be

∇2φ+∂2
z φ = 0, z ≤ 0, (3.1)

∂tη = ∂zφ + 2ν∇2η, z = 0, (3.2)

∂tφ = −gη − 2ν∂2
z φ + σ

ρ
κ − ps

ρ
, z = 0, (3.3)

∂zφ = 0, at z = h0. (3.4)

Here, ps(r, Θ, t) is the contact pressure, g is the gravitational acceleration, κ(r, Θ, t) =
∇2η is twice the linearized mean curvature of the interface, h0 is the depth of the
undisturbed bath and ρ, σ , ν = μ/ρ are the fluid density, surface tension and kinematic
viscosity, respectively. In this notation, ∂() denotes partial differentiation with respect to
the variable given in the parenthesis and ∇2 = ∂2

r + (1/r)∂r + (1/r2)∂2
Θ . The tangential

stress boundary conditions are automatically satisfied in these approximations. As detailed
in Galeano-Rios et al. (2017), this leading-order theory is valid in the weakly viscous limit
when Re = √

We/Oh � 1. A similar bath model was used by Blanchette (2016, 2017),
although the viscous correction term was not included in the dynamic boundary condition
(3.3).
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We assume that the impact occurs in a bath of some viscous fluid which is subject to
two boundary conditions, ∂nφ = 0 on the walls of the bath and ∂zφ = 0 on the bottom of
the bath, where n is the outward facing normal of the walls of the bath (Benjamin & Ursell
1954). The former condition implies that ∂nη = 0 on the walls of the container. These
conditions correspond physically to a bath where the working fluid maintains a constant
contact angle of 90◦ at the walls, and has no-flux boundary conditions along the walls and
bottom. Applying these conditions to the governing system of equations, an orthogonal
function expansion for the unknowns η, φ and their derivatives can be explicitly written.

The orthogonal basis functions Sj,m(r, Θ) ultimately must satisfy

(∇2 + k2
j,m)Sj,m = 0, (3.5)

inside of any bounding curve K that exists on the border of the bath and the boundary
condition of ∂nSj,m = 0 on K. Here kj,m are the eigenvalues of the system, and depend on
the choice of the physical domain of the problem. If the boundary curve K is a circle, the
functions become Sj,m = Jj(kj,mr) cos jΘ . Here Jj are Bessel functions of the first kind and
kj,m are the solutions to J′

j(kj,mb) = 0, where b is the bath radius. If we further assume
the problem to be axisymmetric, then we can choose j = 0, and write S0,m = J0(k0,mr).
For convenience, we define k0,m = km henceforth. We then can express the free surface
elevation as

η(r, t) =
∞∑

m=0

am(t)J0(kmr). (3.6)

We then rewrite all of the unknowns of the axisymmetric bath problem, using (3.1) and
(3.2), as a function of the time varying amplitude coefficients, am(t):

η(r, t) =
∞∑

m=0

am(t)J0(kmr), (3.7)

κ(r, t) = ∇2η = −
∞∑

m=0

k2
mamJ0(kmr), (3.8)

φ(r, z, t) =
∞∑

m=0

(
dam

dt
+ 2νk2

mam

)
J0(kmr)

cosh km(h0 + z)
km sinh kmh0

. (3.9)

In order to arrive at the final equations of motion for the free surface, we take the
decompositions ((3.7)–(3.9)) and substitute them into the dynamic boundary condition
(3.3). Rearranging, we find

∞∑
m=0

[
d2am

dt2
+ 4νk2

m
dam

dt
+
(

σk2
m

ρ
+ g

)
km tanh (kmh0)am

]
J0(kmr) = −ps

ρ
km tanh (kmh0).

(3.10)

Each wave mode in the bath is described by a forced, damped harmonic oscillator equation.

3.2. Droplet interface model
Additionally, we wish to recover a similar set of equations that describe the
gravity-capillary waves present in the droplet, and then couple these equations to the
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motion of the bath. The full derivation of the droplet oscillation model can be found
throughout prior works (Lamb 1924; Tsamopoulos & Brown 1983; Courty, Lagubeau &
Tixier 2006; Chevy et al. 2012; Balla, Tripathi & Sahu 2019) and is briefly summarized
below.

We begin by utilizing spherical harmonics to decompose the droplet radius in a spherical
domain,

ξ(θ, t) = R +
∞∑

l=1

l∑
n=−l

βn
l (t)Yn

l (cos θ, φ), (3.11)

with Yn
l = Pn

l (cos θ)einφ . Due to the axisymmetry of the problem, we set n = 0 and
the spherical harmonics reduce to associated Legendre polynomials, Pn

l (cos(θ)). For
convenience, we write βn

l = βl henceforth. We assume that the velocity potential takes
the same form as the decomposition of the interface (Lamb 1924; Balla et al. 2019). We
then turn to an energy conservation equation of the form

dT
dt

= Ẇ − ε, (3.12)

with T = K + G, Ẇ and ε, as the total energy (sum of the kinetic energy K and potential
energy G) of the drop, the rate of work done on the droplet interface, and the viscous
dissipation, respectively. We can express T , Ẇ and ε using the decomposition (3.11),
and substitute these expressions into the conservation of energy equation. Then, utilizing
the linearized kinematic boundary condition yields a set of forced, damped harmonic
oscillators that describe the amplitude of each individual spherical mode,

∞∑
l=1

[
d2βl

dt2
+ 2αl

dβl

dt
+ ω2

l βl

]
=

∞∑
l=1

[
−(2l + 1)l

2ρR

∫ π

0
ps(θ) sin θPl(cos θ) dθ + gδ1l

]
.

(3.13)

We drop the sums, and arrive at the result

d2βl

dt2
+ 2αl

dβl

dt
+ ω2

l βl = −(2l + 1)l
2ρR

∫ π

0
ps(θ) sin θPl(cos θ) dθ + gδ1l, (3.14)

with

αl = (2l + 1)(l − 1)
μ

ρR2 , (3.15)

ω2
l = l(l − 1)(l + 2)

σ

ρR3 (3.16)

and δ1l is the Kronecker delta function. This model is valid in the weakly viscous limit,
when Oh � 1. An extension of the free droplet model to arbitrary Oh can be found in
other prior works (Miller & Scriven 1968; Moláček & Bush 2012; Chandrasekhar 2013).

3.3. Pressure forcing during impact
There is still an additional unknown in the bath mode (3.10) and drop mode (3.14)
equations: the applied pressure distribution ps(r, t). This is generally a function of the
properties of the fluid medium, the impacting speed of the object, the shape of the
impacting object and the motion of the gas that surrounds the fluid. However, in this work,
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Inertio-capillary droplet rebound

we will assume that the viscosity of the ambient gas is small relative to the fluid bath
such that the flow within the small air film is negligible, and the pressure acts solely to
apply an upwards hydrodynamic force on the droplet. In non-dimensional terms, we can
construct two additional restrictions for our model, ρg/ρ � 1 and Ohg = μg/

√
ρσR �

Oh following prior work (Moláček & Bush 2012). In the current experimental and DNS
work, ρg/ρ ∼ O(10−3) and Ohg ∼ O(10−4), thus the influence of these two additional
parameters is indeed negligible. We have verified this for our typical experimental
parameters through DNS, and find that both a four-fold increase and decrease in the
ambient density and viscosity from air properties at standard temperature and pressure
(STP) produces negligible changes to the trajectory, instantaneous shape of the droplet,
and free surface shape throughout the interaction of the droplet and bath (Appendix A).

