A REMARK ABOUT A CERTAIN CLASS OF DISTRIBUTION SPACES

S. R. HARASYMIV

(Received 19 August 1968)

Communicated by J. B. Miller

1. Introduction

The object of this note is to exhibit a certain class of distribution spaces as being c-admissible in the sense of [1] and [2]. Throughout the terminology and notation are the same as in [1] and [2]. The only addition to this is that if $x \in \mathbb{R}^n$ then τ_x will denote the translation operator which carries each distribution u onto the distribution u_x .

2. c-admissibility of certain spaces

We shall prove the following result.

PROPOSITION. Let E be an admissible space which is barelled and B_r -complete, and which is a module over S with respect to convolution.

Consider the following two hypotheses:

- (i) E is translation-invariant and for each $u \in E$ the mapping $x \to u_x$ of R^n into E is bounded on compact subsets of R^n .
- (ii) **E** is dilation-invariant and for each $u \in E$ the mapping $x \to u^x$ of $R^{\#}$ into **E** is bounded on compact subsets of $R^{\#}$

Then the conclusions are:

- (a) If (i) holds then **E** is c-admissible.
- (b) If both (i) and (ii) hold then E is a dilation space.

PROOF. We shall begin with the proof of assertion (a). Thus we assume that (i) holds.

Our first task is to show that for each $x \in R^n$ the mapping $u \to u_x$ of E into itself is continuous. Since E is both barrelled and B_r -complete, the closed graph theorem (Theorem 8.9.4 in Edwards [3] and the first Remark following it) tells us that it is sufficient to show that the linear operator τ_x (considered as a mapping of E into itself) has a closed graph. To this end

we assume that $x \in \mathbb{R}^n$ is fixed, and that (u_i) is a net in E such that $\lim_i u_i = u$ in E and $\lim_i \tau_x u_i = w$ in E. Then for each $\phi \in S$ it follows (because of relation (2.1) in [1]) that

$$w * \phi(0) = \lim_{i} (\tau_x u_i) * \phi(0)$$

$$= \lim_{i} u_i * \phi_x(0)$$

$$= u * \phi_x(0)$$

$$= (\tau_x u) * \phi(0).$$

Thus $w = \tau_x u$ and the graph of τ_x is indeed closed.

Our second requirement is to show that for each $u \in E$ and each $v \in E'$ the mapping $x \to \langle u_x, v \rangle$ defines a continuous function on R^n . With this end in mind, let $b \in R^n$ be arbitrary but fixed. Let K be the set $\{x \in R^n : |x-b| \le 1\}$ and consider the set $\{\tau_x : x \in K\}$ of continuous linear mappings of E into itself. Write E_0 for the set of all $u \in E$ for which $\lim_{x \to b} \tau_x u$ exists in E and define the mapping T of E_0 into E by $Tu = \lim_{x \to b} \tau_x u (u \in E_0)$. We notice that for each fixed $\phi \in S$, the mapping $x \in R^n \to \phi_x \in S \to \phi_x \in E$ is continuous; and hence that

(2.1)
$$\lim_{x \to b} \tau_x \phi = \tau_b \phi \text{ in } E.$$

It follows from this that E_0 contains S, which is dense in E. Secondly, our assumption that (i) holds entails that the set $\{\tau_x : x \in K\}$ of continuous linear mappings is bounded at each point of E. Thus, since E is B_r -complete and hence quasi-complete, we may refer to Corollary 7.1.4 in Edwards [3] and deduce that $E_0 = E$ and that T is a continuous linear mapping of E into itself. But relation (2.1) shows that T coincides with the continuous linear mapping τ_b on the dense vector subspace S of E; whence it follows that the two mappings are identical. Thus $\lim_{x\to b} \tau_x u = \tau_b u$ for each $u \in E$. Since $b \in R^n$ is arbitrary, we now infer that for each $u \in E$, the mapping $x \to u_x$ is continuous from R^n into E. It follows immediately that for each $u \in E$ and each $v \in E'$, the mapping $x \to \langle u_x, v \rangle$ defines a continuous function on R^n , which is what we wished to prove.

