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On the Canonical Solution of the
Sturm–Liouville Problem with Singularity
and Turning Point of Even Order

A. Neamaty and S. Mosazadeh

Abstract. In this paper, we are going to investigate the canonical property of solutions of systems of

differential equations having a singularity and turning point of even order. First, by a replacement, we

transform the system to the Sturm–Liouville equation with turning point. Using of the asymptotic es-

timates provided by Eberhard, Freiling, and Schneider for a special fundamental system of solutions of

the Sturm–Liouville equation, we study the infinite product representation of solutions of the systems.

Then we transform the Sturm–Liouville equation with turning point to the equation with singularity,

then we study the asymptotic behavior of its solutions. Such representations are relevant to the inverse

spectral problem.

1 Introduction

We consider the following system of differential equations

(1.1)
dy

dt
= iρ

1

R1(t)
x,

dx

dt
=

(
iρR2(t) +

p(t)

iρR1(t)

)
y, t ∈ [0, 1],

with initial conditions x(0, ρ) = 0, y(0, ρ) = 1, where ρ is the spectral parameter,

R1, R2 and p(t) are bounded and integrable in I = [0, 1], and R2(t) has one zero

inside the interval I of even order.

System (1.1) is a canonical form for many problems in natural sciences. For ex-

ample, for a wide class of problems describing the propagation of electromagnetic

waves in a stratified medium, Maxwell’s equations can be reduced to the canonical

form (1.1) (see [20]). System (1.1) often appears in optics, spectroscopy, and acous-

tic problems. System (1.1) also appears for the design of directional couplers for

heterogeneous electronic lines, which constitutes one of the important classes of ra-

dio physical synthesis problems (see [16, 20]). Some aspects of synthesis problems

for system (1.1) with R1 = R2 = R > 0 were studied in [14] and other works. In-

verse problems for system (1.1) with the initial conditions x(0, ρ) = 1, y(0, ρ) = −1

and with R > 0 were studied in [5, 6]. In [18], the authors studied the eigenvalues

and derived a formula for the asymptotic distribution of the eigenvalues in the case

when the system (1.1) has arbitrary order singularities and turning points inside the

interval [0,T].
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The importance of asymptotic analysis in obtaining information on the solution

of a Sturm–Liouville equation with multiple turning points was realized by Olver [19]

and Eberhard, Freiling, and Schneider [3]. Also, the inverse problems for Sturm–

Liouville equations with turning points were studied by Freiling and Yurko in [6].

In [4], the asymptotic estimates for a special fundamental system of solutions of

the corresponding differential equation studied by Eberhard, Freiling, and Wilchen,

and determined the asymptotic distribution of the eigenvalues with several Singu-

larities or/and turning points inside the interval [0,1]. The results of Kazarinoff

[10], Langer [12], Olver [19] and Neamaty [17] bring important innovations to the

asymptotic approximation of solution of Sturm–Liouville equations with two turn-

ing points. Also in [11], the infinite product representation of solution of the equa-

tion with one turning point of odd order was obtained. In [15], the infinite prod-

uct representation of solutions of Sturm–Liouville equations with a finite number of

turning points was derived.

It is necessary to point out that applying asymptotic solutions for studying inverse

problem in turning points cases is more complicated and impractical. Especially in

deriving the asymptotic formulas, one should apply the Bessel function type. In ad-

dition, a more difficult and challenging task is shaping the asymptotic behavior of the

solutions and corresponding eigenvalues. So the inverse problem of reconstructing

the potential function from the given spectral information and corresponding dual

equation cannot be studied by using the asymptotic forms. In fact, one cannot gen-

erally express the exact solution in closed form using asymptotic methods. Indeed,

the closed form of the solution is needed in methods connected with dual equations.

The representing solution of the infinite product form plays an important role in in-

vestigating the corresponding dual equations. We mention that some aspects of the

inverse problem with a singularity were studied in [21]. Also some aspects of the

inverse problem with turning points were studied in [9] as well as in other works

connected with ideas of the dual equation method.

In the previous article ([11]), the authors considered the following Sturm–Liou-

ville equation

(1.2) y ′ ′ + (λφ2(z) − q(z))y = 0, 0 ≤ z ≤ 1.