The radial extent of the pressure distribution is generally unknown for impact problems,
and constitutes an additional problem that we must solve. In the present work, we assume
that this unknown pressure distribution takes the form

ps(r, t) = F(t)
πR2 Hr(r/rc(t)), (3.17)

where F is the instantaneous magnitude of the contact force, evaluated at r = 0 and Hr
is an assumed spatial profile of the pressure in the contact region. For this distribution,
we can use a function that resembles the true shape of the pressure distribution
during contact. The contact region, Ac, will be assumed to a simply connected disk,
following Galeano-Rios et al. (2017) and Korobkin (1995). This allows us to write a single
unknown rc(t) to fully describe the temporal evolution of this region of contact. Blanchette
(2016, 2017) used a fixed parabolic pressure shape function

Hr(r) =
⎧⎨
⎩C

(
1 −

( r
R

)2
)

, r ≤ R,

0, r > R.

(3.18)

Here, C is the constant magnitude of the pressure at r = 0 and R is the undeformed
radius of the droplet. Blanchette (2016, 2017) chose the value of the magnitude C such
that

∫ b
0 psr dr = πR2. Thus, the pressure acting on the bath interface in the respective

models had a constant pressure shape function Hr for all times during contact. However,
simulation results from Galeano-Rios et al. (2017, 2021) show that the shape of the
pressure distribution at the surface of a fluid bath due to an impacting, non-wetting sphere
is flatter and more similar to a top-hat function for most times, and that the spatial extent of
the distribution changes continuously with time during impact. Additionally, for a droplet
impacting on a solid surface, the pressure in the air film has been inferred by de Ruiter et al.
(2015). The air film thickness during a bounce was measured using interferometry and the
pressure estimated using a lubrication model. The film pressure in both the impacting
and rebounding regimes is approximately uniform, with deviations from uniformity only
near the edge of the film. In related work, the impact pressure between a droplet and a
wettable solid substrate has been studied extensively by Mandre, Mani & Brenner (2009)
and Mani, Mandre & Brenner (2010), and their results indicate that the impact pressure
increases sharply near the contact line, likely a consequence of the decreased air film
thickness in that region. For the case of droplets bouncing on a deep pool, Tang et al.
(2019) measured the air film thickness and found the film thickness to be significantly
more uniform in both impacting and rebounding stages for We values similar to those
explored in the present work, presumably as a result of the deformability of the substrate
and impactor. Our predictions from DNS (presented and discussed in § 4) similarly suggest
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a more uniform air film thickness for the present problem, and a nearly uniform pressure
profile during all stages of rebound.

We will use a simple polynomial that resembles a smoothed top hat in this work, with

Hr(r/rc(t)) =

⎧⎪⎨
⎪⎩

C

(
1 −

(
r

rc(t)

)6
)

, r ≤ rc(t),

0, r > rc(t).

(3.19)

In order to remain consistent with our linearization, we do not allow rc to exceed R.
Requiring that the integral of the pressure over the contact area is F(t), we find∫ b

0
Hr(r/rc)r dr = R2

2
, (3.20)

which sets the constant C in the pressure shape function Hr(r/rc). Our bath model relies
on the decomposition of the fluid motion into a linear superposition of infinitely many
waves with wavenumbers km. Therefore, we apply a similar decomposition to this pressure
function ps = ∑∞

m=0 dmJ0(kmr). Since we are working in a cylindrical domain, we will
choose the zeroth-order Bessel function of the first kind as our orthogonal basis function,
and thus the dm are the Fourier–Bessel coefficients of the function Hr:

dm = 2
(bJ1(km))2

∫ b

0
Hr(r)rJ0(kmr) dr, (3.21)

with the domain extending from r = [0, b]. The reconstruction of the top-hat function
in Fourier–Bessel space converges too slowly to be of practical use (Storey 1968), also
noted by Blanchette (2016), and as such we use a polynomial expression that resembles
a smoothed top hat. Additionally, we tested higher-order polynomials (corresponding to
a larger flat region), and found increasingly poor convergence behaviour, similar to that
of the top hat (see Appendix B for a case study on the sensitivity of the results to the
choice of shape function). The ultimate choice of shape function used here thus represents
a practical compromise.

Substituting in the definition of the pressure (3.17) into (3.10), performing the
Fourier–Bessel decomposition, we find

d2am

dt2
+ 4νk2

m
dam

dt
+
(

σk2
m

ρ
+ g

)
km tanh (kmh0)am = − F

ρπR2 dmkm tanh (kmh0),

(3.22)

which govern the evolution of bath wave modes m. Similarly, substituting the pressure
(3.17) into (3.14), we write

d2βl

dt2
+ 2αl,0

dβl

dt
+ ω2

l,0βl = − F
2πρR3 cl(2l + 1)l + gδ1l. (3.23)

The coefficients cl result from the mode decomposition of the projection of the pressure
into spherical space,

cl =
∫ π

0
Hr(θ) sin(θ)Pl(cos θ) dθ, (3.24)
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Inertio-capillary droplet rebound

which naturally arise in the derivation of (3.14). Additionally, the definition of the pressure
(3.17) reduces the governing equation of the l = 1 ‘translational’ mode to

d2β1

dt2
= − F

m
+ g, (3.25)

which clearly governs the droplet centre of mass motion β1 = −zcm. Evidence from the
simulations of Galeano-Rios et al. (2017) indicates that impact trajectory is very sensitive
to the instantaneous size of the contact area. Utilizing a constant pressed area for the
pressure, as done in Blanchette (2016), does not produce results that compare well with
experiment (Appendix B), particularly for cases of small We. Appendix B details how
the choice of this pressure shape function modifies the predicted trajectory of the droplet
for typical experimental parameters. The trajectory is largely insensitive to the choice of
pressure shape function, but incorporating a time-dependent contact radius is essential
for agreement. The method for determining both F(t) and rc(t) are discussed in the next
section.

3.4. Modelling contact
The contact force F(t) is determined through the use of a ‘1-Point’ kinematic match
(1PKM) condition. Essentially, we enforce contact only at a single point; the centre of
our axisymmetric domain. Thus, the additional constraint can be written as

η(r = 0, t) = zcm(t) − ξ(θ = 0, t) =
∞∑

m=0

am(t) = zcm(t) −
(

R +
∞∑

l=2

βl(t)

)
. (3.26)

This additional constraint allows us to determine the unknown contact force F(t). Contact
between the droplet and the bath ends when the magnitude of the contact force as
predicted by the kinematic match becomes negative. We note that this 1PKM model
is a significant simplification of the full kinematic match successfully used to study
related impact problems (Galeano-Rios et al. 2017, 2019, 2021). The full kinematic match
predicts the evolution of the contact area and the contact pressure distribution (without
requiring an assumption for Hr) by imposing natural geometric and kinematic constraints,
essentially considering additional equations to solve at each time step. The algorithm
requires iteration at each time step, and the minimization of a tangency boundary condition
is used to determine the correct contact area and pressure shape.