Next consider a fixed $\phi \in S$. We claim that the mapping $u \to u * \phi$ of E into itself is continuous. To verify this assertion, it is sufficient to show that the graph of this mapping is closed; the desired conclusion will then follow from the closed graph theorem. Thus let (u_i) be a net in E such that $\lim_i u_i = w$ in E and $\lim_i u_i * \phi = w$ in E. Then for each $\psi \in S$ we have $w * \psi(0) = \lim_i u_i * \phi * \psi(0) = u * \phi * \psi(0)$. Hence $w = u * \phi$ and the mapping $u \in E \to u * \phi \in E$ is closed, as required.

If we recall that S is barrelled, then a similar argument shows that for each $u \in E$, the mapping $\phi \to u * \phi$ of S into E is continuous.

We shall now complete the proof of part (a) of the Proposition. Let $u \in E$ and $v \in E'$ be arbitrary but fixed. We must show that the continuous function $x \to \langle u_x, v \rangle$ $(x \in R^n)$ generates a temperate distribution on R^n . In view of the last paragraph, the mapping $\phi \to \langle u * \phi, v \rangle$ $(\phi \in S)$ defines a temperate distribution, which we denote by s. We shall show that the function $x \to \langle u_x, v \rangle$ $(x \in R^n)$ generates precisely this distribution s. To do this it is sufficient to show that for each $w \in D$

(2.2)
$$\int_{\mathbb{R}^n} \langle u_x, v \rangle \psi(-x) dx = s * \psi(0).$$

Let $\psi \in \mathbf{D}$ be arbitrary. Choose a net (ϕ_i) in \mathbf{S} such that $\lim_i \phi_i = u$ in \mathbf{E} . We notice that, because of Theorem 2.2(a) in [1] and the continuity of the functions $x \to \langle u_x, v \rangle$ on \mathbb{R}^n , the mapping $x \to v_x$ is continuous from \mathbb{R}^n into \mathbf{E}' for the weak topology on \mathbf{E}' . Therefore the set $\{v_x : x \in \text{supp } \psi\}$ is a weakly compact, hence weakly bounded, hence equicontinuous (because \mathbf{E} is barrelled) subset of \mathbf{E}' . In view of this we conclude that

$$\lim_{i} \phi_{i} * v(x) = \lim_{i} \langle \phi_{i}, v_{x} \rangle = \langle u, v_{x} \rangle = \langle u_{x}, v \rangle$$

uniformly for $x \in \text{supp } \psi$. It follows that

(2.3)
$$\int_{\mathbb{R}^n} \langle u_x, v \rangle \psi(-x) dx = \lim_i \int_{\mathbb{R}^n} \phi_i * v(x) \psi(-x) dx$$
$$= \lim_i \phi_i * \psi * v(0)$$
$$= \lim_i \langle \phi_i * \psi, v \rangle.$$

Now we have shown above that the mapping $w \in E \rightarrow w * \psi \in E$ is continuous. Therefore

(2.4)
$$\lim_{i}\langle \phi_{i} * \psi, v \rangle = \langle u * \psi, v \rangle = s * \psi(0).$$

Relations (2.3) and (2.4) together ensure that (2.2) holds; whence we infer that the function $x \to \langle u_x, v \rangle$ can indeed be identified with a temperate distribution on R^n . Since $u \in E$ and $v \in E'$ were arbitrary, this completes the proof of (a).

The validity of part (b) of the Proposition will be established if we can show that (ii) entails that the mapping $x \to u^x$ of $R^{\#}$ into E and the mapping $u \to u^x$ of E into itself are both continuous (for the given topology on E); and the truth of this may be verified by using arguments analogous to those which we employed above to establish the continuity of the mappings $x \to u_x$ of R^n into E and $u \to u_x$ of E into itself.

References

[1] S. R. Harasymiv, 'On Approximation by dilations of distributions', Pacific J. Math. 28 (1969), 363-374.

- [2] S. R. Harasymiv, 'A note on approximation of distributions by quasi-analytic functions', J. Aust. Math. Soc. 10 (1969), 95—105.
 [3] R. E. Edwards, Functional Analysis: Theory and Applications (Holt, Rinehart and Win-
- ston, New York, 1965).

Department of Mathematics University of Connecticut