It is assumed that q(z) is a real function that is Lebesgue integrable on the interval

[0, 1], λ = ρ2 is the spectral parameter, and

φ2(z) = (z − z1)4m+1φ0(z),

where 0 < z1 < 1, m ∈ N, φ0 > 0, for z ∈ [0, 1], φ0 is a twice continuously

differentiable on [0, 1], and φ2(z) has one zero in [0, 1], the so called turning point.

The infinite product form of solution y(z, λ) for (1.2) with initial condition y(0, λ) =

0,
∂y
∂z

(0, λ) = 1 is of the form

y(z, λ) =





1
2
|φ(0)φ(z)|−1

2 p(z)
∏

n≥1
(λ−λn(z))

ζ2
n

, 0 ≤ z < z1,
1
2

csc( πµ
2

)|φ(0)φ(z)|−1
2 π( f (z)p(z1))

1
2

×∏
n≥1

(λ−rn(z))p2(z1)
ej2

n

∏
n≥1

(ern(z)−λ) f 2(z)
ej2

n

, z1 < z ≤ 1,
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where the sequence {rn(z)}n≥1 represents the sequence of negative eigenvalues and

{r̃n(z)}n≥1 the sequence of positive eigenvalues of the Dirichlet problem associated

with (1.2) on [0, z], for each z in (0, z1]. The sequence {λn(z)}n≥1, for each fixed z,

0 < z ≤ z1, represents the sequence of negative eigenvalues of the Dirichlet problem

for equation (1.2) on the closed interval [0, z], where

p(z) =

∫ z

0

|φ(ζ)|dζ, 0 ≤ z < z1,

f (z) =

∫ z

z1

|φ(ζ)|dζ, z1 < z ≤ 1,

ζn(z) =
nπ

p(z)
,

and j̃n, n = 1, 2, . . . , are the positive zeros of J ′1(z), respectively.

In this paper, we first transform (1.1) to the Sturm–Liouville equation with turn-

ing point of even order, then we define a fundamental system of solutions (FSS) of

equation when |ρ| → ∞ (see Section 2). Using these asymptotic solutions we derive

a formula for the asymptotic distribution of the eigenvalues (in Section 4); further,

we obtain the infinite product representation of solutions (see Section 5). In Section

6, by a replacement, we transform the Sturm–Liouville equation with turning point

to an equation with singularity and we determine the asymptotic behavior of the so-

lution. Also, using the infinite representation of solutions of Section 5, we obtain

the canonical representation of solutions of equation with singularity (see Section

7). Therefore, we define singularity’s and turning’s relation by upper replacements.

The other missing cases will be treated in a future paper as they require different

techniques.

2 Notations and Preliminary Results

Let us consider the system of differential equations (1.1), where the function R1(t) =

A1 > 0 is a constant function and

R2(t) = A2(t − t1)4ℓ,

where the coefficient A2 is a positive constant, ℓ ∈ N and t1 ∈ (0, 1).

System (1.1), after the elimination of x, reduces to the linear second-order Sturm–

Liouville equation,

(2.1) −y ′ ′ + p(t)y = λφ2(t)y,

with initial conditions

y(0, ρ) = 1, y ′(0, ρ) = 0,

where λ = ρ2 is a real parameter and φ2(t) =
A2

A1
(t − t1)4ℓ, has one zero t1 in (0, 1),

the so called turning point. In the terminology of [3], t1 is of Type II.
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Notations 2.1 (i) We introduce

µ :=
1

4ℓ + 2
, [1] := 1 + O

( 1

ρ

)
, as ρ → ∞.

(ii) For k ∈ Z we consider the sectors

Sk :=
{

ρ | kπ

4
≤ arg ρ ≤ (k + 1)π

4

}
.

Now let C(t, λ) be the solution of (2.1) corresponding to the initial conditions

C(0, λ) = 1,C ′(0, λ) = 0. In order to represent the solution C(t, λ) as an infinite

product we use a suitable fundamental system of solutions (FSS) for equation (2.1)

as constructed in [3].