Lastly we turn to the unknown contact radius rc(t). By not restricting the deformations of
the bath and droplet interface with the use of additional tangency and distributed kinematic
match conditions, we find that the results of our simulation consistently produce interfacial
shapes that cross each other. The amount of overlap between the two interfaces is generally
small, for the typical experimental parameters in our study the maximum overlap is
less than 0.05R. However, we can use the predictions from both interfacial models to
determine the exact location where the two interfaces cross and separate, and use this as the
instantaneous radius of contact rc(t). Thus, at each time, contact between the bath and drop
is ensured at both r = 0 and r = rc(t). In order to enforce contact within the entirety of the
contact region, a full kinematic match would be required – this circumvents the need for
any assumptions on the pressure profile shape, but is substantially more computationally
expensive. Our contact radius criterion is similar to that of the numerical model presented
in prior work on droplet rebound from solid substrates (Moláček & Bush 2012). While
this method is unphysical, it yields accurate predictions for the contact radius as compared
with DNS as demonstrated in § 5.
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3.5. Summary

Choosing a time scale of tσ =
√

ρR3/σ (with τ = t/tσ ), a length scale of R, and a force
scale of 2πσR (with f = F/2πσR), we recast the governing equations in non-dimensional
form as

η(r, τ ) =
M∑

m=0

am(τ )J0(kmr), (3.27)

ξ(θ, τ ) = 1 +
L∑

l=2

βl(τ )Pl(cos θ), (3.28)

d2am

dτ 2 + 4Ohkm
2 dam

dτ
+ (km

2 + Bo)km tanh (kmh0)am = −2fdm,0km tanh (kmh0), (3.29)

d2βl

dτ 2 + 2Oh(2l + 1)(l − 1)
dβl

dτ
+ l(l − 1)(l + 2)βl = −fcl(2l + 1)l + Boδ1l, (3.30)

d2zcm

dτ 2 = 3
2

f − Bo, (3.31)

η(0, τ ) = zcm(τ ) − ξ(θ = 0, τ ). (3.32)

Equations (3.29) and (3.30) describe the evolution of the bath and droplet oscillation
modes, respectively. Equation (3.31) governs the vertical motion of the droplet’s centre of
mass. Equation (3.32) couples these equations all together, with r = 0 as the single point
of ‘contact’ enforced between the droplet and the bath and allows for determination of
the unknown f (τ ). These equations are solved using standard ODE numerical integration
techniques. The shape of the bath and droplet can be reconstructed at any time t via the
sums in (3.27) and (3.28), respectively.

The complete model is valid when Re = √
We/Oh � 1 and Oh � 1. Also, since the

model is linearized about the undeformed state, we anticipate it to hold when deformations
remain small, further suggesting Bo � 1 and We � 1. However, we later demonstrate
through direct comparison with experiment and DNS that the model remains predictive
even for moderate We.

3.6. Numerical methods
We solve these equations using a backward Euler method, ensuring a minimum of 100
time steps within the inertio-capillary time tσ . An implicit method was chosen, following
Galeano-Rios et al. (2021), as the instantaneous size of the pressure distribution acting on
both the droplet and bath at the next time step is unknown. Treating the pressure explicitly
on either the droplet or the bath can lead to non-physical behaviour in the system. We used
M = 150 modes for the bath interface and L = 55 modes for the droplet interface. These
values were determined by running simulations of a We = 0.7, Bo = 0.017, Oh = 0.006
impact and assessing convergence as described in what follows. First, we kept the number
of droplet modes fixed at L = 15 and increased the number of bath modes from 30 to 500 in
increments of 25. Then, the simulation was run again, fixing the number of bath modes at
75 and increasing droplet modes from 15 to 200. Sufficient convergence was determined
if the maximum absolute value of the difference in centre of mass trajectories during
contact changed by less than 1 %. Finally, both the droplet and bath number of modes were
increased simultaneously, and convergence was still observed. These values are similar
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Inertio-capillary droplet rebound

to comparable to those found in Blanchette (2016) (M = 200, using sine functions as
the basis functions in a square bath), and Moláček & Bush (2012) (L = 150, but found
good accuracy in comparison with experimental data at L = 20). Additionally, once mode
convergence was determined, we decreased the time step of the simulation in increments
until time step convergence was similarly reached using the same criterion. Unexpectedly,
in a fully converged simulation, there is a time step threshold below which the algorithm
results in unstable oscillations in the magnitude of F(t). This time step threshold is
typically at least three orders of magnitude smaller than tσ . This apparent instability
deserves awareness and future attention, but does not affect the results presented in the
present work. The bath size was set to b = 25R which was determined to be sufficiently
large such that reflected waves did not influence the droplet during impact. In order to find
the instantaneous contact radius, we take two line segments from the reconstruction of the
droplet and bath interface shapes. From these we can write a linear system of equations for
four unknowns: the (r, z)-pair of the intersection location, the normalized distance from
the starting point of the first line segment to the intersection, and the normalized distance
from the starting point of the second line segment to the intersection (Schwarz 2022).
We then loop over every line segment to find every intersection. We take the largest of
this set as rc(t). In the reconstructions of the interfaces at each time step, at least 5000
points are used in both θ and r to ensure that error is minimized. All code associated
with the implementation of the model is available at https://github.com/harrislab-brown/
BouncingDroplets.

4. Direct numerical simulation

Complementing the previous investigative tools in terms of both experimental and
modelling capabilities, we build a dedicated computational framework within the
open-source solver Basilisk. This has the dual aim of validation and exploration of
quantities of interest outside the reach of previous methodologies. Basilisk (Popinet
2015) and its predecessor Gerris (Popinet 2003, 2009) have been widely adopted by the
computational fluid dynamics community over the past two decades. Its second-order
accuracy in both space and time, alongside adaptive mesh refinement and parallelization
features, have led to successful studies of multiscale fluid systems such as the scenario
here. The equations for conservation of momentum and mass are solved as part
of a one-fluid formulation within the volume-of-fluid (VOF) methodology, with the
Bell–Collela–Glaz advection (Bell, Colella & Glaz 1989) employed for advective terms
using a Courant–Friedrichs–Lewy (CFL)-limited time-stepping strategy, a well-balanced
surface tension implementation (Popinet 2018) and an implicit treatment of the viscous
terms.

The non-dimensionalization described in table 1 is retained, with the drop diameter R
and initial impact velocity V0 providing the reference length scale and velocity scale in
the system. The additional gas region, fully captured in the DNS, has physical properties
modelled from typical air values at room temperature. In particular we highlight the
value of density ratio ρg/ρ ≈ 0.0012 and Ohg = O(10−4) � Oh, as outlined in table 1,
both consistent with the modelling assumptions described in § 3.3. The axisymmetric
computational domain is constructed as a 20R × 20R square, with 20R proving sufficient
to avoid any artifacts from boundary reflections, while describing the dynamics of the
impact (Galeano-Rios et al. 2021). The pool height is set to z = 10R, rendering bottom
effects negligible, while also allowing a generous region occupied by air for the droplet
bounce to be quantified. Given that scales range from microns (in the gas layer between
drop and pool) to centimetres (for the full domain size), this is a challenging set-up which
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Figure 3. The DNS detail of the rebound of a R = 0.35 mm deionized water droplet from a bath of the same
fluid corresponding to We = 0.7, Bo = 0.017 and Oh = 0.006. (a) Adaptive mesh refinement strategy overlaid
to highlighted drop, pool and gas regions (i); 2-norm of the velocity field ‖u‖2 and fluid–fluid interfaces (ii) at
dimensionless t = 1.5. (b) Thickness of the air gap entrapped between the impacting drop and the pool, with
three highlighted time steps during descent, maximal spread and rebound, presented in dimensional form.
(c) Raw pressure data extracted at the centre of the air gap, along the contact radius, for the highlighted time
steps in panel (b). Movie supplementary material available at https://doi.org/10.1017/jfm.2023.88 containing
additional detail is also provided.

takes full advantage of the numerical capabilities available. The adaptive mesh refinement
strategy prioritizes fluid–fluid interfacial location and changes in the magnitude of the
velocity components in order to concentrate resources where needed. Extensive validation
efforts have determined that a minimum grid cell size of approximately 3 μm (or just above
100 cells per radius) is sufficient to ensure mesh independence for the observed metrics,
with additional refinement having been further tested in sensitive regimes and yielding no
substantial benefit. This leads to a grid cell count of 20 000–80 000 over the duration of
a simulation, with the workload typically distributed across 4–8 cores over approximately
48 CPU core hours per run. A subset of the computational domain, including the grid
cell distribution, is shown in figure 3(a). We note that, with a uniform mesh, a similarly
resolved computation would require in excess of 4.2 × 106 grid cells, rendering full
parameter studies intractable. Similar deployment of resources has previously proven
successful in the investigation of multifluid systems in the context of impact regimes
ranging from small (Galeano-Rios et al. 2021) to moderate (Fudge et al. 2021) and finally
large (Cimpeanu & Moore 2018) velocities, resulting in tools and improved insight into
physical phenomena such as bouncing, coalescence and splashing. The implementation
described above is made available to interested users at https://github.com/rcsc-group/
BouncingDroplets.

