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SHARP TEST FOR EQUILIBRIUM
UNIQUENESS IN DISCRETE GAMES
WITH PRIVATE INFORMATION AND

COMMON KNOWLEDGE
UNOBSERVED HETEROGENEITY
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Université de Montréal

This paper proposes a test of the single equilibrium in the data assumption commonly
maintained when estimating static discrete games of incomplete information. By
allowing for discrete common knowledge payoff-relevant unobserved heterogeneity,
the test generalizes existing methods attributing all correlation between players’
decisions to multiple equilibria. It does not require the estimation of payoffs and is
therefore useful in empirical applications leveraging multiple equilibria to identify
the model’s primitives. The procedure boils down to testing the emptiness of the
set of data generating processes that can rationalize the sample through a single
equilibrium and a finite mixture over unobserved heterogeneity. Under verifiable
conditions, this testable implication is generically sufficient for degenerate equilib-
rium selection. The main identifying assumption is the existence of an observable
variable that plays the role of a proxy for the unobservable heterogeneity. Examples
of such proxies are provided based on empirical applications from the existing
literature.

1. INTRODUCTION

Economic models of strategic interactions among agents often admit multiple
equilibria. Multiplicity of equilibria in the model may be seen as an economic
problem and some equilibrium refinement can be used to determine which equilib-
rium or which equilibria should be considered. In empirical games, multiplicity of
equilibria in the data generating process is an econometric issue that must be taken
into account when trying to recover the model’s primitives. In fact, identification
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arguments available in the literature differ according to the assumptions maintained
on the number of equilibria realized in a given sample. Testing for a single
equilibrium being realized in the data, an assumption also stated as the equilibrium
selection mechanism being degenerate, is therefore desirable to guide applied
researchers toward an appropriate estimation approach. Furthermore, assumptions
on the number of equilibria realized in the data have different implications depend-
ing on the information structure of the game, i.e., whether the unobservables from
the econometrician’s point of view are private information or common knowledge
among players. It follows that tests allowing for both private information and
common knowledge unobservables may be preferable in practice.

This paper provides a test of the single equilibrium in the data assumption,
allowing for both private information and discrete common knowledge payoff-
relevant unobservables (henceforth unobserved heterogeneity, for short).1 Since
the null hypothesis of interest depends on unobserved heterogeneity, it cannot be
directly tested. The current paper derives sharp testable implications of this null
hypothesis. The identification argument is nonparametric: no parametric assump-
tions are needed for the payoff functions, nor the distribution of private information
shocks; but the distribution of common knowledge unobserved heterogeneity and
the equilibrium selection mechanism are assumed to have discrete supports. More
precisely, the observable joint distribution of players’ decisions can be written as a
finite mixture and partial identification results from Henry, Kitamura, and Salanié
(2014) are used to derive sharp bounds for the distributions defining this finite
mixture. Leveraging results from Kasahara and Shimotsu (2014), a degenerate
equilibrium selection mechanism imposes further restrictions on these distribu-
tions. The identified set constructed from all these restrictions being nonempty is
a testable implication of the null hypothesis of equilibrium uniqueness in the data
generating process. This paper also provides conditions under which this testable
implication is generically sufficient for degenerate equilibrium selection, i.e., the
set of data generating processes for which the testable implication fails to be suffi-
cient has Lebesgue measure zero. Moreover, the conditions defining the identified
set are such that one can test the hypothesis of discrete unobserved heterogeneity
separately from the equilibrium uniqueness assumption. The identification result
relies on the existence of an observable variable that can be interpreted as a proxy
for the common knowledge unobservable heterogeneity. It must (i) have sufficient
variation; (ii) be correlated with these common knowledge unobservables; and (iii)
provide only redundant information about players’ decisions and the equilibrium
selection if such unobservables were actually observed. The test is implemented
through Chernozhukov, Lee, and Rosen’s (2013) intersection bounds approach and
simulation results suggest that it performs well.

1“Common knowledge unobservables” is often used in the literature on empirical games to describe information that
is known to all players, but not to the econometrician. From a game theory point of view, these unobservables are
“public information.” In this paper, the former is preferred to avoid any confusion with existing work on empirical
games.
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SHARP TEST FOR EQUILIBRIUM UNIQUENESS IN DISCRETE GAMES 3

How one treats multiple equilibria typically depends on how one is willing to
interpret the information unobservable to the econometrician.2 In games where one
assumes that all unobservables are known to all players, i.e., games of complete
information, set-identified estimators have been proposed to recover the set of
model’s primitives that can rationalize the data for any possible equilibrium
selection mechanism (e.g., Tamer, 2003; Ciliberto and Tamer, 2009; Beresteanu,
Molchanov, and Molinari, 2011; Galichon and Henry, 2011; Kline and Tamer,
2016; etc.). In that sense, such estimation methods are robust to multiplicity of
equilibria. In contrast, many estimation methods ask the econometrician to take a
stance on whether or not there are multiple equilibria in the data when estimating
games of incomplete information, i.e., games assuming that unobservables are
players’ private information. On the one hand, it is often assumed that the data
have been generated by a single equilibrium at least for some state variables
(e.g., Aguirregabiria and Mira, 2007; Bajari, Benkard, and Levin, 2007; Pakes,
Ostrovsky, and Berry, 2007; Pesendorfer and Schmidt-Dengler, 2008; Bajari et al.,
2010; Aradillas-López, 2012; Lewbel and Tang, 2015; etc.). On the other hand,
multiple equilibria realized in the data provide an extra source of variation that
helps to identify the primitives of the model (e.g., Sweeting, 2009; de Paula and
Tang, 2012; Aradillas-López and Gandhi, 2016). Multiple equilibria are therefore a
valuable alternative to commonly used player-specific exclusion restrictions when
the latter are not available in practice. To leverage this source of variation, one
must provide evidence that there are multiple equilibria being realized in the data
by rejecting the degenerate equilibrium selection mechanism assumption.

According to the single equilibrium in the data assumption, every time the
same players play the same game, the same equilibrium is realized. For example,
consider a game of market entry between two players, firm A and firm B. Suppose
that this game has the following two equilibria: either A is more likely to enter
the market than B, or vice versa. Such equilibria may arise in markets that are
typically too small to justify simultaneous entry. In an econometric study of the
entry behavior of A and B, one would typically observe firms’ entry decisions
in several markets. The single equilibrium in the data assumption states that if
A is more likely to enter than B in one specific market, then it also has to be
more likely to enter than B whenever the same game is realized in another market.
This assumption is maintained even if B being more likely to enter than A is also
sustainable in equilibrium.

Of course, the single equilibrium in the data assumption substantially simplifies
the estimation by avoiding the need to solve for all the model’s equilibria: the
only relevant equilibrium is the one realized in the data and it can therefore be
estimated. However, if the assumption is falsely maintained, the resulting estimates
are associated with a mixture of equilibria, which is typically not an equilibrium
in itself.

2For recent reviews of the literature, see Berry and Tamer (2006), Bajari, Hong, and Nekipelov (2013), De Paula
(2013), and Aradillas-López (2020).
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Some tests of the single equilibrium in the data assumption have been proposed
in the literature.3 Two different approaches can be distinguished. The first one
includes tests from de Paula and Tang (2012), Hahn, Moon, and Snider (2017) and
Xiao (2018). These tests treat correlation in players’ decisions as evidence against
the single equilibrium in the data assumption. In other words, they require players’
decisions to be mutually independent after controlling for observable common
knowledge information and the selected equilibrium. This requirement implies that
all unobservables from the econometrician’s point of view are players’ independent
private information. However, an alternative explanation of correlation in players’
decisions would be that the unobservables interpreted as private information
shocks are actually, at least partially, observed by competitors (e.g., Navarro
and Takahashi, 2012). Therefore, in such tests, common knowledge unobservable
heterogeneity is ruled out by assumption and, more importantly, may lead to the
false rejection of the degenerate equilibrium selection hypothesis.

The second approach has the advantage of allowing for common knowledge
unobserved heterogeneity. The test proposed here belongs to this category. Aguir-
regabiria and Mira (2019) and de Paula and Tang (2020) are the papers most
closely related to the current one. A detailed discussion of each paper’s respective
contribution is given in Section 2. At this point, it is worth mentioning the main
distinctions. As opposed to Aguirregabiria and Mira (2019), the test introduced
below does not require estimating the payoff functions based on commonly used
player-specific exclusion restrictions to separate multiple equilibria from common
knowledge unobservable heterogeneity.4 This distinction is relevant for an applied
researcher who does not observe such exclusion restrictions, but instead hopes to
use multiple equilibria to identify the model’s primitives (as in Sweeting, 2009;
de Paula and Tang, 2012; Aradillas-López and Gandhi, 2016). Of course, this
advantage is not for free. The test proposed in the current paper requires observing
a proxy for the common knowledge unobserved heterogeneity. In that sense, it
trades exclusion restrictions for a proxy variable. Examples of suitable candidates
of proxies are discussed in Section 4. The recent working paper by de Paula and
Tang (2020) also avoids the need to estimate payoffs, but requires the researcher to
group realizations of the game into clusters within which equilibrium selection is
correlated if there are multiple equilibria. This grouping, typically based on some
observables, is not needed in the test proposed here.5

The approach proposed in the current paper should be interpreted as a joint
test of two assumptions: the single equilibrium in the data assumption and the

3The focus of the current paper is on static games. For dynamic games, Otsu, Pesendorfer, and Takahashi (2016) and
Luo, Xiao, and Xiao (2022) have proposed tests which will be further discussed below.
4In that sense, the proposed test is aligned with a recommendation made by Sweeting (2009, p. 740): “[. . .] allowing
for multiple equilibria can significantly increase computational costs [. . .] and relying on multiple equilibria for
identification may make the results even more dependent on the correct specification of the model. For these reasons,
I see particular value in future research [. . .] aimed at developing tests for the possible presence of multiple equilibria
without requiring the full model to be estimated.”
5More precisely, a grouping based on unobservables is built in the finite mixture identification results.
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finite mixture representation of the unobserved heterogeneity. In particular, the test
assumes the presence of common knowledge unobserved heterogeneity in the data
generating process. An appealing by-product of the method is that the presence of
unobserved heterogeneity can be separately tested without making assumptions
on the number of equilibria realized in the data. I am not aware of the existence of
such a test in the literature. In principle, one could therefore first test the relevance
of unobserved heterogeneity to decide whether it should be taken into account
when testing the single equilibrium in the data assumption in a second step. While
this sequential approach would lead to possible pre-testing issues, providing a
statistical method robust to these concerns is outside the scope of the current paper.
In fact, this pre-testing problem would arise regardless whether one is using the
method proposed here or another existing test of the single equilibrium in the data
assumption in the second step. Alternatively, one may first use the joint test from
the current paper and then, if this test rejects and one is worried that it may be due
to the absence of unobserved heterogeneity, one could separately test the latter.
Proceeding in this order does not de facto require a pre-testing correction in the
case where the joint test is not rejected.

The rest of the paper is organized as follows. Related literature is summarized in
Section 2, with special attention being paid to some useful results on the nonpara-
metric identification of finite mixtures. A static discrete game with simultaneous
decisions is introduced in Section 3. The nonparametric identification results and
the statistical test are respectively presented in Sections 4 and 5. Monte Carlo
simulations are reported in Section 6. Section 7 concludes. Proofs and further
details are included in Appendixes.

2. RELATED LITERATURE

As mentioned above, a few papers from the literature on static games propose
tests of equilibrium uniqueness in the data generating process. These tests are
usually obtained as by-products of identification results. While these identification
results provide great insights, some caveats about the corresponding tests have
already been pointed out in Section 1. In fact, many of the existing tests (e.g., de
Paula and Tang, 2012; Hahn et al. 2017; Xiao, 2018) require players’ equilibrium-
specific decisions to be independent given the observable information, hence
ruling out common knowledge unobserved heterogeneity. In a static game of pure
incomplete information, this simply follows from the conditional independence
of unobservable private shocks. In this setting, testing for equilibrium uniqueness
boils down to testing whether players’ decisions are conditionally independent.

The same conditional independence is also key to use recent nonparametric
identification results from the literature on finite mixtures and measurement errors6

(e.g., Hall and Zhou, 2003; Hu, 2008; Kasahara and Shimotsu, 2009, 2014;

6For a recent survey of the applications of measurement error models to empirical industrial organization and labor
economics, see Hu (2017).
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Bonhomme, Jochmans, and Robin, 2016; and, the related but somewhat different
identification arguments in Hu and Shum, 2012). In games of pure incomplete
information, one can use results from this literature to identify a lower bound on the
number of equilibria occurring in the sample. This lower bound corresponds to the
number of components in the joint distribution of players’ decisions represented
as a finite mixture over the multiple equilibria. This is the approach proposed by
Xiao (2018).

Unfortunately, as mentioned above, even if there is a single equilibrium in
the data, conditional independence breaks down if players also take into account
payoff-relevant information that is known to all of them, but unobservable to the
econometrician. In such cases, tests based on conditional independence cannot
be applied.7 The main issue is that, if one finds the correlation between players’
decisions to be nonzero or if one finds more than one component in the finite
mixture representing choice probabilities, it could either be due to multiple
equilibria in the data and/or common knowledge unobserved heterogeneity. In
other words, such unobservables may lead to the false rejection of the single
equilibrium in the data hypothesis.

Some progress has been made to allow for both private information and common
knowledge unobserved heterogeneity in empirical games. In particular, Grieco
(2014) proposes a parametric model that he estimates using data on grocery
stores entry and exit. His results suggest that failing to include both private and
common knowledge unobservable information may generate misleading results.
More recently, Magnolfi and Roncoroni (2022) propose an estimation method
applicable to games defined via an alternative equilibrium concept (Bayes Cor-
related Equilibrium developed by Bergemann and Morris, 2016) that allows for
very weak assumptions on the information structure of the game.8 In their empir-
ical application, they also find that assumptions maintained on the information
structure have an important impact on parameters’ estimates and counterfactual
predictions. Such recent practical insight justifies the need to extend tests of
equilibrium uniqueness beyond the pure incomplete information setting and to
allow for another source of possible correlation between players’ decisions not
due to multiple equilibria being realized in the data.

A few papers propose semi-parametric identification results that allow for
multiple equilibria and common knowledge unobserved heterogeneity in static

7Xiao (2018) briefly discusses the idea of using her identification result to test for common knowledge unobserved
heterogeneity at the end of her Section 2.2. However, this procedure cannot be used to test for equilibrium uniqueness
conditional on common knowledge unobserved heterogeneity.
8See Syrgkanis, Tamer, and Ziani (2018) for an econometric application of the same solution concept to auctions.
While the information structure used in Magnolfi and Roncoroni (2022) is more flexible than the one considered
in the current paper, point identification of the structural parameters under Bayes Correlated Equilibrium requires
player-specific regressors which are not needed to perform the test proposed in the current paper. Moreover, the
identification argument using multiple equilibria in the data leveraged in Sweeting (2009), de Paula and Tang (2012),
and Aradillas-López and Gandhi (2016) are based on Bayesian Nash equilibria. The information structure considered
here is more restrictive than Magnolfi and Roncoroni (2022), but still more flexible than games of pure incomplete
information.
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games of incomplete information. One of them is Khan and Nekipelov (2018)
who show that the linear strategic interaction parameters are identified even if
continuous unobserved heterogeneity is drawn from an unknown distribution.
However, the identification results are obtained under the assumption that the
equilibrium selection mechanism is uniform over the equilibria of the model and
therefore does not vary with the common knowledge state variables. When testing
the single equilibrium in the data assumption, it is preferable not to make such an
assumption on the equilibrium selection mechanism. Moreover, their identification
result requires observing large realizations of player-specific regressors. As men-
tioned above, testing the single equilibrium in the data assumption is especially
desirable when such regressors are not available.

Another paper is Magesan (2018) who shows identification of the payoffs
provided that the equilibrium selection mechanism is degenerate for some real-
izations of the game. In that sense, the test proposed here is complementary to his
identification results.

As mentioned above, Aguirregabiria and Mira (2019) is closely related to
the current paper. Their main proposition follows from a sequential identifica-
tion argument which combines results from the literature about nonparametric
identification of finite mixtures. In a first step, they identify the nonparametric
distribution of a discrete random variable with finite support that summarizes
the information of the common knowledge unobservable heterogeneity and the
unobservable variable that indicates which equilibrium is realized. Using the
property that the equilibrium selection variable is payoff-irrelevant, the distribution
of the unobservable heterogeneity and the equilibrium selection can be separately
identified. In their setting, the number of equilibria corresponds to the cardinality
of the support of the unobservable variable that selects the equilibrium realized in
the data.

The sequential approach in Aguirregabiria and Mira’s (2019) main identifica-
tion result may be problematic if one is solely interested in testing equilibrium
uniqueness. There are two limitations worth pointing out. First, in their setting,
one must estimate payoff functions to separate common knowledge unobserved
heterogeneity from the variable indexing which equilibrium is realized. Doing
so typically requires player-specific exclusion restrictions, i.e., variables that
only affect a given player’s decision through its beliefs about its competitors’
behavior (e.g., Bajari et al., 2010). However, one important motivation for testing
equilibrium uniqueness is when such exclusion restrictions are not available and
one would like to leverage multiplicity of equilibria as an alternative source of
variation to identify payoffs. In such cases, one cannot apply Aguirregabiria and
Mira’s (2019) identification results to test for equilibrium uniqueness.

A second limitation, which also applies to other tests based on finite mixtures, is
that the finite mixture framework restricts the number of components identifiable
from the data. This restriction may not be innocuous. The largest number of
components that one can identify in the first step of Aguirregabiria and Mira’s
(2019) sequential argument is given by the number of alternatives available in the
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players’ choice set, raised to the power
⌊

N−1
2

⌋
, where N is the number of players

and �·� is the floor function. As a result, no mixture would be identifiable in a game
of market entry between two players. Aguirregabiria and Mira (2019) also propose
nonsequential results which require the exclusion restrictions commonly used in
empirical games to be sufficiently over-identifying. While their nonsequential
approach has some advantages (e.g., it may allow for N = 2), it is still not
applicable without variables satisfying these exclusion restrictions.

Of course, similar restrictions on the identifiable number of components are
likely to arise in other identification arguments based on a finite mixture. The
approach proposed here is no exception, but the conditions imposed here are less
restrictive. A considerable advantage of the current paper’s procedure is that the
number of equilibria is not restricted prior to the test. The restriction only affects
the support of the common knowledge unobservable heterogeneity.

The second paper most closely related to the current one is the recent paper
by de Paula and Tang (2020). They also propose testable implications for the
single equilibrium in the data assumption which avoid having to estimate payoffs.
This paper extends de Paula and Tang (2012) by allowing for players’ private
information to be correlated possibly via continuous unobserved heterogeneity.
For static games, the test assumes that the researcher can group realizations of
the game into clusters within which equilibrium selection is correlated if there are
multiple equilibria. In other words, the arguments from de Paula and Tang (2012)
apply within clusters which are defined by the researcher based on observables. To
some extent, the finite mixture identification results leveraged in the test proposed
below can be interpreted as a clustering which is based on unobservables that are
left unspecified by the researcher (up to the support being finite and discrete) and
other observable characteristics. Also, while the test proposed by de Paula and
Tang (2020) is applicable to binary decisions, the test in the current paper allows
for an arbitrary number of discrete choices.