According to the type of t1 we know from [3, Theorem 3.2] that an FSS of (2.1)

{w1(t, ρ), w2(t, ρ)} exists in the sector S−1 and that

(2.2) w1(t, ρ) =





φ− 1
2 (t) e

iρ
R

t
t1

φ(ζ)dζ
[1], 0 ≤ t < t1,

csc πµ φ− 1
2 (t) { e

iρ
R

t
t1

φ(ζ)dζ
[1] + i cos πµ e

−iρ
R

t
t1

φ(ζ)dζ
[1] }, t1 < t ≤ 1,

(2.3)

w2(t, ρ) =





φ− 1
2 (t){e

−iρ
R

t
t1

φ(ζ)dζ
[1] + i cos πµ e

iρ
R

t
t1

φ(ζ)dζ
[1]}, 0 ≤ t < t1,

sin πµ φ− 1
2 (t) e

−iρ
R

t
t1

φ(ζ)dζ
[1], t1 < t ≤ 1.

This leads to the following:

(2.4)

w ′
1(t, ρ) =





iρφ
1
2 (t) e

iρ
R

t
t1

φ(ζ)dζ
[1], 0 ≤ t < t1,

ρ csc πµ φ
1
2 (t) {ie

iρ
R

t
t1

φ(ζ)dζ
[1] + cos πµ e

−iρ
R

t
t1

φ(ζ)dζ
[1]}, t1 < t ≤ 1,

(2.5)

w ′
2(t, ρ) =





ρφ
1
2 (t) {−ie

−iρ
R

t
t1

φ(ζ)dζ
[1] − cos πµ e

iρ
R

t
t1

φ(ζ)dζ
[1]}, 0 ≤ t < t1,

−iρ sin πµ φ
1
2 (t) e

−iρ
R

t
t1

φ(ζ)dζ
[1], t1 < t ≤ 1.

We also need {w1(t1, λ), w2(t1, λ)}. Similarly, for t = t1 from [3] we have

w1(t1, ρ) =

√
2π

2
ρ

1
2
−µ csc πµ{eiπ( 1

4
− µ

2
) u1(t1, ρ)[1] + eiπ( 1

4
+ µ

2
) u2(t1, ρ)[1]},

w2(t1, ρ) =

√
2π

2
ρ

1
2
−µ{eiπ( 1

4
− µ

2
) u1(t1, ρ)[1] − eiπ( 1

4
+ µ

2
) u2(t1, ρ)[1]},
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where

u1(t1, ρ) =
2µ ψ(t1)

Γ(1 − µ)
, u2(t1, ρ) = 0,

where ψ(t1) = limt→t1
φ
−1

2 (t){
∫ t

t1
φ(ζ)dζ} 1

2
−µ.

Consequently

w1(t1, ρ) =

√
2π

2
ρ

1
2
−µ csc πµ eiπ( 1

4
− µ

2
) 2µ ψ(t1)

Γ(1 − µ)
[1],(2.6)

w2(t1, ρ) =

√
2π

2
ρ

1
2
−µ eiπ( 1

4
− µ

2
) 2µ ψ(t1)

Γ(1 − µ)
[1].(2.7)

It follows that the wronskian of FSS satisfies

W (ρ) ≡ W (w1(t, ρ), w2(t, ρ)) = −2iρ[1], as ρ → ∞.

3 Asymptotic Form of the Solution

We consider the differential equation (2.1) with the following conditions:

C(0, λ) = 1, C ′(0, λ) = 0.

Applying the FSS {w1(t, ρ), w2(t, ρ)} for t ∈ [0, 1], we have

C(t, ρ) = c1w1(t, ρ) + c2w2(t, ρ),

and using of Cramer’s rule leads to the equation

(3.1) C(t, ρ) =
1

W (ρ)
(w ′

2(0, ρ)w1(t, ρ) − w ′
1(0, ρ)w2(t, ρ)),

where

W (ρ) = W (w1, w2) = −2iρ[1].