A particularity of our set-up lies in the integration of the recent functionality developed
for non-coalescence scenarios, as previously employed by Ramírez-Soto et al. (2020) and
recently by Sanjay et al. (2022b). With different symbolic definitions for underlying colour
functions representing the droplet and the bath in the VOF framework, the algorithm
ensures that numerically induced coalescence is avoided, and the entrapped gas region
between the impacting drop and the pool is well resolved throughout the studied motion. A
sufficiently high-resolution level is still required for O(1)μm thicknesses to be maintained
(Tang et al. 2019), as illustrated in figure 3(b), with the non-coalescence package allowing
suitable subgrid cell level length scales to be reached. The region highlighted in colour
represents the approximate contact area as a function of space and time, with the contact
radius limit defined by a gap of twice the typical width of the gas film trapped between
the drop and pool being reached as one navigates radially outwards (a definition consistent
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with the mathematical model). The typical gas film profile in space is given by a nearly
uniform value in the bulk of the drop–pool contact area, with a thinning observed towards
the very end, and the smallest scales reached therein approaching 0.25 μm. While a direct
comparison with existing experimental data would require a more dedicated set-up and is
beyond the scope of this study, similar length scales were recently observed by Tang et al.
(2019). Finally, this study also constituted one of our most stringent convergence tests, with
more refined mesh levels producing only negligible changes in this observed space–time
map. The time variation of the contact radius is a clear hallmark of this behaviour, with
an initially rapid increase to almost 85 % of the initial droplet radius being followed
by a slower decrease as restorative forces push the droplet back up during the ascent
stage, consolidating this as a key assumption to be retained as part of the mathematical
model presented previously. While the above discussion focuses on a representative set of
parameters, the generated outcomes and insight apply to the much wider parameter set we
explore.

Figure 3 (accompanied by movie supplementary material) also outlines velocity field
information inside each of the fluid phases (figure 3aii), as well as the aforementioned gas
film thickness (figure 3b) and pressure distribution (figure 3c) across relevant flow stages.
Manipulating raw pressure data in projection methods is a known challenge (Philippi,
Lagrée & Antkowiak 2016; Negus et al. 2021), with the oscillatory behaviour observed in
figure 3(c) linked to the VOF approximation on a structured grid, and the underlying colour
function sampled across various approximation points inside the cells in near vicinity of
interfaces with large value contrasts in the quantities of interest. We underline in particular
that the aforementioned variations oscillate around well-defined means within the contact
region. The pressure in the air gap across the evolving contact radius may thus be robustly
approximated by a top-hat function at every flow stage investigated, reinforcing previous
modelling choices in § 3.3 and Appendix B.

After having undergone stringent numerical verification procedures, a typical study
in our parameter regime of interest is showcased in figure 4 and described in detail in
the following section. The agreement between experiment, model and simulation is very
encouraging, with the developed resources in an excellent position to bridge one another
and comprehensively explain the target rebound metrics.

5. Results

In this section, we first present the results of a direct comparison between experiment,
quasipotential model and DNS for a single impact We. Then, we vary We for two
working fluids, and compare the results of the three different impact metrics between the
experiment, DNS and model. Having validated the model and DNS, we then run sweeps
over Bo and Oh to deduce the effect that these non-dimensional constants have on droplet
rebound metrics, and compare predictions with existing experimental data sets available
in the literature.

5.1. Comparison with experiment
We first consider a single impact of a deionized water droplet with R = 0.35 mm. A direct
comparison of the trajectory results of the model, DNS and the experiments is depicted in
figure 4(a). We find excellent agreement for the top, centre of mass and bottom trajectories
between the experiment, quasipotential model and DNS. Additionally, we make a direct
comparison between the quasipotential model and the DNS for the prediction of the radius
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Figure 4. Rebound of a R = 0.35 mm deionized water droplet from a bath of the same fluid corresponding
to We = 0.7, Bo = 0.017 and Oh = 0.006. (a) Trajectory comparison between the experiment (red dashed line
with typical variation shown as dotted red lines), DNS (black dashed line) and quasipotential model (blue
solid line). (b) Instantaneous contact radius, normalized by the undeformed radius R, as a function of time
for the quasipotential model and DNS. (c) Maximum width of the droplet w, as a function of time for the
quasipotential model and DNS. (d) Comparison of droplet shape between experiment, DNS and quasipotential
model. Supplementary movies are available.

of contact in figure 4(b). During impact, the quasipotential model accurately predicts
the instantaneous contact area, as well as the maximum contact area. The DNS, which
accurately resolves the air film, shows that a finite region of contact is already developed
prior to impact. At t/tσ > 3, the two models deviate from each other, and this is most likely
due to suction effects as the droplet pulls away from the surface. These effects cannot be
predicted while neglecting the motion of the air, as in the current quasipotential model,
however, do not appear consequential to the overall droplet trajectory. A comparison
between the two models for the maximum width of the droplet is depicted in figure 4(c).
As is the case with the contact radius, the deformation of the droplet in the DNS occurs
slightly before that of the quasipotential model, as the pressure in the film is already
building prior to contact. This leads to an overall phase shift of the oscillation between
the models, although the maximum value for the deformation between both models
remains in very good agreement. We also compare the droplet and interface shape between
the experiments, DNS, and linearized model can be seen in the panels of figure 4(d).
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Figure 5. (a) Coefficient of restitution, (b) contact time and (c) maximum penetration depth for a R = 0.35 mm
deionized water droplet rebounding from a bath of the same fluid as a function of We (with Bo = 0.017
and Oh = 0.006). Error bars on experimental data points are quantified as the standard deviation of at least
five experimental trials. Predictions of the quasipotential model are shown as blue solid lines, DNS as black
dashed lines.

The impact is depicted for six different instants during contact. As the droplet deforms the
interface, a capillary wave travels from the impact location to the north pole of the droplet.
The collapse of this wave onto itself occurs just before the time of maximum deformation
of the bath, and corresponds to the maximum deformation of the droplet. After this time,
surface tension in the bath begins to act to restore the equilibrium, having redistributed
some of the initial impact energy in the form of interfacial waves. The droplet remains
mostly spherical as the bath relaxes, until contact is lost. During free flight, the droplet
oscillates as an underdamped harmonic oscillator, dissipating additional energy through
viscosity. Both the DNS and experiment show slightly stronger oscillations in the top of
the droplet as compared with the model, to the point which the instantaneous slope at
the top is occasionally close to zero. Overall, the DNS and quasipotential model are in
excellent agreement and predict the bath shape, droplet shape and droplet trajectory with
high accuracy for these parameters.