At this point, it is worth distinguishing between two different approaches that
have been proposed in the literature about nonparametric identification of finite
mixtures: (i) the conditional independence, and (ii) the exclusion restriction (which
will be interpreted as a proxy variable) approaches. In both cases, the main
objective is to identify the number of components, the conditional component
distributions, and the mixing probability weights.

In the conditional independence approach, the joint distribution of observed
variables conditional on the latent mixing variable can be factored as the product
of its marginals. A system of equations is constructed by considering different
subvectors of the vector of mixed variables. For instance, in the context of a game
with N players, one could consider the joint distributions of all subsets of players’
decisions. Point identification is reached if one can construct enough equations
to identify all the corresponding marginal conditional component distributions
and mixing probability weights. The conditional independence approach has been
used by, among others, Hall and Zhou (2003), Kasahara and Shimotsu (2009),
and Bonhomme et al. (2016). This conditional independence is also needed to
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identify the number of mixtures when using Kasahara and Shimotsu’s (2014)
results.

Alternatively, the exclusion restriction approach assumes that there exists an
observable variable with sufficient variation that affects the mixing probability
weights, but not the conditional component distributions.9 With this restriction,
one can write the conditional component distributions and the mixing probability
weights in terms of some set-identified parameters. Henry et al. (2014) introduced
this approach and they also provided an extensive discussion suggesting that the
required exclusion often arises naturally in applied work. An especially relevant
feature of this alternative approach is that the joint distribution conditional on the
mixing variable does not have to be factorable in the product of its marginals.
This is key in the context of the current paper: because the observable conditional
choice probabilities are potentially mixed over multiple equilibria and common
knowledge unobserved heterogeneity, players’ decisions may fail to be indepen-
dent after controlling for only one of these two types of unobservables.

It should be emphasized that the main object of interest in the current paper
is the number of equilibria in the data generating process, which form a subset
of the equilibria in the model. In that sense, the objective is very different from
other work, such as Kasy (2015), focusing on the number of equilibria in the
model. In fact, when applying his inference method to a game of incomplete
information, Kasy (2015) first estimates the model using a two-step approach.
Such two-step estimation relies on the single equilibrium in the data assumption,
which can be tested using the method proposed here. Another related paper is
Espin-Sanchez, Parra, and Wang (2022) who provide a testable condition that
guarantees equilibrium uniqueness given estimates of the payoffs. Once again,
estimating payoffs requires first taking a stance on whether a single or multiple
equilibria are realized in the data.

Finally, it is worth pointing out that some progress has recently been made in
testing for equilibrium uniqueness with common knowledge unobserved hetero-
geneity in dynamic games (see, for instance, Otsu et al., 2016, Sect. 3.5; Luo,
Xiao, and Xiao, 2022; de Paula and Tang, 2020, Sect. 3). A nice feature of the
dynamic setting is that the econometrician typically observes each market for
more than one period, which gives some traction when trying to separate time-
invariant unobserved heterogeneity from multiple equilibria. Unfortunately, this
extra dimension, i.e., time, is often not available in the static case. For this reason,
the test proposed in the current paper is not directly comparable with tests for
equilibrium uniqueness in dynamic games. However, it is interesting to note that,
even with this extra dimension, tests applicable to dynamic games also focus on
discrete unobserved heterogeneity.

9Notice that this exclusion restriction does not correspond to the one commonly used to identify payoff functions
as in Bajari et al. (2010). This is partly the reason why “proxy” will often be preferred to “exclusion restriction”
when referring to this approach in the current paper, even if the identification result is in fact based on an exclusion
restriction.
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3. A STATIC DISCRETE GAME WITH SIMULTANEOUS DECISIONS

This section describes the economic model, i.e., the game as it is played by the
players, and its econometric counterpart.

3.1. Economic Model

Consider a game where N players, indexed by i ∈ {1,2, . . . ,N} = N , simulta-
neously choose from a finite and discrete choice set Y = {0,1, . . . ,J}. Players’
decisions are stored in a vector of random variables Y = [Y1,Y2, . . . ,YN]′ with
realizations y = [y1,y2, . . . ,yN]′ ∈ Y N .10

Players’ decisions are contingent on some state variables, which are separated
into two categories depending on whether they are observed by all players. LetS =[
S ′

1,S ′
2, . . . ,S ′

N

]′
with realizations s = [s′

1,s
′
2, . . . ,s

′
N

]′ ∈ S N be some information

that is common knowledge to all players. Furthermore, let E = [
E ′

1,E ′
2, . . . ,E ′

N

]′
with realizations ε = [

ε′
1,ε

′
2, . . . ,ε

′
N

]′
such that εi = [εi1, . . . ,εiJ]′ ∈ RJ be some

private information. Let GE i (·) denote the cumulative density function of E i.
Because player i’s opponents do not observe εi, this is a game of incomplete
information.

Let πi (·) : Y N ×S ×R �→ R be player i’s payoff function. While the payoff
of player i choosing yi = 0 is normalized to 0, the payoff when choosing yi =
j �= 0 is denoted by πi

(
j,y−i,si,εij

)
, where y−i refers to the decisions of player

i’s opponents. The following assumption, which is common in the literature, is
maintained on the payoff functions and the distributions of S, E .

Assumption 1 (State variables and payoffs). (i) S, E1, E2, . . ., EN are mutu-
ally independent.

(ii) GE i (·) ∀i ∈ N are common knowledge to all players and they are absolutely
continuous with respect to the Lebesgue measure on RJ .

(iii) πi (·) ∀i ∈ N are common knowledge to all players.

It is worth mentioning that Assumption 1(i) is actually stronger than what will be
required by the statistical test. Since the test will be performed after conditioning
on a subvector of realizations of S, E is only required to be independent of the
remaining elements in S. A more precise version of Assumption 1(i) is given in
Assumption 2(iv).

The timing of the decision process is as follows. First, s and ε are realized. Even
if players do not observe their opponent’s private information, they can still form
beliefs about their competitor’s decision under Assumption 1. Then, all players
simultaneously decide, i.e., y is realized and commonly observed. To sum up, at

10The following notation will be used in the current paper. Capital calligraphic letters are random variables. Their
realizations are denoted by lower case roman letters. Script letters are used for the corresponding supports and |·| is
the cardinality of this support. Boldface letters denote vectors and matrices.
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SHARP TEST FOR EQUILIBRIUM UNIQUENESS IN DISCRETE GAMES 11

the time of the simultaneous decisions, player i’s information set is

Ii = {
s,εi,π1 (·), . . . ,πN (·),GE1 (·), . . . ,GEN (·)} . (1)

Player i’s strategy is a function that maps the information set, Ii, to the choice
set, i.e., σi (·) : Ii �→ Y . For a given strategy, the conditional choice probability
of player i choosing j at a given s ∈ S is

pi ( j|s) =
∫

1{σi (Ii) = j}dGE i (εi), (2)

which can be interpreted as the beliefs of player i’s opponents regarding player
i’s decision, when player i behaves according to strategy σi (Ii). Collect player i’s
probabilities in pi (s) = [pi (1|s), . . . ,pi (J|s)]′ and let p(s) ≡ [p1 (s)′ , . . . ,pN (s)′

]′
.

Let π
p
i

(
j,s,εij

)
denote the expected payoff of player i choosing yi = j, which is

computed by integrating out y−i using the corresponding elements of p(s). If each
player’s strategy is to maximize expected payoffs, (2) is equivalent to

pi ( j|s) =
∫

1
{
π

p
i

(
j,s,εij

)−π
p
i (k,s,εik) ≥ 0,∀k ∈ Y

}
dGE i (εi) . (3)

The right-hand side of equation (3) is the best response mapping of player i given its
beliefs regarding its opponents’ decisions. Let ψij (s,·) denote this mapping, collect
choice-specific mappings in ψ i (s,·) = [ψi1 (s,·),ψi2 (s,·), . . . ,ψiJ (s,·)]′ and define

� (s,·) ≡ [
ψ1 (s,·)′ ,ψ2 (s,·)′ , . . . ,ψN (s,·)′]′ , (4)

where � (s,·) : [0,1]JN �→ [0,1]JN is a mapping in the probability space. Given
� (s,·), one can define a Bayesian Nash Equilibrium (BNE) in pure strategies.
Defining a BNE in the probability space is very convenient to analyze equilibrium
existence and multiplicity (Milgrom and Weber, 1985).

Definition 1 (BNE in probability space). A pure strategy BNE in the prob-
ability space is a set of conditional choice probabilities p(s) such that p(s) =
� (s,p(s)).

Definition 1 simply states that, in equilibrium, players’ beliefs are consistent
with their opponents’. In fact, a BNE in the probability space is a fixed point of
the best response mapping. Since � (s,·) maps a compact set to itself and since
it is continuous in p(s), the existence of an equilibrium follows from Brouwer’s
fixed-point theorem for any s ∈ S . However, uniqueness is not guaranteed. Let
T (s) be the set collecting all equilibria that the model admits at a given s.

In order to fix ideas, it is worth introducing a running example that will be used
as a data generating process to illustrate several concepts and results throughout
the paper. This example is a simple static game of market entry between two firms.

Example 1 (Simple game of market entry). Consider two firms deciding
whether they want to operate in a given market, such that yi = 1 if firm i operates in
the market and yi = 0 otherwise. In this case, S could be some common knowledge
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Figure 1. Equilibria multiplicity in Example 1.

information about market size and consumers’ preferences. Moreover, E could
refer to some private information cost shifters such as managerial ability. Let
players’ payoffs when operating in the market be

π1 (1,y2,s,ε1) = s1 −4y2 − ε11, (5)

π2 (1,y1,s,ε2) = s2 −3y1 − ε21, (6)

and player i’s payoffs when yi = 0 are normalized to 0. Furthermore, let ε =
[ε11,ε21] be drawn from Normal (0,I2), where I2 is the 2×2 identity matrix. Using
�(·) to denote the standard normal cumulative density function, the best response
mapping is

� (s,p(s)) =
[

�(s1 −4p2 (1|s))
�(s2 −3p1 (1|s))

]
. (7)

Figure 1 is the graphical representation of the best response mapping in (7)
for all p(s) ∈ [0,1]2. The BNE(s) are given by the intersection(s) of the best
response functions. This figure clearly illustrates that, for a given set of primitives,
different realizations of S are associated with different BNE’s and in particular
with different numbers of BNE’s.

3.2. Econometric Model

The game described so far is the economic game as it is played by the players.
Consider now the econometric game, i.e., the game as it is observed by the
econometrician. An important difference between the two is that the researcher
only observes some of the common knowledge payoff-relevant state variables in
S. The following assumption is maintained on S.
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Assumption 2 (Common knowledge payoff-relevant state variables). (i)
S = [

X ′,V ′]′, where X is observable to the econometrician, but V is not.
(ii) X and V have finite and discrete supports X = {

x0,x1, . . . ,x|X |−1
}

and
V (x) = {

ν0,ν1, . . . ,ν|V (x)|−1
}
.

(iii) Realized ν’s are drawn from the conditional distribution with probability mass
function γ ( ·|x).

(iv) Conditional on X , V is independent from E .

Typically, V can be thought of as a vector of common knowledge unobservable
heterogeneity.11 It is written as a vector-valued random variable to emphasize that
it may capture different forms of unobserved heterogeneity. It could be a vector of
player-specific unobservables or a scalar capturing unobservables that do not vary
across players.

Finite and discrete unobserved heterogeneity is arguably a natural first step
toward allowing for common knowledge unobserved heterogeneity when testing
the single equilibrium in the data assumption. Currently available tests would reject
the null hypothesis of a single equilibrium in the data if players’ decisions were
sufficiently correlated conditional on observed state variables. The test proposed
here can be interpreted as a device to check whether sufficient correlation remains
when allowing for some common knowledge unobserved heterogeneity. In that
sense, allowing for a fixed number of possible realizations of unobservables
(without constraining their distribution) is a crude, but useful approximation to
detect correlation due to such unobservable information.

One appealing feature of the discrete unobserved heterogeneity in the current
setting is that the support V (x) is allowed to vary with x, such that different realiza-
tions of the game are allowed to have different realizations of discrete unobserved
heterogeneity. Further, |V (x)| is identifiable from the data and the method allows
the researcher to check whether the data reject assumptions maintained on the
support of V (x), separately from the equilibrium uniqueness hypothesis. More
details are provided in Section 4.

In order to appreciate the relevance of using discrete unobserved heterogeneity,
it is worth discussing alternative approaches proposed in the literature to allow
for common knowledge unobserved heterogeneity in static discrete games of
incomplete information. First of all, several empirical applications ignore such
unobserved heterogeneity by assuming that all unobservables from the point of
view of the econometrician are private information. Of course, when the data has a
panel structure in which realizations of the game are observed along more than one
dimension (e.g., multiple geographical markets observed over multiple periods of
time in a game of market entry), introducing fixed effects may capture some of the
unobservable information known to all players. Unfortunately, this option is not
possible if one observes a single cross section of replications of the game.

11Since the support of V depends on x, it may be preferable to write V (x) and ν (x). However, the argument is
dropped to alleviate notation.
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One alternative proposed in the literature has been to introduce some parametric
common knowledge unobserved heterogeneity. For instance, in some of his spec-
ifications, Sweeting (2009) allows for player-specific unobserved heterogeneity
constant across repetitions of the game which is drawn from a distribution
known up to some parameters and enters players’ payoffs additively. Another
example is Bajari et al. (2010) who assume that common knowledge unobserved
heterogeneity is simply a function of observable state variables.

The current approach does restrict the support of the common knowledge
unobserved heterogeneity to be finite and discrete, which is not the case of
the specifications proposed by Sweeting (2009) and Bajari et al. (2010). How-
ever, it has two considerable advantages. First, it does not require distributional
assumptions beyond the support being finite and discrete. Second, the researcher
does not have to specify how this common knowledge unobserved heterogeneity
enters players’ payoffs. In fact, V simply defines different components of a finite
mixture representation of players’ choice probabilities, without having to specify
an expression for the distribution of players’ decisions conditional on ν.

It should be emphasized that finite mixture representations of common knowl-
edge unobserved heterogeneity have been used when estimating dynamic discrete
games. Both Aguirregabiria and Mira (2007) and Igami and Yang (2016) show that
allowing for a finite number of points in the support of the common knowledge
unobserved heterogeneity is able to capture confounding factors which, when
ignored by the researcher, substantially bias strategic interaction estimates.

Notice that X being finite and discrete is also maintained by de Paula and
Tang (2012) among others. While not essential in theory, this assumption is very
convenient in practice since different realizations of X can be associated with
different numbers of equilibria both in the model (see Figure 1) and in the data.
This is the reason why the identification result holds for fixed realizations of X .
If X is continuous, one must take into account potential discontinuities in choice
probabilities conditional on realizations of X that may be introduced by different
numbers of equilibria across these realizations.12

Going back to the running example, |V (x)| = 2 can be used to capture relevant
unobservable information in a simple game of market entry.

Example 1 (Simple game of market entry, continued). In the simple game of
market entry between two firms, V could capture some information related to
unobservable demand and/or cost shifters. While both firms have potentially gath-
ered information about these shifters, such information may remain unobservable
to the econometrician or may be impossible to measure accurately. In this setting,
even the simplest possible case allowing for two elements in the support of V helps
to better interpret firms’ decisions.

12As mentioned in Aguirregabiria and Mira (2019), nonparametric estimation of choice probabilities when the
location of such discontinuities is unknown has been studied by Muller (1992) and Delgado and Hidalgo (2000).
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Let V (x) = {ν0,ν1
}
. The interpretation of ν0 and ν1 depends on how they affect

firms’ probabilities of entering the market. For instance, pi
(

1|x,ν0
)
< pi

(
1|x,ν1

)
for i = 1,2 would suggest that if V = ν1, both firms are more likely to enter the
market than if V = ν0. In other words, conditional on x, V potentially reflects
some market-level common knowledge unobserved heterogeneity. Alternatively,
suppose that p1

(
1|x,ν0

)
< p1

(
1|x,ν1

)
and p2

(
1|x,ν0

)
> p2

(
1|x,ν1

)
. One way to

interpretV is that it captures some player-specific common knowledge unobserved
heterogeneity that has a very different effect on firms’ probabilities of entering the
market given x. While ν0 decreases firm 1’s probability of entry relative to ν1, it
increases firm 2’s.

Finally, since the game may admit multiple equilibria, the econometric model
requires an equilibrium selection mechanism assessing the probability that a given
equilibrium is realized in the data. Another important difference between the game
played by the players and the game observed by the econometrician is that not all
equilibria in the model are necessarily realized in the data. Let T ∗ (x,ν) ⊆ T (x,ν)

be the subset of the model’s equilibria that are realized in the data. Furthermore,
let λ( ·|x,ν) be the equilibrium selection mechanism given the payoff-relevant
information observable to all players. Let T be a random variable labeling which
equilibrium is played. More precisely, each equilibrium realized in the data is
indexed by τ ∈ T ∗ (x,ν).13 The following assumption, which is also common
in the literature (see for instance Aguirregabiria and Mira, 2019, Assum. 3, p.
1668) is maintained on T . It ensures that players’ private information does not
affect which equilibrium is realized and, consequently, they cannot infer their
competitors’ private information from the realized equilibrium. It also rules out
continuum of equilibria.

Assumption 3 (Equilibrium index). (i) T is independent from E1, . . . ,EN . (ii)
T is discrete with support T ∗ (x,ν) ≡ {1, . . . ,|T ∗ (x,ν)|}.

The framework described via Assumptions 1–3 actually allows for quite flexible
correlations between variables that are unobservable from the econometrician’s
point of view. There are two different vectors of payoff-relevant unobservables,
i.e., E and V . Conditional on X , common knowledge unobservable heterogene-
ity introduces correlation between players’ payoff-relevant unobservables via V
even if E i are independent across players. Furthermore, V introduces correlation
between payoff-relevant unobservables and the variable indicating which equilib-
rium is realized even if T is independent from E1, . . . ,EN .

Finally, the difference between T ∗ (x,ν) and T (x,ν) is key to interpret the
degenerate equilibrium selection assumption. In fact, it corresponds to the special
case |T ∗ (x,ν)| = 1 for all ν ∈ V (x). In other words, for a given x, λ(τ |x,ν) = 1
for the unique τ ∈ T ∗ (x,ν) for all ν ∈ V (x). While the economic model may

13A more rigorous notation would be to write T (x,ν) and τ (x,ν) instead of T and τ , but the latter is preferred to
simplify notation.
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admit multiple equilibria, this assumption requires the same equilibrium to be
played whenever the same common knowledge payoff-relevant information is
realized.