Taking (2.2)–(2.5) into account we derive

(3.2) C(t, ρ) =

{
φ

1
2 (0)φ− 1

2 (t) {cosh(iρ
∫ t

0
φ(ζ)dζ) + O( 1

ρ
)}, 0 ≤ t < t1,

1
2
φ

1
2 (0)φ− 1

2 (t) {M1(ρ) e
iρ

R

t
t1

φ(ζ)dζ
[1] + M2(ρ) e

−iρ
R

t
t1

φ(ζ)dζ
[1] }, t1 < t ≤ 1,

where

(3.3)

{
M1(ρ) = csc πµ eiρ

R t1
0 φ(ζ)dζ − i cot πµ e−iρ

R t1
0 φ(ζ)dζ ,

M2(ρ) = i cot πµ eiρ
R t1

0 φ(ζ)dζ + csc πµ e−iρ
R t1

0 φ(ζ)dζ .
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By virtue of (3.2) and (3.3), the following estimates are also valid:

(3.4) C(t, ρ) =

{
1
2
φ

1
2 (0)φ− 1

2 (t) eiρ
R

t
0
|φ(ζ)|dζEk(t, ρ), 0 ≤ t < t1,

1
2

csc πµ φ
1
2 (0)φ− 1

2 (t) eiρ
R

t
0
|φ(ζ)|dζEk(t, ρ), t1 < t ≤ 1,

where

Ek(t, ρ) =

ν(t)∑

n=1

eραkβkn(t)bkn(t),

and

α−2 = α1 = −1 , α0 = −α−1 = i,

βkν(t) 6 = 0, 0 < δ ≤ βk1(t) < βk2(t) < · · · ≤ βkν(t)(t) ≤ 2R+(1),

where the integer-valued functions ν and bkn are constant in every interval [0, t1 − ε]

and [t1 + ε, 1] for ε sufficiently small, and

(3.5) R+(t) =

∫ t

0

√
max{0, φ2(ζ)} dζ.

Similarly, by using (2.6), (2.7), and (3.1) for t = t1 we find that

(3.6) C(t1, ρ) =

√
2πφ

1
2 (0)ρ

1
2
−µ eiπ( 1

4
− µ

2
) 2µψ(t1) csc πµ

4Γ(1 − µ)
eiρ

R t1
0 φ(ζ)dζ Ek(t1, ρ).

In addition, differentiating (3.2) we calculate

C ′(t, ρ) =





iρ(φ(0)φ(t))
1
2 {sinh(iρ

∫ t

0
φ(ζ)dζ) + O( 1

ρσ0
)}, 0 ≤ t < t1,

1
2
iρ(φ(0)φ(t))

1
2

×{M1(ρ) e
iρ

R

t
t1

φ(ζ)dζ
[1] − M2(ρ) e

−iρ
R

t
t1

φ(ζ)dζ
[1] }, t1 < t ≤ 1.

Thus, we deduce the following theorem:

Theorem 3.1 Let C(t, ρ) be the solution of (2.1) under the initial conditions

(0, λ) = 1, C ′(0, λ) = 0, then the following estimates hold:

C(t, ρ) =
1

2
{csc πµ}νφ

1
2 (0)φ− 1

2 (t) eiρ
R

t
0

φ(ζ)dζEk(t, ρ), t ∈ Dν , ν = 0, 1,

where D0 = [0, t1) and D1 = (t1, 1], also

C(t1, ρ) =

√
2πφ

1
2 (0)ρ

1
2
−µ eiπ( 1

4
− µ

2
) 2µψ(t1) csc πµ

4Γ(1 − µ)
eiρ

R t1
0 φ(ζ)dζ Ek(t1, ρ).
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4 Distribution of the Eigenvalues

We consider the boundary value problem L1 = L1(p(t), φ2(t), s) for equation (2.1)

with boundary condition

y(0, λ) = 1, y ′(0, λ) = 0, y(s, λ) = 0.

The boundary value problem L1 for s ∈ (0, 1)\{t1} has a countable set of positive

eigenvalues {λn(s)}n≥1. From (3.4), we have the following asymptotic distribution

for each {λn(s)}:

(4.1)
√

λn(s) =
nπ − π

2∫ s

0
φ(ζ)dζ

+ O
( 1

n

)
.

Similarly, according to (3.6), the spectrum {λn}n≥1 of boundary value problem L1

for s = t1 consists of positive eigenvalues

√
λn(t1) =

nπ + ( πµ
2
− 3π

4
)

∫ t1

0
φ(ζ)dζ

+ O
( 1

n

)
.