As we begin to explore the larger parameter space, we consider three different output
parameters for the rebounds: coefficient of restitution (α); contact time (tc); and maximum
surface deflection (δ). As mentioned in § 2.2, given the experimental difficulty of
accurately determining the time of surface detachment of the droplet, contact time, tc,
is defined in the experiment as the interval between the two instances when the north pole
of the droplet crosses level z = 2R and the coefficient of restitution, α, is defined as minus
the ratio of the vertical velocities at those times. For the model and DNS, we define the
metrics in the same way, but when the centre of mass of the droplet crosses z = R. This
is chosen because a measure on the centre of mass more accurately describes the total
translational energy transfer from the droplet. However, in comparing the results from
the model and DNS using both top (measured at z = 2R) and centre of mass (measured at
z = R), we found a typical difference of 2 % for α and tc/tσ in the silicone oil experiments,
and 5 % for the same parameters in the deionized water experiments.

Figure 5 outlines a variation of impact We for a deionized water droplet onto a water
bath. In this parameter sweep, the coefficient of restitution generally decreases as the
We number is increased, eventually saturating at a value just below 0.3, and remaining
nearly independent of the We number thereafter. The contact time also decreases as the
We number is increased, but remains relatively independent of the We number at an earlier
value, consistent with results found for impact on a solid surface (Richard et al. 2002) and
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Figure 6. (a) Coefficient of restitution, (b) contact time, and (c) maximum penetration depth for a R =
0.35 mm 5 cSt oil droplet rebounding from a bath of the same fluid as a function of We (with Bo = 0.056
and Oh = 0.058). Error bars on experimental data points are quantified as the standard deviation of at least
five experimental trials. Predictions of the quasipotential model are shown as blue solid lines, DNS as black
dashed lines.

for previous experiments for impact on a deep pool (Zhao et al. 2011). The maximum
penetration depth increases monotonically with We. We find good agreement between
the model, DNS and experiments with regard to the restitution coefficient, contact time
and maximum surface deflection for these experiments. Additionally, the quasipotential
model is able to predict α for the entire range of experiments. Both the model and DNS
slightly underpredict the dimensionless contact time at intermediate We, yet do agree
with the experimental data for We ≤ 1. The quasipotential model also underpredicts the
penetration depth and contact time at moderate We. Nonlinear effects associated with
larger deformation have been neglected in this model, and are most likely the cause of
this discrepancy.

Figure 6 depicts a We number variation using 5 cSt silicone oil. In non-dimensional
terms, this represents an increase in both the Bo and Oh numbers. Similar trends in tc/tσ
and δ are observed for the silicone oil as compared with the deionized water. However, α

tends to generally increase with We in this case, as opposed to water which showed the
opposite trend. The quasipotential model accurately predicts α for almost the full range of
We, with slight underprediction for We < 2. Similar to the water case, the quasipotential
model underpredicts tc/tσ and δ at intermediate We, with the DNS capturing these metrics
more accurately. Although not verified experimentally, the model and DNS predict that
droplets with very, very low We numbers cease to return to their original height at all.
Note that We ≤ 0.5 is challenging to explore experimentally for these parameters, as pinch
off of the droplets from the generator induces oscillations that need to dampen out prior
to impact. The short free flight time and low viscosity of these extremely low We cases
mean that there is still oscillation present at impact, which has been shown in prior work
to influence rebound dynamics in related droplet impact problems (Biance et al. 2006; Yun
2018).

5.2. Inertio-capillary limit
The validated quasipotential model can now be used to explore other sets of parameters.
In particular, based on the assumptions of the model, we expect the model to remain
accurate (and even perhaps improve) for cases of even smaller Bo and Oh than achieved in
experiments. As a grounding point, we first turn our attention to the pure inertio-capillary
limit, where both gravitational and viscous effects are ignored (i.e. Bo = 0 and Oh = 0).
This case reduces the number of dimensionless parameters that describe the physical
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Figure 7. (a–c) Rebound parameters of a droplet in the inertio-capillary regime (as denoted by the asterisk).
(d) Droplet and bath shape in the pure inertio-capillary regime (Bo = 0, Oh = 0) for three different We.

problem to just one: the We number. The results in the inertio-capillary limit are presented
in figure 7, along with the droplet and bath shape predictions for various We. The
penetration depth δ∗ increases monotonically with increasing We, as found for both the
water and oil experiments. Additionally, the contact time t∗c decreases before becoming
mostly independent of We. However, in this limiting case, the coefficient of restitution
α∗ monotonically decreases with We and does not have a local maximum in the restitution
coefficient, and droplets can even retain a majority of their impacting energy at sufficiently
low We. Furthermore, the coefficient of restitution then remains nearly independent of We
above We > 1.75, and is predicted to saturate to a value of approximately α∗

s = 0.31.

5.3. Influence of viscosity and gravity
We then individually probe the parameter space by increasing either Bo or Oh. These
variations are presented in figures 8 and 9. The result of increasing Bo, while keeping
Oh constant (yet negligibly small), is depicted in figure 8. At low values Bo, the curves
converge to the inertio-capillary limit as presented in the prior section. For a given We,
the coefficient of restitution decreases monotonically with Bo, until eventually ceasing to
return to its original height. At intermediate values of Bo the curves exhibits an interesting
non-monotonic dependence on We, with a local maxima at finite We. Furthermore, the
contact time of the droplets is predicted to increase with increasing Bo. These qualitative
trends are consistently reproduced by the DNS, with satisfactory quantitative agreement
between the quasipotential model and DNS for Bo � 0.1. For larger Bo, and for the highest
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Figure 8. (a) Coefficient of restitution and (b) contact time as a function of the Bond number Bo. Viscous
effects are set to be finite but negligible, with Oh = 6 × 10−4. Predictions of the quasipotential model are
shown as solid lines, DNS as individual markers. The vertical dashed lines in panel (b) reference the critical
We for each Bo below which droplets do not bounce.
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Figure 9. (a) Coefficient of restitution and (b) contact time as a function of the Ohnesorge number Oh.
Gravitational effects are set to be finite but negligible, with Bo = 1 × 10−3. Predictions of the quasipotential
model are shown as solid lines, DNS as individual markers.

We cases explored, the model generally underpredicts the coefficient of restitution as
compared with the DNS.

Increasing Oh while keeping Bo negligibly small is shown in figure 9, and also
predicts a monotonic decrease in the restitution coefficient, with curves converging to the
inertio-capillary limit for small Oh. Unlike the Bo variation, the shape of the curve remains
relatively unchanged. The non-dimensionalized contact time changes only marginally,
even over an order of magnitude increase in Oh. Very similar trends are predicted by
DNS, with models diverging quantitatively beyond Oh � 0.1, consistent with a breakdown
of the weakly viscous modelling assumptions. For larger Oh, the quasipotential model
overpredicts the coefficient of restitution and underpredicts the contact time, as compared
with the DNS.

5.4. Scaling analysis
In this subsection we present scaling arguments to rationalize the dependence of the
coefficient of restitution on Bo and Oh detailed in figures 8(a) and 9(a), respectively.
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As revealed in the prior section, at a fixed We, the coefficient of restitution decreases
monotonically from the inertio-capillary limit (figure 7a) as either Bo or Oh is increased.
Due to the number of parameters involved, in order to proceed, we will assume that
this additional energy transfer (or loss) due to weak gravitational (or viscous) effects
is independent of the baseline energy transferred (�E∗) in the inertio-capillary limit.
Mathematically, this assumption can be expressed in the form

α2 = Eo − �E∗ − �Eg,μ

Eo
= α∗2 − �Eg,μ

Eo
, (5.1)

or

α∗2 − α2 = �Eg,μ

Eo
, (5.2)

where Eo = (2π/3)ρR3U2 is the initial droplet kinetic energy, and �Eg,μ is the
supplemental energy transferred or lost due to gravity or viscosity, respectively. In what
follows, we propose scalings for these energies.