4. NONPARAMETRIC IDENTIFICATION

4.1. Data and Objects of Interest

When estimating an empirical game, the econometrician typically observes M
realizations of the game. For each of these realizations, the data consist in
{ym,xm : m = 1, . . . ,M}. There are therefore three random variables that are unob-
servable from the point of view of the researcher: (i) the private information shocks
E ; (ii) the common knowledge variables V ; and (iii) the variable indicating which
equilibrium is realized in the data T . The assumptions maintained on the data
generating process are formally stated in Assumption 4. Let p(y|x,ν,τ ) denote
the joint distribution of players’ decisions conditional on x,ν,τ .

Assumption 4 (Data generating process). (i) {εm,xm}M
m=1 are independent and

identically distributed across m. (ii) {νm}M
m=1 are M independent draws from

γ ( ·|xm). (iii) {τm}M
m=1 are M independent draws from λ( ·|xm,νm). (iv) {ym}M

m=1
are M independent draws from the multinomial distribution with vector of proba-
bilities of success defined according to p(·|xm,νm,τm).

Assumptions 1 to 4 imply that, conditional on {xm,νm,τm}M
m=1, yim are indepen-

dent across i and m. In fact, this conditional independence is all that is needed for
a test of the single equilibrium in the data assumption based on the correlation
between players’ decisions after properly controlling for all players’ common
knowledge information.

Let p(y|x) be the conditional joint distribution of players’ decisions that is point
identified from the data. Given Assumptions 1 to 4, such distributions are double
finite mixtures of the equilibrium conditional choice probabilities realized in the
data. For a given (y,x) ∈ Y N ×X :

p(y|x) =
∑

ν∈V (x)

p(y|x,ν)γ (ν|x), (8)

where

p(y|x,ν) =
∑

τ∈T ∗(x,ν)

p(y|x,ν,τ )λ(τ |x,ν) . (9)

From equations (8) and (9), one can see that p(y|x) is a double finite mixture with
a total of

∑|V (x)|−1
l=0

∣∣T ∗ (x,ν l
)∣∣ components.

In the current setting, the main object of interest is the number of equilibria
associated with each ν ∈ V (x) conditional on x, i.e., each element of the set{∣∣T ∗ (x,ν l

)∣∣}|V (x)|−1
l=0 . These objects of interest are used to test whether the single

equilibrium in the data assumption holds at each realization of the finite and
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discrete support of the common knowledge unobserved heterogeneity. Formally,
the null and alternative hypotheses are stated as

H0 :
∣∣T ∗ (x,ν)

∣∣= 1,∀ν ∈ V (x) ; H1 :
∣∣T ∗ (x,ν)

∣∣> 1, for some ν ∈ V (x) .
(10)

4.2. The Need for More Structure

The main challenge in testing the degenerate equilibrium selection mechanism
while allowing for common knowledge unobserved heterogeneity is to separate
each source of potential correlation in players’ decisions, i.e., T andV , conditional
on X . More precisely, it does not suffice to check the total number of components
in the double finite mixture in (8) and (9), i.e.,

∑|V (x)|−1
l=0

∣∣T ∗ (x,ν l
)∣∣.14 Testing

H0 rather requires being able to check the number of components conditional on
the realizations of V . The problem here is that H0 depends on the unobservable
heterogeneity and, therefore, cannot be tested directly.

To solve this problem, one must first put more structure on the double finite
mixture of interest. The additional structure imposed in the proposed test is based
on identification results from Henry et al. (2014). While details about the argument
are presented below, one can interpret the main requirement of this approach, when
applied to the current setting, as the availability of a proxy variable for the common
knowledge unobservable heterogeneity. Such proxy variable allows one to separate
the mixture over V from the mixture over T . More importantly, it allows one to
derive testable implications of H0 without needing to estimate payoff functions.

4.3. Identifying Restrictions and Proxy Variable

The additional structure needed for identifying the mixture over the common
knowledge unobserved heterogeneity is now stated in terms of exclusion restric-
tions, i.e., similarly as in Henry et al. (2014). The proxy variable interpretation
will be highlighted later on. Once again, it is worth emphasizing that the following
exclusion restriction is different from the one commonly used for the identification
of discrete games.

Let the vector of observable state variables, X , be divided into a subvector
of variables that do not satisfy the exclusion restriction, XNE, and a subvector
of variables that do satisfy it, X E, such that X = [

X ′
NE,X ′

E

]′
, with realizations

x = [
x′

NE,x
′
E

]′ ∈ XNE × XE ≡
{

x0
NE,x

1
NE, . . . ,x

|XNE|−1
NE

}
×
{

x0
E,x

1
E, . . . ,x

|XE|−1
E

}
.

Let X̃E be a subset of XE such that X̃E ≡
{

x̃0
E, . . . ,x̃

∣∣∣X̃E

∣∣∣−1

E

}
⊆ XE with x̃0

E ≡ x0
E.

14For instance, under some conditions on |Y |N , this total number of components could be identified using results
from Kasahara and Shimotsu (2014). When one assumes awayV , then the total number of components in the “double”
finite mixture becomes the number of equilibria realized in the data.
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Similarly, let Ỹ N be a subset of Y N such that Ỹ N ≡
{

ỹ1
, . . . ,ỹ

∣∣∣Ỹ N
∣∣∣} ⊆ Y N .

Assumption 5 formally states the identifying restrictions.

Assumption 5 (Identifying restrictions). For any y ∈ Y N , xNE ∈ XNE, xE ∈ XE,
and ν ∈ V (xNE,xE):

(i) (Support independence) V (xNE,xE) does not depend on xE;
(ii) (Cardinality of the support) |V (xNE,xE)| ≤ min

{
(J +1)N , |XE|};

(iii) (Relevance) γ (ν|xNE,xE) depends on xE;
(iv) (Redundancy) p(y|xNE,xE,ν) does not depend on xE;
(v) (Sufficient variability in mixture weights) for an appropriate subset X̃E, the

square matrix with (i,j)th element given by γ
(
ν i
∣∣xNE,x̃

j
E

)
− γ

(
ν i
∣∣xNE,x0

E

)
for i,j = 1, . . . , |V (xNE)|−1 is invertible; and

(vi) (Sufficient variability in unknown choice probabilities) for an appropriate

subset Ỹ N , the square matrix with (i,j)th element given by p
(

ỹi
∣∣∣xNE,ν

j
)

−
p
(

ỹi
∣∣∣xNE,ν

0
)

for i,j = 1, . . . , |V (xNE)|−1 is invertible.

The support independence condition implies that the set of values of the mixing
variables realized with a positive probability does not vary withX E. This condition
is important: in order to use variation in X E to identify the finite mixture over V ,
such variation should not generate changes in the set of possible realizations of the
mixing variable. Slightly abusing notation, V (xNE) will be used for the rest of the
paper to make this condition explicit.

The condition on the cardinality of the support is included to make sure that there
is enough variation inY and inX E for the exclusion restriction approach to be able
to capture all the relevant realizations of V . The rationale for min

{
(J +1)N , |XE|}

will become clear in Lemma 1. In a game where two players choose between
two actions, the test allows for up to 22 = 4 different realizations of common
knowledge unobserved heterogeneity, given xNE, provided that there is enough
variation in X E. For a game where two players choose between three actions, there
can be up to nine values of common knowledge unobserved heterogeneity. If three
players choose between two actions, this number is 8. In other words, even for
very simple games, the test allows for an appreciable number of realizations of
common knowledge unobserved heterogeneity, which is exponentially growing
in the number of players. As will be discussed in Section 4.4, applying the
test to existing examples from the literature suggests that several unobservable
realizations can be accommodated for when testing the single equilibrium in the
data assumption.

The relevance condition requires the distribution of the unobservable V to
depend on both XNE and X E. Notice that this condition does not contradict
the support independence one as long as realizations of V do not become zero
probability events for some realization of X E.
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By the redundancy condition, the conditional choice probabilities, the equi-
librium selection mechanism and the set of equilibria in the data generating
process have to be independent of X E after conditioning on XNE and V .15 Once
again, slightly abusing notation, such independence is made obvious by using
p(y|xNE,ν), p(y|xNE,ν,τ ), λ(τ |xNE,ν) and T ∗ (xNE,ν). In other words, X E

provides some information about the distribution of the unobservable V , but would
not provide any information about players’ decisions nor the equilibrium selection
if V would be observable.

Finally, the assumption of sufficient variability in mixture weights and in
unknown choice probabilities can be interpreted as rank conditions ensuring that
the variation induced by X E and Y are sufficient to identify the mixture over V .

4.4. Examples of Proxy Variables

Of course, a natural question to ask at this point is whether variables satisfying
restrictions stated in Assumption 5 are easy to find. Remember that V is observed
by both players, but not by the econometrician. In some sense, one simply needs
an observable variable that plays the role of a proxy for the unobservable common
knowledge payoff-relevant variables. In particular, since one is not interested
in quantifying the structural effects of such common knowledge unobserved
heterogeneity per se, the test does not require precise measurements of these
unobservables.

There are at least three categories of variables that can be used as proxies for
common knowledge unobserved heterogeneity: imperfect measurements for sus-
pected unobserved heterogeneity, number of players and predetermined outcomes.
The following examples, which are based on existing empirical applications,
highlight the potential for multiple equilibria, the relevance of discrete unobserved
heterogeneity and the proxies that could be used.16

Depending on the empirical application, some of these three categories of
variables may be more useful than others. For instance, if the researcher has a clear
understanding of the type of common knowledge payoff-relevant unobserved het-
erogeneity that should be controlled for, imperfect measurements of this suspected
unobserved heterogeneity may be quite appealing. As discussed below, there are

15Notice that the redundancy condition implies independence between Y and X E after conditioning on XNE and V .
In that sense, one may find the exclusion restriction approach for the identification of finite mixtures to be somewhat
similar to the alternative approach relying on the independence of some observable variables after conditioning on
the latent variable. However, since the distribution of V depends on X E, one cannot use the independence between
Y and X E to identify the mixture over V as in the conditional independence approach.
16Henry et al. (2014), Sect. 1.2) discuss several examples of variables that can be used as proxies for unobservables in
different empirical applications. Part of their discussion covers unobserved heterogeneity in structural microeconomic
models. In their oligopoly pricing example, Henry et al. (2014, Appendix A) suggest using measures of realized
profits, which are ex ante unknown to the players, to control for unobserved demand variables. Such proxies would
indeed be informative about unobserved heterogeneity beyond XNE (relevance) as realized profits typically depend
on common knowledge unobservables. However, it is not obvious that they can be applied in the current setting since
realized profits would be informative about the equilibrium selection mechanism.
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several examples of empirical applications where imperfect measurements are
included as regressors to control for unobserved heterogeneity. If the nature of
the unobserved heterogeneity is either not obvious or hard to control for using
imperfect measurements, the number of players or predetermined outcomes may
be more interesting options.

Imperfect Measurements of Suspected Unobserved Heterogeneity. In empir-
ical applications, researchers may suspect a specific source of unobserved (or
even unmeasurable) heterogeneity to act as a confounding factor likely to bias the
estimation. Including imperfect measurements of these unobservables is frequently
done to control for such confounding factors at least partially. Commonly used
examples from different fields of economics are test scores to control for cognitive
abilities, income for well-being, value of houses for wealth, etc.

For instance, in a game of market entry, unobservable cost and demand shifters
may make a market relatively more profitable than what is actually captured by
observable payoff-relevant variables. When players’ payoffs have a reduced form
interpretation, i.e., when demand and supply are not explicitly modeled, one may
therefore choose to include some imperfect measurements for these shifters.

If observable variables are suitable controls for the unobservables they are
imperfectly capturing, they are likely to satisfy the conditions required for X E

to be valid excluded regressors. While they are imperfect measurements of the
suspected unobserved heterogeneity, they are typically strongly correlated with
it and therefore satisfy the relevance condition. However, conditional on these
unobservables (and XNE), the imperfect measurements generally do not affect
payoffs nor equilibrium selection. In other words, imperfect measurements should
not be more informative about players’ decisions nor the equilibrium being
realized in the data than the actual unobservables (given XNE). It follows that the
redundancy condition is satisfied as well.

It is important to note that the variable X E is also allowed to be correlated with
XNE (just like V possibly is). However, for an imperfect measurement to be a
valid proxy for V , it must be such that it does not directly affect players’ decisions
conditional on XNE and V : the only reason why the imperfect measurement X E

is informative about players’ decisions (conditional on XNE) is because V is not
observed. Otherwise, this imperfect measurement should have been included in
XNE.

Example 2 (Imperfect measurements of demand and cost shifters). Aradillas-
López and Gandhi (2016) propose a novel estimator which uses correlation
between players’ decisions generated by multiple equilibria being realized in the
data to estimate games of ordered actions. In their empirical application, they
consider a game between the three main chains of retail pharmacies in the US:
CVS (i = 1), Rite Aid (i = 2), and Walgreens (i = 3). Each player decides how
many stores to operate in each geographical market (a core-based statistical area).

Aradillas-López and Gandhi (2016) justify the need to allow for multiple equi-
libria being realized in the data by the nature of the strategy space. They provide
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simulation evidence that the relative large choice set of the players implies that
the model admits multiple equilibria. Their estimation method effectively detects
some correlation between players’ decisions which they interpret as evidence of
multiple equilibria being realized in the data.

Of course, correlation between players decisions could also be generated by
common knowledge unobserved heterogeneity. However, Aradillas-López and
Gandhi (2016, p. 755) argue that, in this industry, there is no “obvious, compelling
demand side unobservable at the market level (e.g., an unexplained taste for health)
that cannot be conditioned out with observables (such as the number of doctors in
the market).” The observables included in X in their estimation are: population,
average income per household, population density, median age in the population,
total number of business establishments, and the distance to the nearest distribution
center of each player. The authors note that the number of business establishments
is included “to control for supply side unobservables” such as costs related to
zoning restrictions.

The method proposed here could be used to formally test for multiple equilibria
being realized in the data using the total number of business establishments as X E

to control for supply side unobservables such as unobserved zoning restrictions.
While this imperfect measurement is correlated with the supply cost shifters
suspected to introduce correlation between players’ decisions, it is worth noting
that it does not have a direct impact on pharmacies’ payoffs nor the equilibrium
being selected beyond the unobserved demand and cost shifters. For instance,
it is not the total number of business establishments that makes a market more
profitable, but rather zoning restrictions imperfectly measured by the number of
business establishments, given all the other regressors included in X .

This source of suspected unobserved heterogeneity is an example of market-
level unobservable. Suppose that each firm chooses between 0, 1, or 2 stores. Since,
N = 3, the test allows for up to |V (xNE)| = 27 different types of markets at a given
realization of XNE, provided that there is enough variation in XE.

It is worth emphasizing that introducing some imperfect measurements to con-
trol for unobservables is very common when estimating games. For instance, in her
analysis of location choices in the video retail industry, Seim (2006, pp. 629–630)
uses “business density as a catch-all proxy for the general business environment.”
When studying competition in the airline industry, Ciliberto and Tamer (2009,
p. 1808) “compute the sum of the geographical distances between a market’s
endpoints and the closest hub of a carrier as a proxy for the cost that a carrier has
to face to serve that market,” because “firm- and market-specific measures of cost
are not available.” In fact, in many empirical applications, geographical distance
is often interpreted as some imperfect measurement of unobserved costs or scale
economies. Another example is the distance between stores in Jia’s (2008) analysis
of competition between chain stores and discount retailers. Distance between
stores is included in the payoff function because “nearby stores split the costs
of operation, delivery, and advertising to achieve scale economies” (Jia, 2008,
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p. 1276). In all these cases, the researcher has a clear interpretation of the
unobserved heterogeneity to be controlled for.

An important remark is worth making at this stage. If proxy variables (X E)
are already used to control for common knowledge unobserved heterogeneity
(V) when estimating empirical games, what prevents one from testing whether
there is a single component in the mixture over realized equilibria directly from
p(y|xNE,xE) instead of having to recover p(y|xNE,ν)? Presumably, one could
work directly with p(y|xNE,xE) if there was a one-to-one relationship between ν

and xE, given xNE. While this one-to-one relationship may hold in some cases (e.g.,
using distance to proxy for transportation costs), it is far-fetched in others (e.g.,
total number of business establishments to control for supply side unobservables).
When the relationship is not one-to-one, p(y|xNE,xE) �= p(y|xNE,ν), but the
latter probability is needed to test the single equilibrium in the data assumption.
Of course, this inequality is not problematic when one is solely interested in
estimating payoffs: controlling for confounding factors does not require a one-
to-one relationship between ν and xE, conditional on xNE.

When one does not have a clear a priori on the potential source of unobserved
heterogeneity, one cannot find an imperfect measurement for such unobservables.
For those cases, one could consider the following two other possible types of
proxies that satisfy the conditions associated with X E.

Number of Players. In some empirical applications, there may be variation in
the number of players (e.g., potential entrants in a game of market entry) across
different realizations of the game. Realizations of the game that are observationally
equivalent in XNE, but are associated with different numbers of players, suggest
that the researcher may fail to observe some information known to all players
(relevance). A similar argument is often used to detect or to control for unobserved
heterogeneity in auctions.17 Under some conditions, the number of players does
not affect the equilibrium of the game and is therefore not informative about which
equilibrium will be realized beyond XNE and V (redundancy). This would be the
case for games between symmetric players with strategic interactions depending
linearly on the fraction of competitors making the same decision.

Formally, let the payoff of player i choosing j be

πi
(
j,y−i,xNE,ν,εij

)= μ
(
j,xNE,ν,εij

)+α

∑
k �=i1{yk = j}

N −1
, (11)

which is identical across players (up to the private information shock εij) and
depends linearly on the fraction of the N − 1 competitors also choosing j, i.e.,∑

k �=i1{yk = j}/(N −1). Since players are symmetric, the probability of choosing
j given xNE,ν, i.e., p( j|xNE,ν), does not vary across players. Player i’s expected
payoff of choosing j therefore becomes

17See, for example, Athey and Haile (2002), Hong and Shum (2002), Haile, Hong, and Shum (2003), Campo,
Perrigne, and Vuong (2003), and Guerre, Perrigne, and Vuong (2009).
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πP
i

(
j,xNE,ν,εij

)= μ
(
j,xNE,ν,εij

)+α
(N −1)p( j|xNE,ν)

N −1
(12)

= μ
(
j,xNE,ν,εij

)+αp( j|xNE,ν), (13)

which does not depend on N. Since the best response mapping defining a BNE in
the probability space (see Definition 1) is a function of differences of expected
payoffs, the fact that expected payoffs do not depend on N implies that the
equilibrium (equilibria) of the game is (are) necessarily independent of N.

The following example borrows from the model of commercial radio stations’
advertisement timing decisions in Sweeting (2009). In particular, the case of
symmetric stations is discussed in Sweeting (2009, p. 722) to highlight the
identifying power of multiple equilibria realized in the data. The assumption of
symmetric players may be imposed in empirical applications for which player-
specific observables are either not available or do not induce significant variation
in payoffs.