5 Main Results

Since the solution C(t, ρ) of the Sturm–Liouville equation defined by a fixed set of

initial conditions is an entire function of ρ for each fixed t ∈ [0, 1], it follows from

the classical Hadamard’s factorization theorem (see [13, p. 24]) that such a solution

is expressible as an infinite product.

For fixed s ∈ (0, 1)\{t1} by Halvorsen’s result [7], C(s, ρ) is an entire function of

order 1
2
. Therefore, we can use Hadamard’s theorem to represent the solution in the

form

C(s, λ) = h(s)
∏

n≥1

(
1 − λ

λn(s)

)
,

where h(s) is a function independent of λ but may depend on s and the infinite num-

ber of positive eigenvalues, {λn(s)}∞n=1 form the zero set of C(s, λ) for each s. Let

ζn, n ≥ 1, be the sequence of positive zeros of J ′1
2

(t). Then (see [1, § 9.5.11])

ζ2
n

R2
+(t)λn(t)

= 1 + O
( 1

n2

)
.

Consequently, the infinite product
∏

n≥1
ζ2

n

R2
+(t)λn(t)

is absolutely convergent for each

s ∈ (0, 1)\{t1}. Therefore we have that

(5.1) C(s, λ) = h(s)
∏

n≥1

(1 − λ

λn(s)
) = h1(s)

∏
n≥1

(λn(t) − λ)R2
+(t)

ζ2
n

,

with h1(s) := h(s)
∏

n≥1
ζ2

n

R2
+(s)λn(s)

.
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Theorem 5.1 Let C(t, λ) be the solution of (2.1) satisfying the initial conditions

C(0, λ) = 1 ,C ′(0, λ) = 0. Then for t ∈ Bν , ν = 0, 1,

C(t, λ) =
1

2
{csc πµ}ν φ

1
2 (0)φ− 1

2 (t)
∏

n≥1

(λn(t) − λ)R2
+(t)

ζ2
n

,

where B0 = (0, t1), B1 = (t1, 1), R+(t) =
∫ t

0

√
max{0, φ2(s)} ds, ζn, n ≥ 1, is the

sequence of positive zeros of J ′1
2

, the sequence λn(t), n ≥ 1, represents the sequence of

positive eigenvalues of the boundary value problem L1 on [0, t].

Proof Let λn(s) be the eigenvalues of the boundary value problem L1 on [0, s], for

fixed s = t, t ∈ Bν . Then according to [1, §9.5.11, §10.1.1, §10.1.11] we have

∏

n≥1

(λn(t) − λ)R2
+(t)

ζ2
n

= 2 cos(
√

λR+(t))[1],

as λ → ∞. Thus from (3.4) and (5.1), we obtain

h1(t) =
C(t, λ)

∏
n≥1

(λn(t)−λ)R2
+(t)

ζ2
n

=
1

2
{csc πµ}ν φ

1
2 (0)φ− 1

2 (t).

We can proceed similarly for s = t1, using Hadamard’s theorem to obtain

C(t1, λ) = A
∏

n≥1

(
1 − λ

λn(t1)

)
,

where A is constant. Let jn, n ≥ 1, be the sequence of positive zeros of J ′µ, then (see

[1, § 9.5.11] )
j2
n

R2
+(t1)λn(t1)

= 1 + O
( 1

n2

)
,

and so the infinite product
∏ j2

n

R2
+(t1)λn(t1)

= 1 + O( 1
n2 ) is absolutely convergent. Con-

sequently we may write as before,

(5.2) C(t1, λ) = A1

∏
n≥1

(λn(t1) − λ)R2
+(t1)

j2
n

,

where A1 = A
∏ j2

n

R2
+(t1)λn(t1)

.

Theorem 5.2 For s = t1,

C(t1, λ) =
1

2
φ

1
2 (0)R

µ− 1
2

+ (t1)ψ(t1)
∏

n≥1

(λn(t1) − λ)R2
+(t1)

j2
n

,

where R+(t) =
∫ t

0

√
max{0, φ2(s)} ds, jn, n = 1, 2, . . . , is the sequence of positive

zeros of J ′µ. The sequence λn(t1) represents the sequence of positive eigenvalues of the

boundary value problem L1 on [0, t1] and ψ(t1) = limt→t1
φ
−1

2 (t){
∫ t

t1
φ(s)ds} 1

2
−µ.
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Proof According to [7] the infinite product