Since gravity is a conservative force, increases in Bo must lead to an overall
increase in the deformation (and subsequent oscillation) of the bath and droplet. In the
capillary-dominated regime, the gravity-induced deformation can be estimated to scale
with ρR3g/σ , corresponding to an additional surface energy scaling as �Eg ∼ ρ2R6g2/σ .
Normalizing this estimate by the incident kinetic energy, we find an additional fractional
energy transfer to droplet–bath deformations that scales as

�Eg

Eo
∼ ρR3g2

σU2 = Bo2

We
. (5.3)

Motivated by (5.2) and (5.3), we replot the data from figure 8(a) in 10(a), and find a
satisfactory collapse. In particular, the scaling in (5.3) correctly predicts that bounces at
lower We will be more heavily penalized in terms of their coefficient of restitution. This
inequity rationalizes the observed non-monotonic behaviour of α with We predicted for
intermediate Bo (figure 8a). Furthermore, (5.2) and (5.3) suggest a scaling for the ‘critical’
Weber number Wec below which the droplet ceases to bounce (i.e. α2 < 0):

Wec ∼ Bo2

α∗2 . (5.4)

The data for the critical Weber number as predicted by the quasipotential model is shown
in figure 10(b), and follows the proposed scaling in (5.4). We note that Blanchette (2016)
observed a parabolic scaling for the critical Weber number with Bo in prior work, also
finding this threshold to be largely independent of Oh.

Upon the inclusion of viscosity, there is viscous dissipation in the drop and bath that
now occurs during contact. The rate of viscous energy dissipation (per unit volume) can
be estimated to scale as μ(∇u)2 ∼ μU2/R2. Assuming a characteristic fluid volume R3,
we find a viscous energy dissipation rate that scales like μU2R. As demonstrated in the
prior sections, the contact time tc ∼ tσ , and thus we may estimate the additional fractional
energy loss during contact as

�Eμ

Eo
∼ μ√

σρR
= Oh. (5.5)

Replotting the data from figure 9(a) in 10(c) shows that apart from the very lowest We
cases considered, the curves collapse to a single line, confirming the proposed scaling.
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Figure 10. (a) Coefficient of restitution predictions from the quasipotential model for Oh = 6 × 10−4

(figure 8a) replotted as informed by the scaling in (5.3). (b) Critical We as a function of Bo; the points
are predictions from the quasipotential model, and the dotted curve is a parabolic fit (Wec = 11.43Bo2/α∗2)
consistent with the scaling in (5.4). (c) Coefficient of restitution predictions from the quasipotential model for
Bo = 1 × 10−3 (figure 9a) replotted as informed by the scaling in (5.5).

For all We, the curves are approximately linear in Oh (consistent with (5.5)) with the slope
evidently depending on We for the smallest We cases.

In summary, our models predict an additional energy transfer (or loss) over the
pure inertio-capillary limit when gravitational (or viscous) effects are introduced. Our
scaling suggests that gravity leads to additional deformations in the system, coming at
an additional energetic cost. Additionally, viscosity provides a mechanism for energy
dissipation, occurring over the finite contact time of the droplet. Computing the various
energies directly in DNSs (such as in Sanjay et al. (2022a)) may provide additional insight
to the remaining subtleties present in the data.

5.5. Comparison with prior literature data
In the works of Jayaratne & Mason (1964), Bach et al. (2004), Zhao et al. (2011), Zou
et al. (2011) and Moláček & Bush (2013) there is a reported saturation in the energy
transfer from the drop during rebound at modest We > 1 and low Oh, as measured by
the coefficient of restitution. The exact value of the saturation restitution coefficient does
seem to vary, however, from 0.2 in Moláček & Bush (2012) for more viscous drops, to
0.3 in Bach et al. (2004) and Zhao et al. (2011), to as low as 0.1 (Zou et al. 2011) for
large Bo impact scenarios. Remarkably, recent experiments on rebound of liquid metal
droplets in viscous media also showed similar values of the coefficient of restitution with
α = 0.27 (McGuan, Candler & Kavehpour 2022). A similar saturation is also observed in
our experimental results presented herein, with water droplets generally bouncing higher
that the 5 cSt silicone oil droplets. In figure 11, we overlay existing available experimental
data for α from numerous sources and find that the prediction from the quasipotential
model accurately captures much of this data. The grey line represents the extrapolation of
data from non-normal impacts by (Jayaratne & Mason 1964) over the range of We reported
in their work. Data from the experiments completed in this work utilizing 5 cSt silicone oil
and deionized water are included with error bars. The historical data generally indicates
a decrease in α with Bo, as captured by the present model. Despite the relatively large
variation in Oh, the experimental data appear to match the results of the quasipotential
model quite well.

Furthermore, the existing experimental data (apart from a small number of outlying
points) is well bounded by the inertio-capillary limit presented earlier. This curve thus
appears to define a universal upper bound on the coefficient of restitution for a droplet
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Figure 11. Comparison of model Bo predictions (figure 8a) with the existing literature data where We was
reported. The grey markers represent data points where the exact value of Bo is unknown, with only ranges
reported. The grey dot–dashed line represents the extrapolation of oblique impact data to normal impacts by
Jayaratne & Mason (1964). Data from the experiments completed in the present work are included with error
bars. Studies included here are summarized in table 2.

Publication Bo Oh Symbol
Bach et al. (2004) 5 × 10−5 − 2 × 10−4 0.31 − 0.69 �
Zhao et al. (2011) > 0.005 > 0.008 �
Zou et al. (2011) 0.10 − 0.48 0.0026 − 0.0039 �
Moláček & Bush (2013) 0.027 − 0.2 0.16 − 0.27 ◦
Wu et al. (2020) 0.016 − 0.04 0.005 − 0.006 ×
This work 0.017 − 0.056 0.006 − 0.058 �

Table 2. Relevant publications and ranges of droplet parameters for experiments presented in figure 11.

rebounding from a deep pool of the same fluid as a function of We, regardless of any other
parameters.

There is substantially less data available on contact times for low Oh impacts, but when
reported they generally take values within the range of 4–6tσ (Zhao et al. 2011; Moláček
& Bush 2013; Wu et al. 2020).

6. Discussion

In this work we have used a combination of custom experiments, state-of-the-art DNS
techniques and a new quasipotential model to study the bouncing of millimetric droplets
on a deep bath of the same fluid in the inertio-capillary regime. Weakly viscous models
for the bath and droplet interfaces are coupled to one another through the use of a
simplified kinematic matching condition, and allow us to make accurate predictions for
the droplet trajectory and time-dependent droplet and bath shapes. Furthermore, the
quasipotential model is relatively efficient to compute and uses only standard off-the-shelf
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algorithms, resolving multiple bounces in less than five minutes on a standard desktop
computer. Both the quasipotential model and DNS are demonstrated to accurately predict
the coefficient of restitution, contact time and maximum surface deflection, validated by
direction comparison with experiments with two different working fluids.

Starting from the inertio-capillary limit (where both gravitational and viscous are
negligible) in the model, as we increase Bo, we see a decrease in the coefficient of
restitution and an increase in the contact time. Additionally, a local maximum develops
in α at low We as Bo increases. As Bo increases further, droplets cease to return to their
original height. Furthermore, as Oh is increased away from the inertio-capillary limit, a
simpler, monotonic decrease in α is observed, with the contact time remaining almost
unchanged for the much of the Oh range explored in this work. By further comparison
with DNS, the complete model is shown to hold in the limit of small Bo and Oh, and up
to intermediate We, provided that the influence of the intervening gas layer that inhibits
coalescence on the overall dynamics is minimal. These trends can be rationalized using
simple scaling arguments, with gravity resulting in additional droplet–bath deformations
(and thus energy transfer), and viscosity providing a mechanism for energy dissipation
in the fluid during contact. Additionally, the model can be used to connect much of the
existing experimental data on this particular topic. In particular, the inertio-capillary limit
appears to define an upper bound on the possible coefficient of restitution for droplet–bath
impact, with the value depending only on the Weber number, and saturating to a near
constant value at intermediate We.