Example 3 (Varying numbers of symmetric players across realizations of the
game). Consider a game in which N radio stations simultaneously choose between
J + 1 possible time slots to air radio advertisements. The payoff of station i
choosing j is

πi
(
j,y−i,xNE,ν,εij

)= x′
NEβ j +α

∑
k �=i1{yk = j}

N −1
+ν + εij. (14)

For instance, xNE could include observable demographics of the geographic market
in which radio stations compete and ν could represent some information known
to all stations, but unobservable to the econometrician such as regional-specific
listening habits. Since stations are identical up to their private information shock
(εij), p( j|xNE,ν) does not vary with i. Using the same argument as above, expected
payoffs and stations’ best responses do not depend on N which implies that the
symmetric BNE (equilibria) is (are) also independent of N.

The timing decision studied by Sweeting (2009) is in fact a coordination game.
Radio stations have an incentive to air their commercial breaks simultaneously to
discourage listeners from switching between different channels to avoid advertise-
ments. The model therefore admits multiple equilibria and different equilibria may
be realized in the data.

If the number of radio stations (N) varies across realizations of the game, it can
be used as X E. If two different regional markets with the same realization of XNE

have different N’s, it could be because they differ in V (relevance). Moreover,
payoffs being symmetric across players and depending linearly on the fraction of
competitors making the same decision imply that variation in N does not affect
the equilibrium of the game (conditional on the realized XNE, V). It follows that,
if one could observe the realized V , N would only provide redundant information
about stations’ decisions and equilibrium selection (redundancy).

Since choice probabilities do not vary across players, the maximum number
of points in the support of V is now given by min{J +1, |XE|} instead of
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min
{
(J +1)N , |XE|}. More details about this bound are available in the discussion

following Lemma 1. It therefore linearly depends on the observed variation in
N and the number of possible time slots (J + 1) considered in the analysis. In
Sweeting (2009), J = 2 and, depending on market and station definitions, the
average N varies between 4.9 and 13.3 stations per market. One could therefore
identify up to three points of support in V .

One advantage of using the number of players as a proxy for the unobserved
heterogeneity is that, as opposed to imperfect measurements, it does not require
knowing what is the source of heterogeneity one would like to control for. As
long as the unobserved heterogeneity known to all players induces variation in the
number of players across replications of the game that have the same realizations of
XNE, the number of players is informative about V regardless of what V captures.
As mentioned above, this is also the reason why variation in the number of bidders
is often used to control for common knowledge unobserved heterogeneity in
auctions.

It is also worth emphasizing that the requirement of players being symmetric,
which is needed for the redundancy condition to hold, is not particularly restric-
tive in the current setting. In fact, testing the degenerate equilibrium selection
assumption is relevant in applications where one would like to leverage variation
in realized equilibria to identify strategic interactions between players. This source
of variation is especially useful when players’ payoffs are symmetric (up to
their private information shocks) since, in those cases, player-specific variation
in payoffs is not observed by the researcher. In other words, the need to test for
the single equilibrium in the data assumption is often justified by the symmetry in
players’ payoffs. Moreover, beyond the example from Sweeting (2009) mentioned
above, strategic interactions depending linearly on the fraction of competitors
making the same decisions is very common in empirical applications of peer effects
and social interactions since Brock and Durlauf (2001, p. 239) who refer to such
a specification as “proportional spillovers.”

Predetermined Outcomes. Suppose that there are some common knowledge
payoff-relevant variables which have the same effect on payoffs regardless of
players’ decisions given XNE and V . Under some conditions, such variables are
valid candidates for proxies. More precisely, let X E be such that, for realizations
xE �= x̄E,

πi
(
j,y−i,xNE,xE,ν,εij

)−πi
(
j,y−i,xNE,x̄E,ν,εij

)
=πi (k,y−i,xNE,xE,ν,εik)−πi (k,y−i,xNE,x̄E,ν,εik)

(15)

for j �= k and ∀i ∈ N . In other words, the variation in payoffs induced by X E does
not vary with players’ choices. Rearranging the previous equation, one obtains

πi
(
j,y−i,xNE,xE,ν,εij

)−πi (k,y−i,xNE,xE,ν,εik)

=πi
(
j,y−i,xNE,x̄E,ν,εij

)−πi (k,y−i,xNE,x̄E,ν,εik) .
(16)
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Since this equality holds ∀i ∈ N , integrating over competitors’ decisions implies
that the difference

πP
i

(
j,xNE,xE,ν,εij

)−πP
i (k,xNE,xE,ν,εik) (17)

does not depend on xE. As a result, equilibrium choice probabilities do not depend
on xE given xNE and ν.

Variables X E satisfying (15) could be some observable outcomes related to
players’ previous decisions that are realized before the game is played and are
taken as given in the game that is studied by the researcher. Such variables are
predetermined outcomes. The key for (15) to be satisfied is that, even if those
previous decisions do affect players’ current payoffs, this effect must be the same
regardless of the decisions made by the players. For instance, in games of market
entry, predetermined outcomes could be previously acquired fixed assets that are
in use no matter whether the firm decides to enter or not, and are not modifiable
in the game of interest.

Predetermined outcomes should therefore be informative about common knowl-
edge state variables available to the players, including information that is unob-
servable to the econometrician and therefore satisfy the relevance condition.
Since, from equation (17), equilibrium choice probabilities do not depend on
such predetermined outcomes, the redundancy condition is also satisfied if these
variables do not affect equilibrium selection (given XNE and V).

Of course, the equilibrium selection being conditionally independent of the
predetermined outcomes does put some restrictions on the type of variables that
may be used as proxies. In particular, for predetermined outcomes to be valid,
they should not be part of a multistage game where previous actions could be
informative about players’ decisions and equilibrium selection beyondXNE andV .
For example, predetermined outcomes allowing players to signal their willingness
to take specific future actions would not be applicable in the current setting. As
suggested by Van Damme (1989) and Ben-Porath (1992), these signals could alter
the equilibrium selection and would therefore not satisfy the desired exclusion
restriction. To the extent that one can make the economic argument that the
outcomes used as proxies are not predictive of which equilibrium of the game
is realized (once again, given XNE and V), the conditions for valid proxies are
satisfied. If one is able to convincingly argue that the proposed predetermined
outcomes are not part of a multistage forward-looking decision process, they are
unlikely to affect equilibrium selection (givenXNE andV). In such cases, provided
that (15) holds, X E can be used as proxies.

Below is an example of predetermined outcomes that can be used as proxies
for common knowledge unobserved heterogeneity in a game of market entry
between two players. This example is a simplification of the model proposed by
Gowrisankaran and Krainer (2011).

Example 4 (Potential locations in an entry game). Gowrisankaran and Krainer
(2011) study a game of automatic teller machine (ATM) location and pricing
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decisions. There are two types of firms, banks, and nonbanks, deciding whether
or not to install an ATM on their premises and what level of fees to charge to their
ATM users. Consumers choose where to withdraw money based on ATM locations
and fees. Potential locations for ATMs are existing banks and retail establishments
(mostly grocery and convenience stores).

Gowrisankaran and Krainer’s (2011) estimation method assumes that the same
equilibrium is played in different markets with identical observables. In their
setting, a market is a rural county. Since rural areas are typically less densely
populated than cities, different subsets of firms installing an ATM on their premises
may be sustainable in equilibrium. The single equilibrium in the data assumption
maintains that if banks are more likely than nonbanks to install an ATM in a given
market, it must also be the case in all other markets that are similar according to
common knowledge state variables.

The proposed method can be used to test the single equilibrium in the data
assumption in this setting. One important form of unobserved heterogeneity that is
worth taking into account when testing this assumption is consumers’ preferences
for banking services across markets. In fact, banks being more likely to install
ATMs in a given market could either be due: (a) to consumers frequently visiting
banking establishments; or (b) to the equilibrium in which banks are more likely
to install ATMs being realized in this market.

Consider a simple version of the ATM location decision game (similar to an
entry game). Let i = 1 be banks and i = 2 be nonbanks. A larger number of
categories of players could be used as long as one is willing to assume that the
conditional choice probability function is the same across players within a given
category. Let yi = 1 if player i installs an ATM; yi = 0 otherwise. Suppose that,
given xNE, there are two types of markets such that |V (xNE)| = 2. In markets with
ν1, consumers are frequent users of banking services and, therefore, they often
visit banking establishments. In markets with ν0, consumers use banking services
less frequently. Since banks are more likely to install an ATM in markets with
realization ν1, p1

(
xNE,ν

1
)

> p1
(
xNE,ν

0
)
. Notice that one could allow for up to

22 = 4 elements in V (xNE) (provided that there is enough variation in the support
XE), but considering |V (xNE)| = 2 in this setting shows that even binary common
knowledge unobserved heterogeneity may capture relevant variation in the data.

Since Gowrisankaran and Krainer (2011) consider a game of ATM installa-
tion taking potential ATM locations as given, one could use information about
banks’ and nonbanks’ establishments within a market (e.g., X E could include
two variables corresponding to the number of each players’ potential locations)
as predetermined outcomes that are valid proxies for this common knowledge
unobserved heterogeneity. More precisely, banks’ and nonbanks’ establishments
are the only potential locations for the game of interest. These predetermined
outcomes have been decided prior to the game of interest and their effects on
banks’ and nonbanks’ payoffs are the same regardless whether they decide to
install ATMs at these locations. Moreover, since these potential ATM locations
are taken as given, they cannot be modified in the ATM locations game. In that
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sense, they satisfy (15). In order to justify the redundancy of these predetermined
outcomes, it remains to argue that potential locations do not affect equilibrium
selection beyond XNE and V . In fact, it is unlikely that banks and nonbanks chose
the location of their premises – in many cases, before the technology of ATMs
was available – in order to signal they will install an ATM in a way that would
affect equilibrium selection. Nonetheless, this proxy should reflect consumers’
preferences for banking services: observing relatively more bank establishments in
a market is potentially associated with consumers visiting banking establishments
more frequently, which in itself should affect ATM location decisions. This corre-
lation between the predetermined outcomes and preferences for banking services
allows one to control for such common knowledge unobserved heterogeneity when
testing the single equilibrium in the data assumption.

Predetermined outcomes as the ones described above also have the advantage
of not requiring the researcher to know the source of unobserved heterogeneity
one would like to control for. There is however one caveat: by definition, since
predetermined outcomes are realized before the game of interest, they are more
suitable to capture time-invariant unobserved heterogeneity. In many examples,
including Example 4, time-invariant unobserved heterogeneity is indeed a relevant
source of unobserved heterogeneity one would like to control for when testing the
degenerate equilibrium selection assumption.

4.5. Identifying the Number of Components

The identification result in this paper holds for a given |V (xNE)|. It is worth
noting that |V (xNE)| is actually identifiable. Let �P(xNE) be the (|XE|−1) ×
(J +1)N matrix with element (i,j) given by p

(
yj
∣∣xNE,xi

E

)− p
(

yj
∣∣xNE,x0

E

)
, for

i = 1, . . . , |XE|−1 and j = 1, . . . , (J +1)N , i.e.,⎡⎢⎢⎢⎢⎣
p
(

y1
∣∣∣xNE,x1

E

)
−p

(
y1
∣∣∣xNE,x0

E

)
. . . p

(
y(J+1)N

∣∣∣∣xNE,x1
E

)
−p

(
y(J+1)N

∣∣∣∣xNE,x0
E

)
. . . . . . . . .

p

(
y1
∣∣∣xNE,x

|XE|−1
E

)
−p

(
y1
∣∣∣xNE,x0

E

)
. . . p

(
y(J+1)N

∣∣∣∣xNE,x
|XE|−1
E

)
−p

(
y(J+1)N

∣∣∣∣xNE,x0
E

)
⎤⎥⎥⎥⎥⎦ .

(18)

As it is stated in Lemma 1, for each xNE ∈ XNE, |V (xNE)| is identified through
the rank of the matrix �P(xNE).

Lemma 1 (Identification of |V (xNE)|). Under Assumptions 1 to 5, for each
xNE ∈ XNE, |V (xNE)| = rank {�P(xNE)}+1.

Proof. This result follows from Henry et al. (2014), Lem. 2, p. 138). Details are
in Appendix A.1. �

Since the elements in matrix �P(xNE) are constructed from point identified
probabilities, its column rank is at most (J +1)N − 1. Therefore, since the rank
of a matrix is bounded by the minimum number of its rows and columns, the
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finite mixture representation restricts |V (xNE)| to be at most min
{
(J +1)N , |XE|},

which corresponds to the cardinality of the support condition stated in Assumption
5. If players have symmetric choice probabilities, some of the (J +1)N columns
are necessarily identical, such that the column rank is at most J +1−1 = J. This
is the reason why the bound stated in Example 3 is min{J +1, |XE|}.

An appealing by-product of Lemma 1 is that it can be used to test the hypothesis
of the absence of payoff-relevant unobserved heterogeneity while remaining
agnostic about the number of equilibria realized in the data. To the best of my
knowledge, such a test is not available in the literature. In fact, from Lemma 1,
|V (xNE)| = 1 if and only if rank {�P(xNE)} = 0, i.e., all the elements of the matrix
in (18) are equal to 0. In other words, testing that all the elements of this matrix
are jointly equal to 0 amounts to testing the absence of payoff-relevant unobserved
heterogeneity. The test proposed in the current paper is a test of the degenerate
equilibrium selection assumption that allows for correlation between players’
decisions due to common knowledge unobserved heterogeneity. In that sense, it
requires |V (xNE)| ≥ 2. Nonetheless, if one cannot reject that all the elements
in (18) are jointly equal to 0, then one may interpret this finding as evidence
against the presence of (discrete) payoff-relevant unobserved heterogeneity and
can apply other tests available in the literature that assume away such unobserved
heterogeneity (e.g., de Paula and Tang, 2012).

4.6. Constructing the Identified Set

The identification result presented in this paper is conditional on xNE, such that
all functions and statistics presented below depend on xNE. In order to alleviate
notation, xNE is omitted as an argument.

The main intuition behind the identification argument combines results from
Henry et al. (2014) and Kasahara and Shimotsu (2014). Let N ζ denote some
subset of N such that

∣∣N ζ
∣∣ = Nζ ≤ N. Given the identifying restrictions stated

above, one can write the unknown probabilities p
(

yζ
∣∣ν) ∀yζ ∈ Y Nζ

, ∀N ζ ⊆ N ,
∀ν ∈ V and the mixing weights γ (ν|xE) ∀xE ∈ XE, ∀ν ∈ V as functions of a
vector of parameters θ to be defined below. Then, one can construct the identified
set I such that θ belongs to I if and only if the data can be rationalized by
the finite mixture over V corresponding to θ and the degenerate equilibrium
selection, i.e., |T ∗ (ν)| = 1 ∀ν ∈ V . For a given xNE, I �= ∅ is therefore a testable
implication of the single equilibrium in the data assumption. There are two types
of restrictions defining the identified set.

1. The distribution of players’ decisions can be written as a finite mixture over
V , i.e., the unknown ν-specific probabilities and the mixing weights are proper
probability mass functions.

2. The distributions of players’ decisions satisfy the conditions implied by a single
equilibrium being realized in the data, i.e., players’ decisions are independent
after conditioning on all common knowledge information.
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While the first type of restrictions are similar to the ones provided in Henry
et al. (2014), the second type of restrictions are specific to testing the degenerate
equilibrium selection assumption and can be stated using an identification result
from Kasahara and Shimotsu (2014).

Some notation must be introduced before stating formal results. First, the matrix
�P is defined as in (18). Let �P̃ be a (|V |−1) × (|V |−1) matrix obtained by
deleting some rows and some columns of �P. For subsets X̃E and Ỹ N satisfying
Assumptions 5(v) and 5(vi), the matrix �P̃ is invertible. Let �p̃r

(xE)′ be the row of
�P corresponding to xE after dropping the columns that are not in �P̃. Similarly,
let �p̃c

(y) be the column of �P corresponding to y after dropping the rows that

are not in �P̃. Similar matrices and vectors �P̃
ζ
, �p̃ζ,r

(xE) and �p̃ζ,c (yζ
)

can
be defined for any subset N ζ . Furthermore, denote

γ (xE) ≡ [
γ
(
ν1
∣∣xE
)
, . . . ,γ

(
ν|V |−1

∣∣xE
)]′

. (19)

While Henry et al. (2014) study the case where y is a scalar, their results directly
extend to p

(
yζ
∣∣ν) ∀yζ ∈ Y Nζ

, ν ∈ V for any subset N ζ . Proposition 1 states that
these probabilities and γ (ν|xE) ∀xE ∈ XE, ν ∈ V can be written as functions of
|V |×(|V |−1) parameters stored in the (|V |−1)×1 vector φ and the (|V |−1)×
(|V |−1) matrix ϒ defined as18

φ ≡ [
γ
(
ν1
∣∣x0

E

)
, . . . ,γ

(
ν |V |−1

∣∣x0
E

)]′
(20)

and

ϒ ≡

⎡⎢⎢⎣
�γ

(
ν1
∣∣ x̃1

E

)
. . . �γ

(
ν1
∣∣ x̃|V |−1

E

)
. . . . . . . . .

�γ
(
ν|V |−1

∣∣ x̃1
E

)
. . . �γ

(
ν|V |−1

∣∣ x̃|V |−1
E

)
⎤⎥⎥⎦, (21)

where, �γ
(
ν| x̃E

)≡ γ
(
ν| x̃E

)−γ
(
ν|x0

E

)
. From Assumption 5(v), ϒ is invertible.

The vector θ collects all the elements of φ and ϒ.

