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1. Introduction

The object of this note is to exhibit a certain class of distribution spaces
as being c-admissible in the sense of [1] and [2]. Throughout the terminology
and notation are the same as in [1] and [2]. The only addition to this is
that if z € R® then 7, will denote the translation operator which carries
each distribution # onto the distribution u«,.

2. c-admissibility of certain spaces

We shall prove the following result.

ProprosITION. Let E be an admissible space which is barelled and B,-
complete, and which is a module over S with respect to convolution.
Consider the following two hypotheses:

(i) E is translation-invariant and for each u € E the mapping x — u, of
R™ into E is bounded on compact subsets of R™.

(i) E s dilation-invariant and for each w € E the mapping x —» u® of
R# into E is bounded on compact subsets of R¥*

Then the conclusions are:

(a) If (i) holds then E is c-admissible.
(b) If both (i) and (ii) hold then E is a dilation space.

Proor. We shall begin with the proof of assertion (a). Thus we assume
that (i) holds.

Our first task is to show that for each € R® the mapping % — u, of E
into itself is continuous. Since E is both barrelled and B,-complete, the
closed graph theorem (Theorem 8.9.4 in Edwards [3] and the first Remark
following it) tells us that it is sufficient to show that the linear operator 7,
(considered as a mapping of E into itself) has a closed graph. To this end
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we assume that x e R” is fixed, and that («,) is a net in E such that
lim#, =% in E and lim 7t 4, = w in E. Then for each ¢ € S it follows
(because of relation (2.1) in [1]) that

w # $(0) = lim, (z,u,) * $(0)
= lim, %, * $,(0)
= u * $,(0)
= (,4) * $(0).

Thus w = 7,4 and the graph of 7, is indeed closed.

Our second requirement is to show that for each » € E and each v € E’
the mapping # — {u,, v) defines a continuous function on R". With this
end in mind, let be R* be arbitrary but fixed. Let K be the set
{x € R*: |x—b| < 1} and consider the set {r, : # € K} of continuous linear
mappings of E into itself. Write E, for the set of all » e E for which
lim,,7,# exists in E and define the mapping T of E; into E by
Tu=1lim,,,v,4(u € E;). We notice that for each fixed ¢ € S, the mapping
ze R* > ¢, eS8 — ¢, € E is continuous; and hence that

2.1 lim t,¢ = 1,4 in E.
-2 b

It follows from this that E, contains S, which is dense in E. Secondly, our
assumption that (i) holds entails that the set {r,:2 €K} of continuous
linear mappings is bounded at each point of E. Thus, since E is B,-complete
and hence quasi-complete, we may refer to Corollary 7.1.4 in Edwards 3]
and deduce that E, = E and that T is a continuous linear mapping of E
into itself. But relation (2.1) shows that T coincides with the continuous
linear mapping 7, on the dense vector subspace S of E; whence it follows
that the two mappings are identical. Thus lim,_,,7,# = 7,u for each u € E.
Since b € R™ is arbitrary, we now infer that for each # € E, the mapping
x — u, is continuous from R" into E. It follows immediately that for each
ue E and each ve E’, the mapping z — {#,, v> defines a continuous
function on R", which is what we wished to prove.

Next consider a fixed ¢ € S. We claim that the mapping # — u * ¢ of E
into itself is continuous. To verify this assertion, it is sufficient to show that
the graph of this mapping is closed; the desired conclusion will then follow
from the closed graph theorem. Thus let (#;,) be a net in E such that
lim,#, = w in E and lim,u, * = w in E. Then for each » € S we have
w*p(0) = lim;u, * ¢ *+ p(0) = 4 % ¢ + p(0). Hence w =u=x¢ and the
mapping # € E — u % ¢ € E is closed, as required.

If we recall that S is barrelled, then a similar argument shows that for
each # € E, the mapping ¢ — u % ¢ of S into E is continuous.
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We shall now complete the proof of part (a) of the Proposition. Let
u € E and v € E’ be arbitrary but fixed. We must show that the continuous
function x — {#,, v> (v € R*) generates a temperate distribution on R™
In view of the last paragraph, the mapping ¢ — <{u = ¢, v> (¢ € S) defines
a temperate distribution, which we denote by s. We shall show that the
function z — <{u,, v> (r € R*) generates precisely this distribution s. To do
this it is sufficient to show that for each w e D

(2.2) f Sty VOW(—2)dx = 5 % p(0).

Let w e D be arbitrary. Choose a net {¢,) in S such that lim;¢, = » in E.
We notice that, because of Theorem 2.2(a) in [1] and the continuity of the
functions  — {#,, v> on R*, the mapping ¥ — v, is continuous from K"
into E’ for the weak topology on E’. Therefore the set {v,:x e supp y}
is a. weakly compact, hence weakly bounded. hence equicontinuous (because
E is barrelled) subset of E'. In view of this we conclude that

Hmi¢i * v(x) = hm1<¢zr vz> = <%, vm> = <u’a;) ’l)>

uniformly for z e supp w. It follows that

(2.3) . o, vYW(—x)dx = lim, fRﬂ ¢, * v(x)p(—2x)dz
= lim, ¢, * v * v(0)
= lim,{¢, * y, v).

Now we have shown above that the mapping we E - w =y € E is con-
tinuous. Therefore

(2.4) lim{¢; #=p, v> = (uxp, v> =5 =*yp(0).

Relations (2.3) and (2.4) together ensure that (2.2) holds; whence we infer
that the function # — {u,, v> can indeed be identified with a temperate
distribution on R”. Since # € E and v e E' were arbitrary, this completes
the proof of (a).

“The validity of part (b) of the Proposition will be established if we can
show that (ii) entails that the mapping x — #* of R# into E and the
mapping # — u® of E into itself are both continuous (for the given topology
on E); and the truth of this may be verified by using arguments analogous
to those which we employed above to establish the continuity of the
mappings ¥ — u, of R™ into E and # — u, of E into itself.
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