The related problem of a droplet impactor rebounding off a solid surface has been
considered in numerous previous works (Anders, Roth & Frohn 1993; Richard & Quéré
2000; Richard et al. 2002; Gilet & Bush 2012). The dependence of the coefficient
of restitution on the Weber number has previously been reported (Biance et al. 2006;
Aussillous & Quéré 2006; Gilet & Bush 2012), and the trend observed in these studies is
similar to what is found in this work for low We and low Bo; however, the typical values
of restitution coefficients in these studies are significantly larger. This is likely due to
the fact that a large portion of the initial droplet energy in the present case is carried
away by surface waves excited in the fluid bath. Our general findings also have many
similarities with the investigation of Galeano-Rios et al. (2021), in which non-wetting
spheres impact and rebound from a water bath. In particular, the general trends for
maximum penetration depths and contact times are consistent with the present work.
However, spheres with density most similar to that of water show a consistent monotonic
increase in the coefficient of restitution with increasing We rather than saturating to a
near constant value for the case of droplet–bath rebound. Furthermore, at intermediate
We, coefficients of restitution can take values as high as α ≈ 0.5, distinctly greater than
otherwise equivalent droplet–bath rebounds considered in the present work. Evidently,
the nature of the impactor and substrate influences the subtle energy transfer mechanisms
across these different capillary rebound problems.

The model presented here is highly versatile, with only a single embodiment thereof
considered here in terms of target canonical physical scenario. Future work will consider
the effect of relative surface tension and viscosity, where the droplets are composed of a
different fluid than the bath. Also, in the present work we have specifically selected the size
of the bath to be much greater than that of the droplet radius to eliminate any possible wave
reflection and interaction effects. In Zou et al. (2013), experimental results indicate that
reducing the size of the bath (such that the impacting wave on the bath has time to travel
to the edge and return to the impact point) can increase the coefficient of restitution with
the droplet recovering energy initially lost to waves. Furthermore, the effects of incident
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droplet or bath deformations could be readily studied, and has been shown to influence
bouncing behaviour in similar systems (Biance et al. 2006; Yun 2018).

There are a number of possible additions to the existing model that could expand its
reach to other related problems. For instance, the model for the droplet deformation can be
extended into a regime where the dynamics of the gas layer does matter, and the gas layer
dynamics coupled to the droplet deformation through the use of lubrication equations. The
model can also be adapted to non-axisymmetric domains, or to droplet impacts at varying
angles of incidence. However, in these cases the full kinematic match should be utilized,
as the shape of the pressure distribution would likely change at each time step. Moreover,
numerous authors have studied the variety of phenomena that occur when a droplet impacts
another droplet (Qian & Law 1997; Tang, Zhang & Law 2012). Droplet–droplet collisions
are of extreme importance in combustion science (Jiang, Umemura & Law 1992) and
cloud formation (Grabowski & Wang 2013), for instance, the general effect of cloud
turbulence acts to increase droplet–droplet interaction, and droplet impact and coalescence
is postulated as the primary mechanism by which warm rain forms (Grabowski & Wang
2013). With such motivation in mind, the present model could be readily extended to cases
where equal and unequal sized droplets impact and rebound from one another. Overall, the
quasipotential model developed in this work has the potential to continue to inspire and
inform the rich subject of capillary rebounds.

Supplementary movies. Supplementary material (experimental, model and simulation animations) are
made available to the interested reader.

Supplementary movies are available at https://doi.org/10.1017/jfm.2023.88.
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Appendix A. Influence of ambient gas properties

In order to verify our assumption that the flow within the air layer is negligible to the
droplet and bath dynamics in our parameter regime of interest, we run DNSs where the
ambient gas density and viscosity are varied. First, the gas viscosity is held fixed for air
at 21 ◦C and 1 atm and the density is increased by a factor of four, and then decreased by
a factor of four, respectively. Then the variation process is repeated for the gas viscosity,
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Figure 12. The DNS predictions of the trajectory of a deionized water droplet with R = 0.35 mm in air at
We = 0.7 (with Bo = 0.017, Oh = 0.006). The ambient gas density and viscosity are increased and decreased
independently by a factor of four. These simulations are compared with the case with the reference case of air
properties at STP.
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Figure 13. Quasipotential model and DNS predictions for a deionized water droplet with R = 0.35 mm
corresponding to Bo = 0.017 and Oh = 0.006. Droplet centre of mass trajectories for (a) We = 0.07, (b) We =
0.36, and (c) We = 1.36. (d) Coefficient of restitution α and contact time tc/tσ as a function of We. (e) Plots of
the pressure shape functions Hr(r/rc) tested in this figure, shown for reference.

with density held fixed. The results of these simulations are presented in figure 12 and are
nearly indistinguishable, particularly during contact.

Appendix B. Influence of pressure shape function

We tested several pressure shape functions Hr to assess the relative influence of this choice.
In the simulations shown in figure 13 a parabola, fourth-order and sixth-order polynomial
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with time varying contact areas set as described in the modelling section are compared.
A parabola with fixed contact radius rc(t) = R is also included in the comparison. These
results all correspond to Bo = 0.017 and Oh = 0.006 impacts. The parabola with the fixed
contact area performs the most poorly, especially at lower impact We. At higher impact We,
the fixed radius rc(t) = R parabolic distribution prediction becomes similar to the time
evolving parabolic case. For the simulations presented in this work, the contact radius
is defined to have a maximum value of R, as the projection of the pressure distribution
onto the undisturbed spherical surface is no longer well defined for rc > R. The value for
rc(t) quickly saturates to R at higher impact We, and the agreement between the constant
contact radius and the contact radius model used in the present work improves. Overall,
inclusion of a time-varying contact radius appears necessary to capture the correct trends
in α and tc/tσ over the range of We presented in this work. In addition, as the order of the
polynomial increases, the shape of the pressure function more closely resembles a top hat,
and the predictions of the model improves as compared with the corresponding DNS. The
sixth-order polynomial was ultimately chosen for the present work, as higher polynomials
(corresponding to broader flat regions) converged more slowly with only marginal changes
in the quantitative predictions.
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MOLÁČEK, J. & BUSH, J.W.M. 2013 Drops bouncing on a vibrating bath. J. Fluid Mech. 727, 582–611
NEGUS, M.J., MOORE, M.R., OLIVER, J.M. & CIMPEANU, R. 2021 Droplet impact onto a spring-supported

plate: analysis and simulations. J. Engng Maths 128 (1), 1–27.
OKUMURA, K., CHEVY, F., RICHARD, D., QUÉRÉ, D. & CLANET, C. 2003 Water spring: a model for

bouncing drops. Europhys. Lett. 62 (2), 237.
PAN, K.-L. & LAW, C.K. 2007 Dynamics of droplet–film collision. J. Fluid Mech. 587, 1–22.
PARK, S.H., JUNG, C.H., JUNG, K.R., LEE, B.K. & LEE, K.W. 2005 Wet scrubbing of polydisperse aerosols

by freely falling droplets. J. Aerosol Sci. 36 (12), 1444–1458.
PHILIPPI, J., LAGRÉE, P.-Y. & ANTKOWIAK, A. 2016 Drop impact on a solid surface: short-time

self-similarity. J. Fluid Mech. 795, 96–135.
POPINET, S. 2003 Gerris: a tree-based adaptive solver for the incompressible Euler equations in complex

geometries. J. Comput. Phys. 190 (2), 572–600.
POPINET, S. 2009 An accurate adaptive solver for surface-tension-driven interfacial flows. J. Comput. Phys.