Proposition 1 (Finite mixture probabilities). For an arbitrary |V |, if Assump-
tions 1–5 are satisfied, then, ∀yζ ∈ Y Nζ

, ∀N ζ ⊆ N and l = 0,1, . . . , |V | − 1:

p
(

yζ
∣∣ν l
)= p

(
yζ
∣∣x0

E

)+ [el −φ]′ ϒ ′−1�p̃ζ,c (yζ
)
, (22)

where el is the (|V |−1) × 1 unit vector with lth row equal to 1 and e0 ≡ 0.
Moreover, ∀xE ∈ XE:

γ (xE) = φ +ϒ
[
�P̃

′]−1
�p̃r

(xE) . (23)

18Once again, more rigorous notation would write φ (xNE) and ϒ (xNE), but the argument is dropped to alleviate
notation.
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Proof. The result follows from arguments similar to Henry et al. (2014), Sects.
3 and 4.2). Details are available in Appendix A.2. �

The expressions of the finite mixture probabilities in Proposition 1 are used to
define the identified set I of all the values of φ,ϒ that rationalize the distribution
of players’ decisions via a finite mixture over V and a single equilibrium being
realized in the data. The result is formally stated in Proposition 2. The following
notation is used. Let N ζ

n denote the subset of N containing exactly players
i = 1, . . . ,n. Furthermore, let Pζ

n

(
ν l
)

be the (J + 1)n × (J + 1) matrix of joint
probabilities conditional on ν l over the n-dimensional vector containing the
decisions of players 1, . . . ,n – i.e., yζ

n ∈ {yζ,1
n , . . . ,yζ,(J+1)n

n

}
) – and player n + 1’s

decision – i.e., yn+1 ∈ {y1
n+1, . . . ,y

J+1
n+1

}
– such that

Pζ
n

(
ν l
)=

⎡⎣ p
(

yζ,1
n ,y1

n+1

∣∣ν l
)

. . . p
(

yζ,1
n ,yJ+1

n+1

∣∣ν l
)

. . . . . . . . .

p
(

yζ,(J+1)n

n ,y1
n+1

∣∣ν l
)

. . . p
(

yζ,(J+1)n

n ,yJ+1
n+1

∣∣ν l
)
⎤⎦ . (24)

Using Proposition 1, one can write the (i,j)th element of Pζ
n

(
ν l
)

for l ∈
{0, . . . , |V |−1} as

p
(

yζ,i
n ,yj

n+1

∣∣∣ν l
)

= p
(

yζ,i
n ,yj

n+1

∣∣∣x0
E

)
+ [el −φ]′ ϒ ′−1�p̃ζ,c

(
yζ,i

n ,yj
n+1

)
. (25)

Proposition 2 (Identified set). For an arbitrary |V |, under Assumptions 1–5,
θ ∈ I if and only if:

(i) 0 ≤ φ+ϒa and 1′ [φ +ϒa] < 1, ∀a ∈A, where A is the set of extreme points

of the convex hull of the range of the function xE �→
[
�P̃

′]−1
�p̃r

(xE).

(ii) [el −φ]′ ϒ ′−1b ≤ 1, ∀l ∈ {0, . . . ,|V |−1}, ∀b ∈ B, where B is the union of the
ranges of y �→ −�p̃c(y)

P
(

y|x0
E

) and y �→ �p̃c(y)

1−P
(

y|x0
E

) .

(iii) Rank
{
Pζ

n

(
ν l
)} = 1, ∀n ∈ {1, . . . ,N −1} and ∀l ∈ {0, . . . ,|V |−1}, where the

(i,j)th element of Pζ
n

(
ν l
)

is written as in (25).

Proof. See Appendix A.3. �

The conditions defining I in Proposition 2 are interpreted as follows. Parts
(i) and (ii) guarantee that the probabilities defining the finite mixture over the
common knowledge unobserved heterogeneity properly belong to the unit interval.
These inequalities are the same as in Henry et al. (2014), Sects. 3 and 4.2).
More precisely, part (i) is equivalent to γ

(
ν l
∣∣xE
) ≥ 0 for l = 1, . . . , |V | − 1 and∑|V |−1

l=1 γ
(
ν l
∣∣xE
)
< 1 ∀xE ∈ XE. Furthermore, part (ii) states that 0 ≤ p(y|ν) ≤

1 ∀y ∈ Y N and ∀ν ∈ V . Part (iii) follows from the degenerate equilibrium selection
assumption. The fact that this condition can be characterized via the rank of
matrices Pζ

n

(
ν l
)

being equal to 1 follows from Kasahara and Shimotsu (2014,
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Prop. 4). It is a consequence of the conditional independence of players’ decisions
when a single equilibrium is realized in the data.

Several remarks are worth making about the identified set.

Remark 1 (Sharp identified set). The identified set I is sharp in the following
sense. Given XNE, if the true data generating process corresponds to a single equi-
librium being realized ∀ν ∈ V , then the value of θ corresponding to this true data
generating process belongs to I and I cannot be empty. Conversely, each θ ∈ I

corresponds to a finite mixture over V which rationalizes the joint distribution
of players’ decisions conditional on XNE through a single equilibrium at each
realization of V . As a result, if I is not empty, the data can be rationalized by the
degenerate equilibrium selection and the finite mixture unobserved heterogeneity
assumptions.

Remark 2 (Equality restrictions). The conditions in part (iii) from Proposition
2 are equality restrictions and, therefore, drastically shrink the identified set. In
fact, as it is stated in Corollary 1, they shrink the identified set to a singleton if
|V | = 2 and the identified set is nonempty.

Remark 3 (Separately verifying finite mixture over unobserved heterogeneity).
By the nature of its defining restrictions, one can check whether I being empty
is due to a violation of the single equilibrium in the data assumption or the
finite mixture representation of the unobserved heterogeneity. Here, the identi-
fying restrictions in Assumption 5 are key. They allow one to identify p(y|ν)’s,
regardless of the number of equilibria realized at each ν ∈ V , using conditions (i)
and (ii) in Proposition 2. In the Monte Carlo simulations presented in Section 6,
the finite mixture restrictions are separately tested in order to assess what fraction
of test rejections are actually due the finite mixture representation being rejected
when it is true.

Remark 4 (Number of players and actions). A nice consequence of Proposition
2 is that increasing the number of players and/or the number of actions in the choice
set does not affect the dimension of , which is entirely driven by |V |. In that
sense, increasing N and/or J only adds more conditions that further restrict I.

Remark 5 (Separating the finite mixtures). Variation in X E restricts the set of
θ satisfying the conditions implied by the mixture over V . However, variation in
X E does not affect the conditions related to the single equilibrium in the data
assumption. In fact, X E is excluded from the equilibrium choice probabilities and
the equilibrium selection mechanism. In that sense, the proxy variables are key to
separate the two layers of finite mixtures: the one over the multiple equilibria and
the one over the unobserved heterogeneity.

4.7. The Special Case of a Mixture over Two Components

It is easy to represent graphically the identified set for |V | = 2 (for any N and J).
In that case, γ (xE) = γ

(
ν1
∣∣xE
)

and
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p(y|xE) = p
(

y|ν0)+ [p(y|ν1)−p
(

y|ν0)]γ (xE) . (26)

There are two parameters in θ , i.e., φ and ϒ , which are respectively given by the
first elements of (20) and (21). For |V | = 2, Proposition 1 implies that ∀y ∈ Y N :

p
(

y|ν0
)= p

(
y|x0

E

)− φ

ϒ

[
p
(

y| x̃1
E

)−p
(

y|x0
E

)]
, (27)

p
(

y|ν1
)= p

(
y|x0

E

)+ 1−φ

ϒ

[
p
(

y| x̃1
E

)
−p

(
y|x0

E

)]
. (28)

Moreover, ∀ xE ∈ XE:

γ (xE) = φ +ϒ
p
(

ỹ1
∣∣∣xE

)
−p

(
ỹ1
∣∣∣x0

E

)
p
(

ỹ1
∣∣∣ x̃1

E

)
−p

(
ỹ1
∣∣∣x0

E

) . (29)

For |V | = 2, it is useful to write the conditions defining I in terms of the
reparameterization −φ/ϒ , (1−φ)/ϒ and the following functions:

L0 (y) ≡ −p
(

y|x0
E

)
p
(

y| x̃1
E

)
−p

(
y|x0

E

) ; L1 (y) ≡ 1−p
(

y|x0
E

)
p
(

y| x̃1
E

)
−p

(
y|x0

E

) ;
and Q(xE) ≡

p
(

ỹ1
∣∣∣xE

)
−p

(
ỹ1
∣∣∣x0

E

)
p
(

ỹ1
∣∣∣ x̃1

E

)
−p

(
ỹ1
∣∣∣x0

E

) .

(30)

Notice that Q(xE) can be rewritten as
[
γ (xE)−γ

(
x0

E

)]
/
[
γ
(

x̃1
E

)
−γ

(
x0

E

)]
and

therefore does not depend on ỹ1.

Consider the case where p
(

y| x̃1
E

)
− p

(
y|x0

E

)
> 0. Part (i) in Proposition 2

simplifies to 0 < γ (xE) < 1 ∀xE ∈ XE. For a given xE, one can write,

γ (xE) > 0 ⇒ −φ

ϒ
< Q(xE) and (31)

γ (xE) < 1 ⇒ 1−φ

ϒ
> Q(xE) . (32)

Moreover, part (ii) in Proposition 2 simplifies to 0 ≤ p
(

y|ν l
) ≤ 1 ∀y ∈ Y N and

l = 0,1. For a given y ∈ Y N ,

0 ≤ p
(

y|ν0
)≤ 1 ⇒ L0 (y) ≤ −φ

ϒ
≤ L1 (y) and (33)

0 ≤ p
(

y|ν1
)≤ 1 ⇒ L0 (y) ≤ 1−φ

ϒ
≤ L1 (y) . (34)
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Considering p
(

y| x̃1
E

)
−p

(
y|x0

E

)
> 0 implies that L0 (y) ≤ Q(xE) ≤ L1 (y). There-

fore the upper bound on −φ/ϒ in (33) is satisfied whenever (31) holds. Similarly,
the lower bound on (1−φ)/ϒ in (34) is satisfied whenever (32) holds. Inequalities
(31)–(34) can therefore be summarized as

L0 (y) ≤ −φ

ϒ
< Q(xE) and Q(xE) <

1−φ

ϒ
≤ L1 (y) . (35)

A similar argument for the case where p
(

y| x̃1
E

)
− p

(
y|x0

E

)
< 0, which in turn

implies that L1 (y) ≤ Q(xE) ≤ L0 (y), gives

L1 (y) ≤ −φ

ϒ
< Q(xE) and Q(xE) <

1−φ

ϒ
≤ L0 (y) . (36)

Since these inequalities must hold for all y ∈ Y N and all xE ∈ XE, the restrictions
on θ coming from Proposition 2(i) and (ii) boil down to

max
y∈Y N

{min{L0 (y),L1 (y)}} ≤ −φ

ϒ
< min

xE∈XE
{Q(xE)} and (37)

max
xE∈XE

{Q(xE)} <
1−φ

ϒ
≤ min

y∈Y N
{max {L0 (y),L1 (y)}} . (38)

When |V | = 2, part (iii) from Proposition 2 is satisfied by at most one possible
couple −φ/ϒ , (1−φ)/ϒ . To see this, notice that for n = 1, Pζ

n

(
ν l
)

is simply the
matrix of the joint distribution of the decisions from players 1 and 2. A necessary
condition for rank

{
Pζ

n

(
ν l
)}= 1 is that all minors of order 2 computed from Pζ

n

(
ν l
)

must be equal to 0. As a result, using y1
i ,y

2
i to denote two arbitrary actions from

player i = 1,2, the following equation must hold for l = 0,1:

p
(

y1
1,y

1
2

∣∣ν l
)

p
(

y2
1,y

2
2

∣∣ν l
)−p

(
y1

1,y
2
2

∣∣ν l
)

p
(

y2
1,y

1
2

∣∣ν l
)= 0. (39)

Using Proposition 1, (39) defines a quadratic equation in −φ/ϒ for l = 0 and
another quadratic equation in (1−φ)/ϒ for l = 1. These quadratic equations
each have at most two solutions. Denote these solutions (−φ/ϒ)∗ and (−φ/ϒ)∗∗
for l = 0; ((1−φ)/ϒ)∗ and ((1−φ)/ϒ)∗∗ for l = 1. There are therefore at
most four possible candidates of couples −φ/ϒ , (1−φ)/ϒ that can satisfy
the conditions in Proposition 2(iii). Notice that, since the quadratic equations in
(39) have the same coefficients, the solutions are the same for both equations,
i.e., (−φ/ϒ)∗ = ((1−φ)/ϒ)∗ and (−φ/ϒ)∗∗ = ((1−φ)/ϒ)∗∗. However, since
−φ/ϒ �= (1−φ)/ϒ , there are two potentially valid solution couples: (−φ/ϒ)∗,
((1−φ)/ϒ)∗∗ and (−φ/ϒ)∗∗, ((1−φ)/ϒ)∗. Finally, since by definition φ ∈
(0,1), −φ/ϒ and (1−φ)/ϒ must be of opposite signs. Once one fixes ϒ > 0,
which is without loss of generality, there is only one solution couple such that
−φ/ϒ < 0 and (1−φ)/ϒ > 0. Let (−φ/ϒ)∗, ((1−φ)/ϒ)∗∗ be this couple.

The discussion above is summarized in Figure 2. The shaded area corresponds
to θ ’s that satisfy conditions (i) and (ii) from Proposition 2. The couple (−φ/ϒ)∗,
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−φ

ϒ

1−φ

ϒ

0

maxy∈Y N {min{L0 (y),L1 (y)}} minxE∈XE {Q(xE)}

maxxE∈XE {Q(xE)}

miny∈Y N {max{L0 (y),L1 (y)}}

(−φ

ϒ

)∗

(
1−φ

ϒ

)∗∗

Figure 2. Graphical representation of the identified set for the case |V | = 2.

((1−φ)/ϒ)∗∗, if it exists, is the only one that satisfies conditions (iii). As a result,
I �= ∅ if and only if this point falls in the shaded area.

As it is made obvious in Figure 2, part (iii) of Proposition 2 shrinks the identified
set to a singleton. This result is formally stated in Corollary 1.

Corollary 1 (Singleton nonempty I). If |V | = 2 and I �= ∅, then I is a
singleton.

Proof. The proof directly follows from noting that there is at most one couple
−φ/ϒ , (1−φ)/ϒ that satisfies conditions (iii) in Proposition 2. If it exists, this
couple defines a system of two equations in two unknowns which leads to at most
one θ ∈ I. �

Corollary 1 implies that if the data can be rationalized by a single equilibrium
and a finite mixture over |V | = 2 values of ν, the corresponding θ is point identified
(for any N and J). One way to interpret Corollary 1 is that, if one is willing
to assume that the degenerate equilibrium selection assumption holds, players’
decisions are independent given V and the finite mixture over V is point-identified
from variation in the proxy for V when |V | = 2. This result holds for any N and J.

Remark 6 (Point identification and relation to the literature). The result in
Corollary 1 leverages both the variation in the proxy for V and the conditional
independence of Y1, . . ., YN given V . In that sense, the fact that it delivers point
identification instead of set identification as in Henry et al. (2014) is not too
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surprising. Furthermore, applying the results from Hall and Zhou (2003) to the
current setting would imply that point identification of the mixture over V should
require N ≥ 3. However, Hall and Zhou (2003) only leverage the conditional
independence of Y1, . . ., YN given V . The mixture being point-identified even
if N = 2 in Corollary 1 is due to the identifying power of the proxy for V .

Remark 7 (Point identification with |V | > 2). The point identification result in
Corollary 1 does not directly extend to |V | > 2. The key feature of the |V | = 2 case
is that the conditions in part (iii) of Proposition 2 define equality constraints on the
reparameterization −φ/ϒ , (1−φ)/ϒ which can be used to construct a system of
two equations that are linear in the two unknowns φ and ϒ . In the case |V | > 2, this
reparameterization becomes [el −φ]′ ϒ ′−1 for l ∈ {0,1, . . . , |V |−1}. Even in cases
where the conditions in part (iii) from Proposition 2 would be satisfied by a unique
value of the reparameterized parameters, the resulting system of |V |× (|V |−1)

equations is not linear in the |V |× (|V |−1) elements of θ . There is therefore no
guarantee that a unique value of θ satisfies the conditions defining I.

5. STATISTICAL TEST

5.1. Testable Implications

The null hypothesis H0 : |T ∗ (x,ν)| = 1,∀ν ∈ V (x) in (10) cannot be directly
tested. In fact, it depends on ν ∈ V (x) which are unobservable. Nonetheless,
the identification results derived above suggest that I being nonempty is a
necessary condition of the single equilibrium in the data assumption in the presence
of discrete common knowledge unobserved heterogeneity. More formally, under
Assumptions 1 to 5, the null and alternative hypotheses in (10) lead to the following
testable implications:

H̃0 : I �= ∅; H̃1 : I = ∅. (40)

These testable implications are the ones that will be used to construct the statistical
test described in this section.

Of course, one drawback of considering testable implications is that, for some
data generating processes, H̃0 could be true even if H0 is false. This limitation of
the test is due to the fact that one does not observe the true p(y|ν)’s, but one knows
that they belong to a set. Some of the probabilities in this set may be rationalized
through a single equilibrium even if the data are generated by multiple ones.

In most cases, however, this possible drawback is not a concern. Proposition
3 states that if the number of players and/or the number of actions in the choice
set are large enough compared to |V |, testing H̃0 is both necessary and sufficient
for H0, except for a set of data generating processes that has Lebesgue measure
zero within the space of choice probabilities p(y|ν) ∀y ∈ Y N and ∀ν ∈ V . In that
sense, the testable implications are said to be generically sufficient for the single
equilibrium in the data assumption.
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Proposition 3 (Generically sufficient testable implications). Suppose that
Assumptions 1 to 5 are satisfied. Then, if

∑N−1
n=1

(n(J+1)

2

)(J+1
2

) ≥ |V |, I �= ∅ is
necessary and generically sufficient for |T ∗ (x,ν)| = 1,∀ν ∈ V (x).

Proof. See Appendix A.4. �

A few remarks are worth making about Proposition 3 and its implications.

Remark 8 (Condition not necessary). While the condition
∑N−1

n=1

(n(J+1)

2

)(J+1
2

)≥
|V | (along with Assumptions 1–5) guarantees that H̃0 is generically sufficient for
H0, it may not be necessary. In fact, the proof does not rule out that generic
sufficiency could hold even if this condition is not satisfied.

Remark 9 (Small numbers of players and actions).
∑N−1

n=1

(n(J+1)

2

)(J+1
2

) ≥ |V |
implies that H̃0 is not generically sufficient for H0 when N = 2 players choose
between J + 1 = 2 possible actions, even if |V | is as small as 2. However,
marginally increasing the number of players or the number of actions already
allows for a larger number of points in the support V while ensuring that H̃0 is
generically sufficient for H0. For games in which three players choose between
two actions, the condition for generic sufficiency is satisfied with |V | ≤ 7. With
two players and three actions, up to |V | ≤ 9 may be allowed for. In both cases,
the restriction |V | ≤ min

{
(J +1)N , |XE|} is still satisfied provided that there are

sufficient points in |XE|.
It is also worth emphasizing that, even in cases where the condition∑N−1
n=1

(n(J+1)

2

)(J+1
2

) ≥ |V | is not satisfied, a statistical test based on H̃0 remains
informative and is still of interest to applied researchers hoping to leverage
multiplicity of equilibria to identify payoff functions. In fact, if one rejects H̃0

then one must reject H0. As a result, rejecting H̃0 provides evidence of multiple
equilibria being realized in the data that is robust to discrete common knowledge
unobserved heterogeneity. In contrast, if one finds evidence of correlation between
players’ decisions using currently existing tests in the literature, it is not obvious
whether this correlation is due to multiple equilibria or to common knowledge
unobserved heterogeneity since the latter is assumed away.

Checking the testable implications of the single equilibrium in the data assump-
tion boils down to a specification test in partial identification.19 One can use the
intersection bounds approach from Chernozhukov et al. (2013) to perform this
test.20 The details about the implementation of their procedure in the current setting
are given in Appendix B.