∏
n≥1

(λn(t1) − λ)R2
+(t1)

j2
n

,

is an entire function of λ, whose roots are precisely λn(t1), n ≥ 1. From [1, §9.2.11]

we have

J ′µ(z) =

√
2π

z
{ −R(µ, z) sin χ − S(µ, z) cos χ } ,

where ν is fixed and

χ = z − (
µ

2
+

1

4
)π,

R(µ, z) ∼
∞∑

k=0

(−1)k 4µ2 + 16k2 − 1

4µ2 − (4k + 1)2

{
(µ, 2k)

(2z)2k

}

= 1 − (α − 1)(α + 15)

2!(8z)2
+ · · · ,

S(µ, z) ∼
∞∑

k=0

(−1)k 4µ2 + 4(2k + 1)2 − 1

4µ2 − (4k + 1)2

{
(µ, 2k)

(2z)2k+1

}

=
α + 3

8z
− (α − 1)(α − 9)(α + 35)

3!(8z)3
+ · · · ,

as |z| → ∞, where α = 4µ2. Now, by inserting z = R+(t1)
√

λ, and from [1, § 9.5.11],

we get

∏
n≥1

(λn(t1) − λ)R2
+(t1)

j2
n

=

√
2

π
Γ(µ){R+(t1)

√
λ} 1

2
−µ 2µ cos

(
R+(t1)

√
λ +

π

4
− πµ

2

)(
1 + O(

1√
λ

)
)

,

Thus it follows from (3.6) and (5.2):

A1 =
C(t1, λ)

∏
n≥1

(λn(t1)−λ)R2
+(t1)

j2
n

=
1

2
φ

1
2 (0)R

µ− 1
2

+ (t1)ψ(t1).

6 Solution of Differential Equations with Singularity

In this section we transform (2.1) by a replacement to the differential equation with

a singular point, and we study the asymptotic behavior of the solutions.

Denote T =
∫ 1

0
φ(ζ)dζ.
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We transform (2.1) by means of the replacement

(6.1) z =

∫ t

0

φ(ζ)dζ, u(z) = φ
1
2 (t)y(t)

to the differential equation

(6.2) −u ′ ′(z) + q(z)u(z) = λu(z), z ∈ [0, T],

with initial conditions

(6.3) u(0, λ) = r1, u ′(0, λ) = r2,

where r1 = φ
1
2 (0), r2 =

1
2
φ
−3

2 (0)φ ′(0), and q(z) has quadratic singularity in the

interval (0, T) and has the form:

q(z) =
F

(z − z1)2
+ q0(z),

where F = µ2 − 1
4
, µ =

1
4ℓ+2

and z1 =
∫ t1

0
φ(ζ)dζ . We also assume that

q0(z)(z − z1)1−2µ ∈ L(0, T).

Since the solutions of equation (6.2) have singularity at z = z1, therefore, in general,

the values of the solutions and their derivatives at z = z1 are not defined.

Remark 6.1 In [21], fundamental system of solutions {Sk(z, λ)}, k = 1, 2, of equa-

tion (6.2) were constructed with the following properties:

(i) For each fixed z ∈ [0, T], the functions S(ν)
k (z, λ), ν = 0, 1, are entire in λ of

order 1
2
.

(ii) Denote µk = (−1)kµ + 1
2
, k = 1, 2. Then

Sk(z, λ) ≤ C|ρ(z − z1)µk |,

for |ρ(z − z1)| ≤ 1, where C is a positive constant in estimate not depending on

z and ρ.

(iii) The following relation holds

< S1(z, λ), S2(z, λ) >≡ 1,

where < y(z), y ˜(z) >:= y(z) ỹ ′(z) − y ′(z) ỹ(z) is the wronskian of y and ỹ.

Let ω0 = [0, z1), ω1 = (z1, T], from [2] for z ∈ ω0 ∪ ω1,

Sk(z, λ) = (z − z1)µk

∞∑

m=0

Skm(ρ(z − z1))2m, k = 1, 2,
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where

S10S20 = (2µ)−1, Skm = (−1)mSk0

( m∏
s=1

(
(2s + µk)(2s + µk − 1) − F

))−1

.