228 (16), 5838–5866.
POPINET, S. 2015 A quadtree-adaptive multigrid solver for the Serre–Green–Naghdi equations. J. Comput.

Phys. 302, 336–358.
POPINET, S. 2018 Numerical models of surface tension. Annu. Rev. Fluid Mech. 50, 49–75.

958 A24-30

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

88
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2023.88


Inertio-capillary droplet rebound

QIAN, J. & LAW, C.K. 1997 Regimes of coalescence and separation in droplet collision. J. Fluid Mech.
331, 59–80.

RAMÍREZ-SOTO, O., SANJAY, V., LOHSE, D., PHAM, J.T. & VOLLMER, D. 2020 Lifting a sessile oil drop
from a superamphiphobic surface with an impacting one. Sci. Adv. 6 (34), eaba4330.

RAYLEIGH, LORD 1879 On the capillary phenomena of jets. Proc. R. Soc. Lond. 29 (196–199), 71–97.
REYNOLDS, O. 1881 On drops floating on the surface of water. Chem. News 44, 211–212.
RICHARD, D., CLANET, C. & QUÉRÉ, D. 2002 Contact time of a bouncing drop. Nature 417 (6891), 811–811.
RICHARD, D. & QUÉRÉ, D. 2000 Bouncing water drops. Europhys. Lett. 50 (6), 769.
DE RUITER, J., LAGRAAUW, R., VAN DEN ENDE, D. & MUGELE, F. 2015 Wettability-independent bouncing

on flat surfaces mediated by thin air films. Nat. Phys. 11 (1), 48–53.
DE RUITER, J., OH, J.M., VAN DEN ENDE, D. & MUGELE, F. 2012 Dynamics of collapse of air films in drop

impact. Phys. Rev. Lett. 108 (7), 074505.
SANJAY, V., LAKSHMAN, S., CHANTELOT, P., SNOEIJER, J.H. & LOHSE, D. 2022a Drop impact on viscous

liquid films. arXiv:2206.06298.
SANJAY, V., SEN, U., KANT, P. & LOHSE, D. 2022b Taylor–Culick retractions and the influence of the

surroundings. J. Fluid Mech. 948, A14.
SCHMIEDEN, C. 1953 Der aufschlag von rotationskörpern auf eine wasseroberfläche. richard v. Mises zum 70.

geburtstag gewidmet. Z. Angew. Math. Mech. 33 (4), 147–151.
SCHWARZ, D. 2022 Fast and robust curve intersections. Available at: https://www.mathworks.com/

matlabcentral/fileexchange/11837-fast-and-robust-curve-intersections.
SCOLAN, Y.-M. & KOROBKIN, A.A. 2001 Three-dimensional theory of water impact. Part 1: inverse Wagner

problem. J. Fluid Mech. 440, 293.
SHARMA, P.K. & DIXIT, H.N. 2020 Energetics of a bouncing drop: coefficient of restitution, bubble

entrapment, and escape. Phys. Fluids 32 (11), 112107.
SHIRI, S. & BIRD, J.C. 2017 Heat exchange between a bouncing drop and a superhydrophobic substrate. Proc.

Natl Acad. Sci. 114 (27), 6930–6935.
STOREY, S.H. 1968 The convergence of Fourier–Bessel expansions. Comput. J. 10 (4), 402–405.
SÁENZ, P.J., CRISTEA-PLATON, T. & BUSH, J.W.M. 2018 Statistical projection effects in a hydrodynamic

pilot-wave system. Nat. Phys. 14 (3), 315–319.
TANG, X., SAHA, A., LAW, C.K. & SUN, C. 2019 Bouncing drop on liquid film: dynamics of interfacial gas

layer. Phys. Fluids 31 (1), 013304.
TANG, C., ZHANG, P. & LAW, C.K. 2012 Bouncing, coalescence, and separation in head-on collision of

unequal-size droplets. Phys. Fluids 24 (2), 022101.
TERWAGNE, D., LUDEWIG, F., VANDEWALLE, N. & DORBOLO, S. 2013 The role of the droplet deformations

in the bouncing droplet dynamics. Phys. Fluids 25 (12), 122101.
THOMSON, J.J. & NEWALL, H.F. 1886 On the formation of vortex rings by drops falling into liquids, and

some allied phenomena. Proc. R. Soc. Lond. 39 (239–241), 417–436.
THORODDSEN, S.T. & TAKEHARA, K. 2000 The coalescence cascade of a drop. Phys. Fluids 12 (6),

1265–1267.
TSAMOPOULOS, J.A. & BROWN, R.A. 1983 Nonlinear oscillations of inviscid drops and bubbles. J. Fluid

Mech. 127, 519–537.
WAGNER, H. 1932 Über stoß-und gleitvorgänge an der oberfläche von flüssigkeiten. Z. Angew. Math. Mech.

12 (4), 193–215.
WORTHINGTON, A.M. 1908 A Study of Splashes. Longmans, Green, and Company.
WU, Z., HAO, J., LU, J., XU, L., HU, G. & FLORYAN, J.M. 2020 Small droplet bouncing on a deep pool.

Phys. Fluids 32 (1), 012107.
YARIN, A.L. 2006 Drop impact dynamics: splashing, spreading, receding, bouncing. Annu. Rev. Fluid Mech.

38, 159–192.
YUN, S. 2018 Impact dynamics of egg-shaped drops on a solid surface for suppression of the bounce

magnitude. Intl J. Heat Mass Transfer 127, 172–178.
ZHAO, H., BRUNSVOLD, A. & MUNKEJORD, S.T. 2011 Transition between coalescence and bouncing of

droplets on a deep liquid pool. Intl J. Multiphase Flow 37 (9), 1109–1119.
ZOU, J., REN, Y.L., JI, C., RUAN, X.D. & FU, X. 2013 Phenomena of a drop impact on a restricted liquid

surface. Expl Therm. Fluid Sci. 51, 332–341.
ZOU, J., WANG, P.F., ZHANG, T.R., FU, X. & RUAN, X. 2011 Experimental study of a drop bouncing on a

liquid surface. Phys. Fluids 23 (4), 044101.

958 A24-31

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

88
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://arxiv.org/abs/2206.06298
https://www.mathworks.com/matlabcentral/fileexchange/11837-fast-and-robust-curve-intersections
https://www.mathworks.com/matlabcentral/fileexchange/11837-fast-and-robust-curve-intersections
https://doi.org/10.1017/jfm.2023.88

	1 Introduction
	2 Experimental methods
	2.1 Experimental set-up
	2.2 Experimental procedure

	3 Linearized quasipotential fluid model
	3.1 Bath interface model
	3.2 Droplet interface model
	3.3 Pressure forcing during impact
	3.4 Modelling contact
	3.5 Summary
	3.6 Numerical methods

	4 Direct numerical simulation
	5 Results
	5.1 Comparison with experiment
	5.2 Inertio-capillary limit
	5.3 Influence of viscosity and gravity
	5.4 Scaling analysis
	5.5 Comparison with prior literature data

	6 Discussion
	A Appendix A. Influence of ambient gas properties
	B Appendix B. Influence of pressure shape function
	References