19The idea of checking testable implications of a given assumption has also been suggested in other contexts. See,
for instance, Kitagawa (2015) for a test of instrument validity; Mourifié and Wan (2017) for local average treatment
effect assumptions; Ghanem (2017) for identifying assumptions in nonseparable panel data models; Hsu, Liu, and
Shi (2019) for generalized regression monotonicity; or Mourifié, Henry, and Méango (2020) for the Roy model. In
many cases, the proposed test is implemented via a specification test, similarly as in the current setting.
20A previously circulated version of the current paper used the inference method of Shi and Shum (2015) which
worked well and generated simulation results qualitatively similar to the ones reported below. However, Shi and
Shum’s (2015) approach requires to have at least one equality condition defining the identified set. While this
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5.2. Intersection Bounds Formulation

For a given xNE, the conditions defining I can be rewritten as inequalities that
are greater or equal to zero. These inequalities depend on the joint probabilities
of players’ decisions ∀y ∈ Y N and ∀xE ∈ XE. Let p be the vector collecting
all such probabilities21, and let p0 be the true value of p in the population.
For a given θ , collect the inequalities defining I in a L × 1 vector g

(
p0,θ

) ≡[
g1
(
p0,θ

)
, . . . ,gL

(
p0,θ

)]′
and let L ≡ {1,2, . . . ,L}. From this notation, one can

write the identified set as

I =
{
θ ∈  : inf

l∈L
gl
(
p0,θ

)≥ 0

}
. (41)

Testing θ ∈I is equivalent to testing infl∈L gl
(
p0,θ

)≥ 0 against infl∈L gl
(
p0,θ

)
<

0. Chernozhukov et al. (2013) propose an estimate of the end point of a 1−α one-
sided confidence interval for infl∈L gl

(
p0,θ

)
, denoted ĝ(θ,α), such that

ĝ(θ,α) = inf
l∈L

{
gl
(
p̂,θ
)+ ĉ(θ,1−α) σ̂l (θ)

}
, (42)

where ĉ(θ,1−α) is an estimated critical value and σ̂l (θ) is the estimated standard
error of gl

(
p̂,θ
)
. Details about ĉ(θ,1−α) and σ̂l (θ) are in Appendix B. The vector

p̂ is the estimate of the population probabilities p0 such that

M1/2
(
p̂−p0

) d→ N (0,�), (43)

where � is a block-diagonal matrix with xE-specific blocks � (xE)/Pr (X E = xE).
Chernozhukov et al. (2013) show that

limsup
M→∞

Pr

(
inf
l∈L

gl
(
p0,θ

)≥ ĝ(θ,α)

)
≤ α. (44)

It follows that one rejects the hypothesis that θ ∈ I at the 1−α confidence level
if ĝ(θ,α) < 0.

Testing the emptiness of I can be done by checking whether the confidence
set, i.e., the collection of θ ’s that belong to I with confidence level at least 1−α,
is empty.22 Let the confidence set be defined as

CSM (α) = {
θ ∈  : ĝ(θ,α) ≥ 0

}
. (45)

requirement is satisfied when testing (40) (i.e., testing necessary conditions for both the single equilibrium in the
data assumption and the finite mixture representation of the unobserved heterogeneity), it is not met when focusing
only on the conditions associated with the finite mixture representation (see Section 6.4).
21In practice, one should drop the probabilities associated with a given realization y since the probabilities over all
y ∈ Y N are linearly dependent. This transformation is not made explicit in the text to alleviate notation.
22Bugni, Canay, and Shi (2015) refer to such a specification test as the by-product test. They propose alternative
approaches that typically have relatively better power. However, their tests are designed for identified sets defined
according to moment inequalities and may not directly apply to the current setting.
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One can then consider the following non-randomized decision rule:

ξM =
{

1, if CSM (α) = ∅
0, otherwise.

(46)

Let Eθ [·] denote the expectation under the data generating process corresponding
to θ . In particular, for θ ∈ I, Eθ [ξM] is the probability of rejecting H̃0 : I �= ∅
when it is true. Proposition 4 states that the statistical test of this null hypothesis
based on the decision rule ξM is asymptotically level α.

Proposition 4 (Asymptotic level of the test). Suppose that:

(i) G(p,θ) ≡ ∂g(p,θ)/∂p′ is uniformly Lipschitz;
(ii) the euclidean norm of each row of G(p,θ) is bounded away from 0 uniformly

in xNE and y;
(iii) the eigenvalues of � are bounded from above and away from 0; and
(iv) �̂ is a consistent estimator of �.

Then, for any θ ∈ I, limsup
M→∞

Eθ [ξM] ≤ α.

Proof. The result follows from Chernozhukov et al. (2013), Thm. 4, p. 694).
Details are provided in Appendix A.5. �

5.3. Computational Aspects

The conditions defining I are nonlinear in the elements of θ and, therefore, one
would typically perform a grid search over the parameter space in order to check
whether CSM (α) is empty. Of course, since the dimension of the parameter space
increases in |V | – there are |V | × (|V |−1) elements in θ – the computational
burden of the test increases with the number of components in the mixture over
the unobserved heterogeneity. The dimension of the parameter space that one must
deal with in the current test is inherited from the partial identification of the finite
mixture over the unobserved heterogeneity and is therefore exactly the same as in
Henry et al. (2014).

There is however a nice feature of I that can be leveraged to considerably
reduce the computational burden of the test: the equality constraints in part (iii)
from Proposition 2. These equality constraints considerably shrink the identified
set and can be used to choose starting values from the gridded parameter space.
To see this, notice that the condition rank

{
Pζ

n

(
ν l
)}= 1 implies that all minors of

order 2 constructed from Pζ
n

(
ν l
)

must be equal to 0. Using (25), part (iii) from
Proposition 2 defines quadratic expressions in reparameterizations of θ given by
[el −φ]′ ϒ ′−1 for l ∈ {0,1, . . . , |V |−1} that must simultaneously be equal to 0.
If |V | = 2, these equality restrictions define the roots of parabolas which can be
easily computed in closed form. One can then use the values from the grid that are
the closest to the roots as starting values in the grid search. If |V | = 3, the equality
restrictions define conic sections and the (reparameterized) values of θ that belong
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to I are defined by the intersections of these conic sections. If |V | > 3 these
values are at the intersections of quadric surfaces. While implementing algorithms
to find the intersections of conic sections or quadric surfaces may be challenging
(see e.g., Chan, 2006), the ability to initiate the grid search at values that are close
to conic sections or quadric surfaces may considerably reduce the computational
burden.

It is also worth describing how many inequalities must typically be checked to
see if θ belongs to CSM (α).23 Parts (i) and (ii) in Proposition 2 are written in terms
of convex hulls and ranges of functions as in Henry et al. (2014). Alternatively,
part (i) can be written as minxE∈XE

{
γ
(
ν l
∣∣xE
)} ≥ 0 for l = 1, . . . , |V | − 1 and

maxxE∈XE

{∑|V |−1
l=1 γ

(
ν l
∣∣xE
)}

< 1, leading to |V | conditions to check. Part (ii)

can also be written as miny∈Y N p(y|ν) ≥ 0 and
∑

y∈Y N p(y|ν) = 1 ∀ν ∈ V .
Notice, however, that the latter equality is always satisfied given the expression
for p(y|ν) in Proposition 1 since

∑
y∈Y N p(y|xE) = 1. Part (ii) therefore leads to

|V | inequalities. Finally, equalities in part (iii) of Proposition 2, more precisely the
conditions that all minors of order 2 must be equal to 0, lead to two inequalities:
both the minimum value of all minors of order 2 and the minimum value of the
negative of all minors of order 2 must be greater than or equal to 0. Overall, there
are therefore 2×|V |+2 inequalities to check to see if θ belongs to CSM (α).

6. MONTE CARLO SIMULATIONS

This section provides simulation evidence in order to investigate the statistical size
and power of the test for the single equilibrium in the data assumption based on
the testable implications. More precisely, the size of the test is the probability of
rejecting H̃0 (i.e., ξM = 1) when H0 is true (i.e., there is a single equilibrium in the
data for all values of ν). The power of the test is the probability of rejecting H̃0 (i.e.,
ξM = 1) when H0 is false (i.e., there are multiple equilibria in the data for some
value(s) of ν). The robustness of the test under some levels of misspecification is
also studied.

6.1. Data Generating Processes

The data generating processes are based on the simple game of market entry
introduced in Example 1. The N = 2 version of the model as described above,
as well as a N = 3 extension are considered. Different data generating processes
are created by varying equilibrium selection mechanisms and realizations of V .
The analysis of the size and the power of the test is based on a total of 13 different
cases which vary according to the number of players, the number of equilibria
realized in the data, which equilibria are realized and the equilibrium selection
mechanisms. Six other cases are included to study whether the test is robust

23Appendix B provides a detailed description for the case with N players, J +1 actions and |V | = 2 components in
the mixture over the unobserved heterogeneity, which is implemented in the Monte Carlo simulations.
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to some potential misspecifications. In particular, the simulations investigate the
effect of misspecifying the number of components in the finite mixture over V
and incorrectly discretizing the support of X E. The 19 different data generating
processes are summarized in Table 1.

When N = 2, let firms’ payoffs be

π1 (1,y2,xNE,ν1,ε1) = xNE,1 +ν1 −4y2 − ε1, (47)

π2 (1,y1,xNE,ν2,ε2) = xNE,2 +ν2 −3y1 − ε2. (48)

When N = 3, firms’ payoffs are given by

π1 (1,y2,y3,xNE,ν1,ε1) = xNE,1 +ν1 −4(y2 + y3)− ε1, (49)

π2 (1,y1,y3,xNE,ν2,ε2) = xNE,2 +ν2 −3(y1 + y3)− ε2, (50)

π3 (1,y1,y2,xNE,ν3,ε3) = xNE,3 +ν3 −3.5(y1 + y2)− ε3. (51)

Similarly as before, let pi (1|ν) denote the probability that yi = 1, given xNE

(dropped to alleviate notation) and ν. Then, for N = 2, the BNE in pure strategies
indexed by τ is such that

p(ν,τ ) ≡
[

p1 (1|ν,τ )

p2 (1|ν,τ )

]
=
[
�
(
xNE,1 +ν1 −4p2 (1|ν,τ )

)
�
(
xNE,2 +ν2 −3p1 (1|ν,τ )

)] . (52)

For N = 3, it becomes

p(ν,τ ) ≡
⎡⎣p1 (1|ν,τ )

p2 (1|ν,τ )

p3 (1|ν,τ )

⎤⎦=
⎡⎣ �

(
xNE,1 +ν1 −4(p2 (1|ν,τ )+p3 (1|ν,τ ))

)
�
(
xNE,2 +ν2 −3(p1 (1|ν,τ )+p3 (1|ν,τ ))

)
�
(
xNE,3 +ν3 −3.5(p1 (1|ν,τ )+p2 (1|ν,τ ))

)
⎤⎦ .

(53)

For most data generating processes, xNE ≡ [
xNE,1,xNE,2,xNE,3

]′ = [1,1,1]′ and

ν l = [
ν l

1,ν
l
2,ν

l
3

]′
for l = 0,1 such that ν0 = [1,0.5,0.5]′, ν1 = [1.25,1,1.25]′.

When studying robustness of the test, some cases add one more realization
ν2 = [0.5,0.25]′ to the data generating process described above with N = 2.
Table 2 summarizes the multiple equilibria of the model. For N = 2, this model
admits three solutions for each ν. When N = 3, there are five solutions for each
realization ν.

All data generating processes are such that at most two equilibria are realized in
the data for each value of ν. With N = 2, these equilibria are T ∗ (ν0

) = {1,3},
T ∗ (ν1

) = {2,3}, and T ∗ (ν2
) = {2,3}. With N = 3, let T ∗ (ν0

) = {4,5} and
T ∗ (ν1

) = {1,2}. In all cases, let λ(ν) be λ(τ |ν) for τ corresponding to the first
element in T ∗ (ν). Varying T ∗ (ν) and λ(ν) leads to H0 and H̃0 being true or false
depending on the data generating process.

When studying the size and the power of the test, there are four different
realizations of xE. For each of these realizations, the weights associated with ν1 are
listed in Table 3 where γ (xE) ≡ γ

(
ν1
∣∣xE
)
. Since γ

(
x0

E

)= 0.05 and γ
(
x1

E

)= 0.95,
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Table 1. Description of data generating processes

Case H0 H̃0 N Description

Size

S1 True True 2 T ∗ (ν0
)= {3}; λ

(
ν0
)= 1; T ∗ (ν1

)= {3}; λ
(
ν1
)= 1

S2 True True 2 T ∗ (ν0
)= {3}; λ

(
ν0
)= 1; T ∗ (ν1

)= {2}; λ
(
ν1
)= 1

S3 True True 2 T ∗ (ν0
)= {1}; λ

(
ν0
)= 1; T ∗ (ν1

)= {3}; λ
(
ν1
)= 1

S4 True True 2 T ∗ (ν0
)= {1}; λ

(
ν0
)= 1; T ∗ (ν1

)= {2}; λ
(
ν1
)= 1

S5 True True 3 T ∗ (ν0
)= {5}; λ

(
ν0
)= 1; T ∗ (ν1

)= {2}; λ
(
ν1
)= 1

Power

P1 False False 2 T ∗ (ν0
)= {1,3}; λ

(
ν0
)= 0.25; T ∗ (ν1

)= {2,3}; λ
(
ν1
)= 0.90

P2 False False 2 T ∗ (ν0
)= {1,3}; λ

(
ν0
)= 0.35; T ∗ (ν1

)= {2,3}; λ
(
ν1
)= 0.90

P3 False False 2 T ∗ (ν0
)= {1,3}; λ

(
ν0
)= 0.35; T ∗ (ν1

)= {2,3}; λ
(
ν1
)= 0.55

P4 False False 2 T ∗ (ν0
)= {1,3}; λ

(
ν0
)= 0.35; T ∗ (ν1

)= {2,3}; λ
(
ν1
)= 0.05

P5 False False 2 T ∗ (ν0
)= {1,3}; λ

(
ν0
)= 0.85; T ∗ (ν1

)= {2,3}; λ
(
ν1
)= 0.90

P6 False True 2 T ∗ (ν0
)= {1,3}; λ

(
ν0
)= 0.90; T ∗ (ν1

)= {2,3}; λ
(
ν1
)= 0.50

P7 False False 2 T ∗ (ν0
)= {1,3}; λ

(
ν0
)= 0.25; T ∗ (ν1

)= {2}; λ
(
ν1
)= 1

P8 False False 3 T ∗ (ν0
)= {4,5}; λ

(
ν0
)= 0.25; T ∗ (ν1

)= {1,2}; λ
(
ν1
)= 0.90

Robustness

R1 True True 2 T ∗ (ν0
)= {3}; λ

(
ν0
)= 1; T ∗ (ν1

)= {3}; λ
(
ν1
)= 1; T ∗ (ν2

)= {3}; λ
(
ν2
)= 1

R2 False False 2 T ∗ (ν0
)= {1,3}; λ

(
ν0
)= 0.25; T ∗ (ν1

)= {2,3}; λ
(
ν1
)= 0.90; T ∗ (ν2

)= {2,3}; λ
(
ν2
)= 0.50

R3 True True 2 T ∗ (ν0
)= {3}; λ

(
ν0
)= 1; T ∗ (ν1

)= {3}; λ
(
ν1
)= 1; pool x2

NE, x3
NE

R4 True True 2 T ∗ (ν0
)= {3}; λ

(
ν0
)= 1; T ∗ (ν1

)= {3}; λ
(
ν1
)= 1; pool x0

NE, x1
NE

R5 False False 2 T ∗ (ν0
)= {1,3}; λ

(
ν0
)= 0.25; T ∗ (ν1

)= {2,3}; λ
(
ν1
)= 0.90; pool x2

NE, x3
NE

R6 False False 2 T ∗ (ν0
)= {1,3}; λ

(
ν0
)= 0.25; T ∗ (ν1

)= {2,3}; λ
(
ν1
)= 0.90; pool x0

NE, x1
NE

Note: H0 : |T ∗ (x,ν)| = 1,∀ν ∈ V (x) and H̃0 : I �= ∅. λ(ν) is λ( τ |ν) for τ corresponding to the first element in T ∗ (ν).
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Table 2. Multiple equilibria in the model

N = 2 N = 3

ν0 ν1 ν2 ν0 ν1

p(ν,τ = 1) (0.05, 0.91) (0.05, 0.97) (0.02, 0.88) (0.03, 0.17, 0.78) (0.01, 0.55, 0.62)

p(ν,τ = 2) (0.50, 0.50) (0.77, 0.38) (0.55, 0.34) (0.04, 0.90, 0.04) (0.01, 0.20, 0.93)

p(ν,τ = 3) (0.95, 0.09) (0.90, 0.24) (0.88, 0.08) (0.04, 0.25, 0.68) (0.02, 0.94, 0.13)

p(ν,τ = 4) – – – (0.49, 0.48, 0.03) (0.75, 0.33, 0.06)

p(ν,τ = 5) – – – (0.75, 0.33, 0.06) (0.89, 0.20, 0.06)

Note: p(ν,τ ) is the vector containing each player’s probability of choosing yi = 1 given xNE (dropped
to alleviate notation) and ν in equilibrium τ .

Table 3. Mixture weights for unobserved heterogeneity

x0
E x1

E x2
E x3

E

γ (xE) 0.05 0.95 0.50 0.65

Note: γ (xE) ≡ γ
(
ν1
∣∣xE

)
.

it follows that φ0 = 0.05 and ϒ0 = 0.90. These weights will be modified for some
of the robustness analysis provided below.

For a given Monte Carlo sample, the joint conditional choice probabilities in
p0 are estimated using a simple frequency count estimator. Since estimated choice
probabilities equal to 0 may lead to ill-defined test statistics, 0’s are replaced with
10−6 and the vector of choice probabilities given xE is normalized to sum to 1.
Moreover, since the sets X̃E and Ỹ N are arbitrary, let x̃0

E = x0
E, x̃1

E = x1
E, and let

ỹ1 be the value of y ∈ Y N that maximizes p̂
(

y| x̃1
E

)
− p̂

(
y| x̃0

E

)
. This is done to

avoid p̂
(

ỹ1
∣∣∣ x̃1

E

)
− p̂

(
ỹ1
∣∣∣ x̃0

E

)
= 0 which would cause the procedure to fail.