Denote

ϕk(z, λ) = (−1)k−1(S(2−k)
2 (0, λ)S1(z, λ) − S(2−k)

1 (0, λ)S2(z, λ)), k = 1, 2.

The functions ϕk(z, λ) are solutions of (6.2) and

(6.4) ϕ(m−1)
k (0, λ) = δk,m, k, m = 1, 2,

(δk,m is the Kronecker delta). Moreover,

< ϕ1(z, λ), ϕ2(z, λ) >= 1.

From [6], we have the following lemma.

Lemma 6.2 For (ρ, z) ∈ Ω := {(ρ, z) : |ρ(z − z1)| ≥ 1}, z ∈ ωs, s = 0, 1:

(6.5) ϕ(m−1)
k (z, λ) =

1

2
(iρ)m−k{exp(iρz)[1]γ + (−1)m−k exp(−iρz)[1]γ

+ (−1)k2si cos πµ exp(iρ(z − 2z1))[1]γ }, |ρ| → ∞, k, m = 1, 2,

where [1]γ = 1 + O((ρ(z − z1))−1).

Using the preceding results, from (6.3) and (6.4), we have

(6.6) u(z, ρ) = r1ϕ1(z, λ) + r2ϕ2(z, λ).

Now, from (6.5) and (6.6) we obtain the asymptotic solution of equation (6.2) in the

following theorem.

Theorem 6.3 For z ∈ ωs, s = 0, 1, (ρ, z) ∈ Ω, |ρ| → ∞, Imρ ≥ 0, m = 0, 1:

u(m)(z, ρ) =
1

2
(iρ)m−1(iρr1 + r2) exp(iρz)[1]γ

+
1

2
(−iρ)m−1(−iρr1 + r2) exp(−iρz)[1]γ

+ s(iρ)m−1(ρr1 + ir2) cos πµ exp
(

iρ(z − 2z1)
)

[1]γ .
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7 Canonical Product Representation of Solution

According to (6.1), the boundary value problem L1 = L1(p(t), φ2(t), s) defined by

equation (2.1) with boundary conditions y(0, λ) = 1, y ′(0, λ) = 0, y(s, λ) = 0,

transforms to the boundary value problem L2 = L2(q(z), b) with boundary condi-

tions

(7.1) u(0, λ) = r1, u ′(0, λ) = r2, u(b, λ) = 0,

where b =
∫ s

0
φ(ς)dς, s ∈ (0, , 1)\{t1}, r1 = φ

1
2 (0) and r2 =

1
2
φ
−3

2 (0)φ ′(0).

Thus, according to (4.1) and (6.1) for b ∈ (0, , T)\{z1}, the boundary value prob-

lem L2 has a countable set of positive eigenvalues {λ1n}n≥1:

(7.2)
√

λ1n(b) =
nπ − π

2

b
+ O

( 1

n

)
.

According to Remark 6.1, the solution u(z, ρ) of Sturm–Liouville equation (6.2) de-

fined by initial conditions (7.1) is an entire function of ρ for each fixed z ∈ [0, T].

Thus it follows from the Hadamard’s theorem (see [13, p. 24]) that such a solution is

expressible as an infinite product.

To complete the investigation of the last sections, we want to prove the following

theorem. Theorem 5.1 is a useful tool for the proof of this result.

Theorem 7.1 Let u(z, λ) be the solution of (6.2) satisfying the initial conditions

u(0, λ) = r1 , u ′(0, λ) = r2. Then for z ∈ Cν , ν = 0, 1,

(7.3) u(z, λ) =
1

2
r1 {csc πµ}ν

∏
n≥1

(λ1n(z) − λ)z2

ζ2
n

,

where C0 = (0, z1), C1 = (z1, T). The sequence λ1n(z), n ≥ 1, represents the sequence

of positive eigenvalues of the boundary value problem L1 on [0, z], and ζn, n = 1, 2, . . . ,

is the sequence of positive zeros of J ′1
2

.

Proof From (3.5) and (6.1) we obtain R+(t) = z. Thus, according to (6.1), (7.2),

r1 = φ
1
2 (0), and Theorem 5.1, we arrive at (7.3).

This completes the representation of the solution of (6.2) with initial conditions

(6.3) as an infinite product.
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