In order to compute ξM , one must span the parameter space , at least
until CSM (α) is found to be nonempty. Simulations below use the grid
{0.005,0.01, . . . ,0.99,0.995} for both φ and ϒ . As described in Section 5.3,
equality restrictions from Proposition 2 part (iii) are used to choose starting values
on the grid. If these starting values are not in CSM (α), the method considers each
possible value of θ in this discretized parameter space (subject to φ +ϒ < 1) and
computes ĝ(θ,α) as in (42) where the details about the construction of the critical
values and the standard errors are in Appendix B. When computing the critical
values, R = 500 draws are used. The results report different sample sizes for each
value of xE denoted by M (xE) ∈ {50,250,500,1,000}. In most cases, let |XE| = 4
(such that M ∈ {200,1,000,2,000,4,000}). The only exceptions are cases R3–R6
in which the incorrectly discretized support of X E is such that |XE| = 3 (and
M ∈ {150,750,1,500,3,000}). The rejection probabilities of the test, for α = 0.1
and α = 0.05, are computed using 250 Monte Carlo samples.
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Table 4. Size of the test

M (xE) = 50 M (xE) = 250 M (xE) = 500 M (xE) = 1,000

Case α = 0.1 α = 0.05 α = 0.1 α = 0.05 α = 0.1 α = 0.05 α = 0.1 α = 0.05

All restrictions

S1 17.6 13.6 20.8 18.4 9.6 7.2 3.6 2.0

S2 54.4 47.2 15.2 14.4 4.0 4.0 2.4 1.6

S3 24.4 24.4 0.0 0.0 0.0 0.0 0.0 0.0

S4 29.2 28.4 0.0 0.0 0.0 0.0 0.0 0.0

S5 3.2 2.0 30.4 23.2 29.6 23.6 14.4 10.4

Finite mixture restrictions only

S1 6.8 2.8 12.4 10.4 6.8 5.6 0.8 0.8

S2 50.0 41.6 12.8 12.8 2.8 2.8 0.0 0.0

S3 24.4 24.4 0.0 0.0 0.0 0.0 0.0 0.0

S4 28.4 28.4 0.0 0.0 0.0 0.0 0.0 0.0

S5 1.6 1.6 16.4 15.6 13.6 12.8 1.6 1.2

Notes: Rejection probabilities in % computed over 250 Monte Carlo samples. Critical values to
construct the confidence set use 500 draws. The finite mixture restrictions hold in all data generating
processes.

6.2. Size of the Test

Cases S1–S5 are such that the data are generated from a single equilibrium at ν0

and ν1. For these cases, I �= ∅. The probabilities of rejecting H̃0 are reported in
the first part of Table 4. A few comments are worth making. First, cases S1–S4
confirm that the test defined by ξM in (46) is asymptotically level α, as expected
from Proposition 4. However, the test is somewhat conservative. This observation
is in fact a common feature of specification tests in partial identification that are
based on checking whether the confidence set is empty. In the context of identified
sets defined according to moment inequalities, Andrews and Guggenberger (2009)
and Andrews and Soares (2010) have already pointed out that such tests may have
asymptotic size strictly smaller than α.

Second, the main difference between case S5 and the previous ones is that the
former is a game between N = 3 players instead of 2. Since there are 2N − 1
probabilities to be estimated for each xE, the case with N = 3 requires greater
sample sizes for the asymptotic properties to apply. Notice that the rejection
probabilities when M (xE) = 50 are much smaller than the ones obtained for larger
sample sizes. However, this observation seems to be due to several estimated
probabilities in p̂ being zeros (therefore set to 10−6 before normalizing the sum
to 1) in small samples. The results for M (xE) = 50 should therefore be interpreted
with caution. The test does over reject in case S5 even at M (xE) = 1,000, but the
probability of rejecting typically decreases as sample size increases.

Testing whether I is empty amounts to checking the testable implications
associated with both the single equilibrium in the data assumption and the finite
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mixture representation of the unobserved heterogeneity. One may therefore won-
der if rejecting H̃0 is due to rejecting the single equilibrium in the data assumption
or the finite and discrete unobserved heterogeneity assumptions. An appealing
feature of the proposed test is that it allows the researcher to separately check
whether the restrictions due to the finite mixture representation are satisfied even
if one rejects I �= ∅.

The second half of Table 4 reports the probability of rejecting the finite
mixture assumptions, which are satisfied in all data generating processes. These
probabilities are computed over the same Monte Carlo samples as when checking
all restrictions. The only difference is that ĝ(θ,α) is now constructed using only
the restrictions associated with the finite mixture over V . The results confirm that,
except in a few cases, a non negligible fraction of the rejections of H̃0 when H0 is
true are due to the testable implications of the single equilibrium assumption being
violated.

6.3. Power of the Test

Cases P1–P8 are based on the same data generating processes as for cases S1–
S5, but using different equilibrium selection mechanisms. All cases except P7 mix
two equilibria for both ν0 and ν1. Case P7 is such that there are two equilibria
realized in the data for ν0, but a single one for ν1. All eight cases violate the single
equilibrium in the data assumption and are such that H0 is false. For all cases except
P6, H̃0 is also false. In fact, for games between two players choosing one of two
actions with two components in the mixture over V , Proposition 3 implies that the
set of data generating processes for which H̃0 is true even if H0 is false does not
have Lebesgue measure zero. Case P6 is included as an example of such a data
generating process.

While the test has power approaching 1 in large samples for most data generating
processes reported in the table, the power is actually quite low in cases P5 and P6
even for large sample sizes. The power issue associated with P6 is as expected:
the data can be rationalized by a single equilibrium (H̃0 is true) even if the data
are generated from multiple equilibria (H0 is false). In this case, one expects the
test to reject H̃0 with probability at most α asymptotically since the data are still
rationalizable by a single equilibrium.

The rejection probabilities associated with case P5 suggest that the test may
have much better power for some alternative equilibrium selection mechanisms
than others. Further investigation of the properties of this data generating process
suggest that the low power associated with P5 is due to the fact that, even if I = ∅,
the data are “almost” rationalizable by a single equilibrium not too far from the true
equilibrium choice probabilities. The intuition can be understood via Figure 2. The
singleton satisfying conditions (iii) in Proposition 2 falls outside of, but very close
to the shaded area defined by conditions (i) and (ii). It is therefore not surprising
to find that the test has low power in this case.

Similarly as when analyzing the size of the test, the second panel of Table 5
is used to assess whether the test successfully rejects H̃0 based on a violation
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Table 5. Power of the test

M (xE) = 50 M (xE) = 250 M (xE) = 500 M (xE) = 1,000

Case α = 0.1 α = 0.05 α = 0.1 α = 0.05 α = 0.1 α = 0.05 α = 0.1 α = 0.05

All restrictions

P1 86.4 82.4 100.0 100.0 100.0 100.0 100.0 100.0

P2 84.6 77.6 100.0 100.0 100.0 100.0 100.0 100.0

P3 71.6 63.2 100.0 99.6 100.0 100.0 100.0 100.0

P4 60.8 55.6 94.0 90.0 99.6 98.8 100.0 100.0

P5 6.4 4.8 4.0 2.4 7.6 3.2 20.0 11.2

P6 6.4 5.6 0.0 0.0 0.0 0.0 0.0 0.0

P7 88.4 83.6 100.0 100.0 100.0 100.0 100.0 100.0

P8 15.2 11.6 62.8 52.4 88.8 75.6 98.8 97.6

Finite mixture restrictions only

P1 3.2 3.2 0.0 0.0 0.0 0.0 0.0 0.0

P2 2.8 2.8 0.0 0.0 0.0 0.0 0.0 0.0

P3 4.0 4.0 0.0 0.0 0.0 0.0 0.0 0.0

P4 18.4 18.4 0.0 0.0 0.0 0.0 0.0 0.0

P5 4.4 4.4 0.0 0.0 0.0 0.0 0.0 0.0

P6 5.6 5.6 0.0 0.0 0.0 0.0 0.0 0.0

P7 2.8 2.8 0.0 0.0 0.0 0.0 0.0 0.0

P8 9.2 9.2 10.8 9.2 5.2 2.8 1.6 0.8

Notes: Rejection probabilities in % computed over 250 Monte Carlo samples. Critical values to
construct the confidence set use 500 draws. The finite mixture restrictions hold in all data generating
processes.

of the single equilibrium in the data restrictions or the failure to rationalize the
data via a finite mixture over the unobserved heterogeneity. The finite mixture
restrictions hold in the data generating processes and these restrictions should be
seldom rejected in large samples. The results show that the test is successful at
separating the two types of conditions. In large samples, the test almost always
rejects the testable implications of the single equilibrium in the data assumption,
but fails to reject the testable implications of the finite mixture representation.

6.4. Robustness

Finally, because the proposed test is based on a specification test, it is worth explor-
ing the approach’s sensitivity to some potential misspecifications. In particular,
simulations reported below provide evidence that I is not de facto empty as soon
as some of the assumptions maintained about the data generating process are not
exactly satisfied. The following experiences explore some level of misspecification
with respect to the support of the unobserved heterogeneity and the variable
satisfying the exclusion restriction.
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Table 6. Mixture weights for unobserved heterogeneity (robustness)

x0
E x1

E x2
E x3

E

γ
(
ν1
∣∣xE
)

0.05 0.85 0.25 0.45

γ
(
ν2
∣∣xE
)

0.05 0.10 0.25 0.20

So far, the number of components in the finite mixture over the unobserved
heterogeneity, i.e., |V |, has been assumed to be known.24 Cases R1 and R2
investigate the effect of incorrectly assuming |V | = 2 when |V | = 3 in the data
generating process (with mixture weights in Table 6). While in R1, the data are
generated from a single equilibrium for each ν, there are two equilibria for each ν

in R2.
The rejection probabilities computed via Monte Carlo simulations for cases

R1 and R2 are reported in the corresponding rows of Table 7. This type of
misspecification does not alter the properties of the test. In R1, even if |V | = 3
in the data generating process, I �= ∅ which suggests that the data are still ratio-
nalizable by a single equilibrium and a finite mixture counting two components.
In that case, the misspecified test still achieves asymptotic size control. In R2,
where there are multiple equilibria in the data, the data cannot be rationalized
by a single equilibrium and a finite mixture over two components of unobserved
heterogeneity, i.e., I = ∅. Once again, the power of the misspecified test tends to
1 as the sample size increases.

Interestingly, for both R1 and R2, one rarely rejects the testable restrictions
associated with |V | = 2 even if the true mixture is such that |V | = 3, at least
in large samples. In other words, the data are still rationalizable by a finite mixture
over two components even if there are three components in the generating process.
However, it is easy to see that the current test would not be robust to incorrectly
assuming |V | = 2 when in fact |V | = 1. Asymptotically, p(y|xE) would not vary
with xE which implies that Q(xE), L0 (y) and L1 (y) are not defined and I = ∅
regardless of the number of equilibria realized in the data.

Cases R3–R6 evaluate the effect of incorrectly discretizing XE.25 This exper-
iment is meant to address the concern that some variables used as proxy for the
unobserved heterogeneity may be continuous in nature and discretized by the
applied researcher. In order to assess the effect of an incorrect discretization of
the support of such proxy variables in a simple way, suppose that some values of
xE are pooled together when estimating p0. Cases R3 and R5 pool the true x2

E and
x3

E; R4 and R6 pool the true x0
E and x1

E. In all cases, the test is performed after

24As mentioned in Lemma 1, this number is point-identified from the rank of a matrix. Although one could perform
a rank test to check whether the maintained number of components is rejected by the sample, the current procedure is
not augmented with such a pre-testing approach in order to avoid issues related with testing multiple null hypotheses.
25While properly discretizing XNE is also an important decision to be made, such potential misspecification is not
included in the simulations. Pooling together values of xNE associated with significantly different equilibria would
likely be problematic not only for a test of the single equilibrium in the data assumption, but also for the estimation
of the primitives of the model.
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Table 7. Robustness of the test

M (xE) = 50 M (xE) = 250 M (xE) = 500 M (xE) = 1,000

Case α = 0.1 α = 0.05 α = 0.1 α = 0.05 α = 0.1 α = 0.05 α = 0.1 α = 0.05

All restrictions

R1 10.0 4.4 23.2 20.8 10.0 7.6 7.6 6.4

R2 64.4 56.8 100.0 100.0 100.0 100.0 100.0 100.0

R3 18.4 13.6 20.4 18.8 10.0 6.8 3.2 2.0

R4 25.2 22.4 5.2 4.4 4.4 3.2 2.4 1.6

R5 86.0 82.0 100.0 100.0 100.0 100.0 100.0 100.0

R6 8.0 5.6 10.4 7.2 9.2 6.8 10.4 6.4

Finite mixture restrictions only

R1 7.2 2.8 11.2 6.0 4.8 3.6 0.4 0.4

R2 2.8 2.8 0.0 0.0 0.0 0.0 0.0 0.0

R3 6.8 4.4 13.2 10.0 6.8 6.0 0.8 0.8

R4 5.6 3.2 0.8 0.8 0.0 0.0 0.0 0.0

R5 3.2 3.2 0.0 0.0 0.0 0.0 0.0 0.0

R6 0.4 0.4 0.4 0.4 0.0 0.0 0.0 0.0

Notes: Rejection probabilities in % computed over 250 Monte Carlo samples. Critical values to
construct the confidence set use 500 draws. The finite mixture restrictions hold in all data generating
processes.

having estimated the joint distributions conditional on the remaining three values.
The data generating processes for R3 and R4 are exactly the same as in S1 (i.e.,
both H0 and H̃0 are true). For R5 and R6, the data are generated as in P1 (i.e., both
H0 and H̃0 are false).

The rejection probabilities are also reported in Table 7. While incorrectly
pooling x2

E and x3
E does not affect much the size and the power of the test, the

wrong discretization that fails to separate x0
E and x1

E can lead to important changes
in the rejection probabilities. In fact, the rejection probabilities for R3 and R5 are
very similar to the ones in their properly discretized counterparts (respectively S1
and P1). However, this similarity does not hold for R4 and R6. This important
distinction across the alternative discretizations may be due to the fact that the
differences between γ (xE)’s is much larger for x0

E vs. x1
E than for x2

E vs. x3
E.

Finally, in cases R1, R4, and R6, the procedure fails in some rare instances (at
most three out of 250 Monte Carlo samples, almost exclusively when M (xE) = 50).
Such failures were not encountered in cases S1–S5 nor P1–P8.

7. CONCLUDING REMARKS

To sum up, the test of the single equilibrium in the data assumption presented in
the current paper addresses two important issues associated with the procedures
previously proposed in the literature. First, it allows for common knowledge
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payoff-relevant unobservables, which is an extra source of plausible correlation
between players’ decisions beyond multiple equilibria being realized in the data.
Second, the proposed test does not require the estimation of payoff functions to
separate the problems of multiple equilibria and common knowledge unobserved
heterogeneity. The latter feature of the test is useful for empirical researchers
interested in testing degenerate equilibrium selection in hope of leveraging mul-
tiple equilibria as a source of variation to identify payoffs when commonly used
exclusion restrictions are not available. Moreover, no parametric assumption is
needed for the payoff functions nor the distributions of the unobservables, besides
the finite mixture representation (which implies restrictions that are separately
testable). The main identifying assumption is the existence of an observable
variable which can be interpreted as a proxy variable for the common knowledge
unobserved heterogeneity. The testable implications are generically sufficient for
the single equilibrium in the data assumption under some verifiable conditions.
The test boils down to a specification test and it can be implemented using the
intersection bounds framework of Chernozhukov et al. (2013) which has nice
properties corroborated in simulations.

APPENDIX A. PROOFS

A.1. Proof of Lemma 1

While Henry et al. (2014) only consider mixtures of marginal distributions, their results also
apply to mixtures of joint distributions. Notice that the (i,j)th element of �P(xNE) can be
written as

|V (xNE)|−1∑
l=0

p
(

yj
∣∣∣xNE,νl

)[
γ
(

νl
∣∣∣xNE,xi

E

)
−γ

(
νl
∣∣∣xNE,x0

E

)]
. (A.1)

Moreover, since γ
(

ν0
∣∣∣xNE,xE

)
= 1−∑|V (xNE)|−1

l=1 γ
(

νl
∣∣∣xNE,xE

)
∀xE ∈ XE, (A.1) is

equivalent to

|V (xNE)|−1∑
l=1

p
(

yj
∣∣∣xNE,νl

)[
γ
(

νl
∣∣∣xNE,xi

E

)
−γ

(
νl
∣∣∣xNE,x0

E

)]

−p
(

yj
∣∣∣xNE,ν0

) |V (xNE)|−1∑
l=1

[
γ
(

νl
∣∣∣xNE,xi

E

)
−γ

(
νl
∣∣∣xNE,x0

E

)]
.

(A.2)

In other words, the matrix �P(xNE) can be written as the product of two matrices. The

first one is a (|XE|−1) × (|V (xNE)|−1) matrix with (i,j)th element γ
(

νj
∣∣∣xNE,xi

E

)
−

γ
(

νj
∣∣∣xNE,x0

E

)
. The second one is a (|V (xNE)|−1)×(J +1)N matrix with (i,j)th element

p
(

yj
∣∣∣xNE,νi

)
−p

(
yj
∣∣∣xNE,ν0

)
. By Assumption 5(vi), the second matrix is full row rank.

The rank of the product of the two matrices is therefore equal to the rank of the first matrix,
which is |V (xNE)|−1 by Assumption 5(v).
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A.2. Proof of Proposition 1

For any yζ ∈ Y Nζ
, N ζ ⊆ N , xE ∈ XE, one can write

p
(

yζ
∣∣∣xE

)
= p

(
yζ
∣∣∣ν0
)

+
|V |−1∑

l=1

[
p
(

yζ
∣∣∣νl
)

−p
(

yζ
∣∣∣ν0
)]

γ
(

νl
∣∣∣xE

)
. (A.3)

Evaluating (A.3) at x0
E, one gets

p
(

yζ
∣∣∣x0

E

)
= p

(
yζ
∣∣∣ν0
)

+
|V |−1∑

l=1

[
p
(

yζ
∣∣∣νl
)

−p
(

yζ
∣∣∣ν0
)]

γ
(

νl
∣∣∣x0

E

)
. (A.4)

First, consider the expression of p
(

yζ
∣∣∣νl
)

. Some more notation is needed. Let δ
(

yζ
)

be

the (|V |−1)× 1 vector with lth element p
(

yζ
∣∣∣νl
)

− p
(

yζ
∣∣∣ν0
)

, and let ϒc (x̃E
)

be the

column of ϒ corresponding to x̃E. Evaluating (A.3) at any x̃E ∈ X̃E and subtracting (A.4)
from it, one can write

p
(

yζ
∣∣∣ x̃E

)
−p

(
yζ
∣∣∣x0

E

)
= ϒc (x̃E

)′
δ
(

yζ
)

(A.5)

such that the yζ -specific column of �P̃
ζ

is �p̃ζ,c
(

yζ
)

= ϒ ′δ
(

yζ
)

. Since ϒ is invertible,

it follows that δ
(

yζ
)

= ϒ ′−1�p̃ζ,c
(

yζ
)

. Rearranging (A.4), p
(

yζ
∣∣∣ν0
)

can be written as

p
(

yζ
∣∣∣ν0
)

= p
(

yζ
∣∣∣x0

E

)
−φ′ϒ ′−1�p̃ζ,c

(
yζ
)

. (A.6)

Furthermore, for any νl with l �= 0, p
(

yζ
∣∣∣νl
)

= p
(

yζ
∣∣∣ν0
)
+p

(
yζ
∣∣∣νl
)
−p

(
yζ
∣∣∣ν0
)

such

that

p
(

yζ
∣∣∣νl
)

= p
(

yζ
∣∣∣x0

E

)
−φ′ϒ ′−1�p̃ζ,c

(
yζ
)

+ e′
lϒ

′−1�p̃ζ,c
(

yζ
)

. (A.7)

It follows that p
(

y|νl
)

for any l = 0,1, . . . , |V |−1 is written as

p
(

yζ
∣∣∣νl
)

= p
(

yζ
∣∣∣x0

E

)
+ [el −φ]′ ϒ ′−1�p̃ζ,c

(
yζ
)

(A.8)

which is the expression in Proposition 1.
Second, consider the expression for γ (xE). Since γ (xE) does not depend on y, the

expression can be derived for any subset N ζ ⊆ N . Without loss of generality, consider N .

Using (A.8), the (|V |−1) × (J +1)N matrix with (i,j)th element p
(

yj
∣∣∣νi
)

− p
(

yj
∣∣∣ν0
)

can be written as ϒ ′−1�P̃. Therefore, subtracting (A.4) from (A.3) for all y ∈ Y N , the
xE-specific row of �P̃ is �p̃r (xE)′ = [γ (xE)−φ]′ ϒ ′−1�P̃. Since ϒ and �P̃ are both
invertible, it follows that

γ (xE) = φ +ϒ
[
�P̃

′]−1
�p̃r (xE) (A.9)

which is the expression in Proposition 1.
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A.3. Proof of Proposition 2

Parts (i) and (ii) are direct applications of Henry et al. (2014), Sects. 3 and 4.2). They
ensure that the probabilities defining the mixture over V as written in Proposition

1 are well defined. Part (i) follows from γ
(

νl
∣∣∣xE

)
≥ 0 for l = 1, . . . , |V | − 1 and∑|V |−1

l=1 γ
(

νl
∣∣∣xE

)
< 1 ∀xE ∈ XE. Part (ii) is equivalent to 0 ≤ p(y|ν) ≤ 1 ∀y ∈ Y N

and ∀ν ∈ V .
Part (iii) is an application of Kasahara and Shimotsu (2014, Prop. 4). It states that there

is only one component in the finite mixture over τ and, therefore, players’ decisions are
independent given xNE and ν. In fact, since players’ decisions are conditionally indepen-

dent, the matrix Pζ
n (ν) can be written as the product of two rank-1 matrices: the column

vector collecting p
(

yζ
n

∣∣∣ν) ∀yζ
n ∈ Y n and the row vector collecting p

(
yn+1

∣∣ν) ∀yn+1 ∈ Y .

As a result, rank
{

Pζ
n (ν)

}
= 1. Following Dawid (1979, p. 5), one can define the joint

independence of N random variables inductively. In the current setting, players’ decisions
are independent if player 2’s decisions are independent from those of player 1, player 3’s
decisions are independent from those of players 1 and 2, etc. This is the reason why, for a

given ν, it suffices to consider the ranks of matrices Pζ
n (ν) for n = 1, . . . ,N −1. By writing

the elements of Pζ
n (ν) as in (25), this condition defines restrictions on φ,ϒ in terms of point

identified probabilities.

A.4. Proof of Proposition 3

Necessity simply follows from the definition of I. Let θ0 be the value of θ that corresponds
to the true data generating process with choice probabilities denoted p0 (y|ν) ∀y ∈ Y N and
∀ν ∈ V . If

∣∣T ∗ (x,ν)
∣∣= 1,∀ν ∈ V (x) is true, then θ0 ∈ I and, as a result, I �= ∅ is true.

To show that I �= ∅ being true is generically sufficient for
∣∣T ∗ (x,ν)

∣∣= 1,∀ν ∈ V (x),

one can proceed as follows. First, for some arbitrary θ̄ �= θ0 one can write the corresponding

choice probabilities denoted p̄
(

yζ
∣∣∣ν) ∀yζ ∈ Y Nζ

, ∀N ζ ⊆ N , ∀ν ∈ V as functions of θ̄ ,

θ0 and the true choice probabilities. Then, if I �= ∅ fails to be sufficient for
∣∣T ∗ (x,ν)

∣∣=
1 ∀ν ∈ V (x), it must be the case that ∃θ̄ that belongs to I when θ0 does not. To show
generic sufficiency, one can therefore show that the set of true data generating processes
for which such θ̄ exists can be characterized via some algebraic conditions and therefore
has Lebesgue measure zero within the space of choice probabilities p(y|ν) ∀y ∈ Y N and
∀ν ∈ V . Somewhat similar algebraic arguments, although applied to a different context, can
be found in Allman, Mathias, and Rhodes (2009).

In order to write p̄
(

yζ
∣∣∣ν) as functions of θ̄ , θ0 and the true choice probabilities, evaluate

(22) in Proposition 1 at θ̄ to get

p̄
(

yζ
∣∣∣νl
)

= p
(

yζ
∣∣∣x0

E

)
+
[
el − φ̄

]′
ϒ̄

′−1
�p̃ζ,c

(
yζ
)
, (A.10)

where p
(

yζ
∣∣∣x0

E

)
and �p̃ζ,c

(
yζ
)

are functions of θ0 and the true p0
(

yζ
∣∣∣ν) for ν ∈ V .

In fact, one can write

p
(

yζ
∣∣∣x0

E

)
= p0

(
yζ
∣∣∣ν0
)

+φ0′δ0
(

yζ
)
, (A.11)
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�p̃ζ,c (y) = ϒ0′δ0
(

yζ
)
, (A.12)

where, using notation similar as in the proof of Proposition 1, δ0
(

yζ
)

is the (|V |−1)×1

vector with lth element p0
(

yζ
∣∣∣νl
)

−p0
(

yζ
∣∣∣ν0
)

. It follows that

p̄
(

yζ
∣∣∣νl
)

= p0
(

yζ
∣∣∣ν0
)

+
[
φ0 +ϒ0ϒ̄

−1
[
el − φ̄

]]′
δ0
(

yζ
)

. (A.13)

Let P̄
ζ
n

(
νl
)

be the (J +1)n × (J +1) matrix with (i,j)th element given by

p̄
(

yζ,i
n ,yj

n+1

∣∣∣νl
)

= p0
(

yζ,i
n ,yj

n+1

∣∣∣ν0
)

+
[
φ0 +ϒ0ϒ̄

−1
[
el − φ̄

]]′
δ0
(

yζ,i
n ,yj

n+1

)
.

(A.14)

For θ̄ to belong to the identified set I, it must satisfy rank
{

P̄
ζ
n

(
νl
)}

= 1, ∀n ∈
{1, . . . ,N −1} and ∀l ∈ {0, . . . ,|V |−1}. In particular, it must be the case that all minors

of order 2 of P̄
ζ
n

(
νl
)

are equal to 0 ∀n ∈ {1, . . . ,N −1} and ∀l ∈ {0, . . . ,|V |−1}. Notice

that each minor of order 2 defines a quadratic expression in φ0 + ϒ0ϒ̄
−1
[
el − φ̄

]
with

coefficients that depend on the true choice probabilities. Fix a specific νl and consider

the N − 1 matrices P̄
ζ
1

(
νl
)
, . . . ,P̄

ζ
N−1

(
νl
)

. From these N − 1 matrices, one can construct∑N−1
n=1

(n(J+1)
2

)(J+1
2
)

minors of order 2. For θ̄ to belong to I, all the quadratic expressions

corresponding to these minors must be equal to 0 when evaluated at θ̄ . A necessary (but
not sufficient) condition for θ̄ ∈ I is that the quadratic expressions must have a common
solution, which defines restrictions on the true data generating process. To show that these
restrictions are satisfied by a set of data generating processes that has Lebesgue measure
zero within the space of choice probabilities, one can use the properties of multivariate
resultants (see for instance Cox, Little, and O’Shea, 2005, Chap. 3). Since the quadratic
expressions are not homogenous, one can homogenize them by multiplying some terms of
the quadratic expressions with properly defined powers of an additional variable. This is
without loss of generality since the resultant of the homogenized polynomials is the same
as the resultant of their non-homogenized couterparts (e.g., Cox et al., 2005, p. 81). Since

φ0 + ϒ0ϒ̄
−1
[
el − φ̄

]
is a vector counting |V | − 1 elements, there are |V | unknowns in

the homogenized polynomials. Pick |V | homogenous polynomials constructed from |V |
minors of order 2, which is possible provided that

∑N−1
n=1

(n(J+1)
2

)(J+1
2
)≥ |V |. By Cox et al.

(2005), Thm. 2.3), these |V | homogenous polynomials in |V | unknowns have a common
nontrivial solution if and only if the resultant of the |V | homogenous polynomials is equal to
zero. The resultant is a uniquely defined polynomial in the coefficients of the homogenous
polynomials and is therefore a polynomial in the choice probabilities p0 (y|ν) ∀y ∈ Y N

and ∀ν ∈ V corresponding to the true data generating process. One can construct such a
resultant for different subsets of |V | minors of order 2. The set of true choice probabilities
for which all such resultants are simultaneously equal to 0 defines an algebraic variety
(Allman et al., 2009, p. 3105). This variety is proper since any data generating process for

which rank
{

P̄
ζ
n

(
νl
)}

�= 1, for some n ∈ {1, . . . ,N −1} and/or some l ∈ {0, . . . ,|V |−1} does

not lie in it. It follows that the set of true choice probabilities for which all such resultants
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are simultaneously equal to 0 is of dimension smaller than the size of the space of choice
probabilities and hence the set of data generating processes for which θ̄ ∈ I necessary
has Lebesgue measure zero within the space of choice probabilities p(y|ν) ∀y ∈ Y N and
∀ν ∈ V .

A.5. Proof of Proposition 4

Since both Y and X have finite and discrete support, p0 can be estimated as the vector of
sample averages of properly defined dummy variables. Since p̂ is the only source of random-
ness in g

(
p̂,θ
)
, one can use the estimation and inference results from Chernozhukov et al.

(2013) that are associated with parametrically estimated bounding functions. Chernozhukov
et al. (2013), Thm. 4(a), p. 694) implies that

limsup
M→∞

Pr

(
inf

l∈L
gl

(
p0,θ

)
≥ ĝ(θ,α)

)
≤ α. (A.15)

When θ ∈ I, infl∈L gl

(
p0,θ

)
≥ 0, such that Pr

(
0 > ĝ(θ,α)

) ≤ Pr
(

infl∈L gl

(
p0,θ

)
≥

ĝ(θ,α)
)
. By the definition of CSM (α) in (45), (A.15) implies that ∀θ ∈ I:

limsup
M→∞

Pr (θ /∈ CSM (α)) = limsup
M→∞

Pr
(
0 > ĝ(θ,α)

)≤ α. (A.16)

Moreover, since CSM (α) = ∅ ⇒ θ /∈ CSM (α) for any θ ∈ I, it follows that Pr (CSM (α) =
∅) ≤ Pr (θ /∈ CSM (α)). Therefore, for any θ ∈ I:

limsup
M→∞

Eθ [ξM] = limsup
M→∞

Pr (CSM (α) = ∅) ≤ limsup
M→∞

Pr (θ /∈ CSM (α)) ≤ α (A.17)

which completes the proof.

APPENDIX B. IMPLEMENTATION OF THE INTERSECTION BOUNDS
APPROACH

In the case with N players, J + 1 actions and |V | = 2 components in the mixture over the
unobserved heterogeneity, the inequalities to be checked can be written as follows. The
functions Q(xE), L0 (y) and L1 (y) are defined in (30). The conditions in Proposition 2(i)
can be rewritten as

Q(xE)+ φ

ϒ
≥ 0 and

1−φ

ϒ
−Q(xE) ≥ 0 ∀xE ∈ XE. (B.1)

Similarly, the conditions in Proposition 2(ii) can be rewritten as

− φ

ϒ
−min {L0 (y),L1 (y)} ≥ 0 and max {L0 (y),L1 (y)}− 1−φ

ϒ
≥ 0 ∀y ∈ Y N . (B.2)

Finally, the conditions in Proposition 2(iii) can be written in terms of all the possible minors

of order 2 computed from the matrices Pζ
n

(
ν0
)

and Pζ
n

(
ν1
)

for n = 1, . . . ,N −1. There are

K (n) = (n(J+1)
2

)(J+1
2
)

minors of order 2 for each such matrix. When |V | = 2, the (i,j)th
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element of Pζ
n

(
ν0
)

and Pζ
n

(
ν1
)

are, respectively,

p
(

yζ,i
n ,yj

n+1

∣∣∣ν0
)

= p
(

yζ,i
n ,yj

n+1

∣∣∣x0
E

)
− φ

ϒ

[
p
(

yζ,i
n ,yj

n+1

∣∣∣ x̃1
E

)
−p

(
yζ,i

n ,yj
n+1

∣∣∣x0
E

)]
,

(B.3)

p
(

yζ,i
n ,yj

n+1

∣∣∣ν1
)

= p
(

yζ,i
n ,yj

n+1

∣∣∣x0
E

)
+ 1−φ

ϒ

[
p
(

yζ,i
n ,yj

n+1

∣∣∣ x̃1
E

)
−p

(
yζ,i

n ,yj
n+1

∣∣∣x0
E

)]
.

(B.4)

Each minor of order 2 involves exactly two different values of yζ
n and two different values

of yn+1. Let Pζ
n

(
ν0
)

’s kth minor of order 2 be

p
(

yζ,i
n ,yj

n+1

∣∣∣ν0
)

p
(

yζ,s
n ,yt

n+1

∣∣∣ν0
)

−p
(

yζ,s
n ,yj

n+1

∣∣∣ν0
)

p
(

yζ,i
n ,yt

n+1

∣∣∣ν0
)

. (B.5)

Using (B.3), one can write the condition that this kth minor of order 2 is equal to 0, using
the following inequalities:

M0 (k,n) ≡ a2 (k,n)

[−φ

ϒ

]2
+a1 (k,n)

[−φ

ϒ

]
+a0 (k,n) ≥ 0 and −M0 (k,n) ≥ 0,

(B.6)

where,

a0 (k,n) ≡ p
(

yζ,i
n ,yj

n+1|x0
E

)
p
(

yζ,s
n ,yt

n+1|x0
E

)
−p

(
yζ,s

n ,yj
n+1|x0

E

)
p
(

yζ,i
n ,yt

n+1|x0
E

)
,

(B.7)

a1 (k,n) ≡p
(

yζ,i
n ,yj

n+1|x0
E

)[
p
(

yζ,s
n ,yt

n+1|x̃1
E

)
−p

(
yζ,s

n ,yt
n+1|x0

E

)]
+p

(
yζ,s

n ,yt
n+1|x0

E

)[
p
(

yζ,i
n ,yj

n+1|x̃1
E

)
−p

(
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E

)]
−p

(
yζ,s

n ,yj
n+1|x0

E

)[
p
(

yζ,i
n ,yt
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E

)
−p

(
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n ,yt
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E
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−p

(
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n ,yt
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p
(
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(B.8)

a2 (k,n) ≡
[
p
(

yζ,i
n ,yj

n+1|x̃1
E

)
−p

(
yζ,i

n ,yj
n+1|x0

E

)][
p
(

yζ,s
n ,yt

n+1|x̃1
E

)
−p

(
yζ,s

n ,yt
n+1|x0

E

)]
−
[
p
(
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n ,yt

n+1|x̃1
E

)
−p

(
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n ,yt
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E

)][
p
(
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n ,yj
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)
−p

(
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n ,yj
n+1|x0

E

)]
.

(B.9)

Similarly, the inequality conditions for Pζ
n

(
ν1
)

’s kth minor of order 2 being equal to 0 are

M1 (k,n) ≡ a2 (k,n)

[
1−φ

ϒ

]2
+a1 (k,n)

[
1−φ

ϒ

]
+a0 (k,n) ≥ 0 and −M1 (k,n) ≥ 0.

(B.10)

In order to ensure that the condition in Proposition 4(ii) is satisfied, one cannot directly

include all the restrictions written above. In particular, notice that Q
(

x0
E

)
= 0 and Q

(
x̃1

E

)
=
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1, which implies that conditions (B.1) for these values of xE are equivalent to

φ ≥ 0; 1−φ ≥ 0; φ +ϒ ≥ 0; and 1−φ −ϒ ≥ 0. (B.11)

Notice that the conditions in (B.11) do not depend on p and would therefore violate
Proposition 4(ii). Nonetheless, (B.11) restricts the parameter space  over which the test is
performed. In the implementation of the test, the problematic conditions from g(p,θ) are
dropped, but  is restricted to θ ’s that satisfy (B.11).

To sum up, the vector g(p,θ) includes the following L = 6 inequalities:

min
xE∈XE\

{
x0

E,x̃1
E

}Q(xE)+ φ

ϒ
≥ 0, (B.12)

1−φ

ϒ
− max

xE∈XE\
{

x0
E,x̃1

E

}Q(xE) ≥ 0, (B.13)

− φ

ϒ
− max

y∈Y N
{min {L0 (y),L1 (y)}} ≥ 0, (B.14)

min
y∈Y N

{max {L0 (y),L1 (y)}}− 1−φ

ϒ
≥ 0, (B.15)

min
n=1,...,N−1
k=1,...,K(n)

{min {M0 (k,n),M1 (k,n)}} ≥ 0, (B.16)

min
n=1,...,N−1
k=1,...,K(n)

{min {−M0 (k,n), −M1 (k,n)}} ≥ 0, (B.17)

and only values of θ satisfying (B.11) are considered when constructing the confidence set.
The test is implemented by discretizing  into a fine grid and checking whether each θ

in this discretized space belong to CSM (α). The null hypothesis is rejected if there is no
such θ that belongs to CSM (α). In order to check if θ ∈ CSM (α), Algorithm 1 described in
Chernozhukov et al. (2013), p. 708) is used. It is reproduced here for completeness.

1. Set ηM ≡ 1 − 0.1/ ln [M] and simulate R independent draws z1, . . . ,zR from the
dim(p)-variate standard normal distribution.

2. Compute �̂.

3. For each l ∈ L , compute ĵl (θ)′ ≡ ∂gl
(
p̂,θ
)

∂p′ �̂
1/2

and set σ̂l (θ) ≡
∥∥∥ĵl (θ)

∥∥∥/√
M,

where ‖·‖ is the euclidean norm.
4. Compute

k̂ (θ,ηM) = ηM-quantile of

{
sup
l∈L

(
ĵl (θ)′ zr

/∥∥∥ĵl (θ)

∥∥∥),r = 1, . . . ,R

}
(B.18)

and

L̂ (θ) =
{

l ∈ L : ĝl
(
p̂,θ
)≤ min

l∈L

(
ĝl
(
p̂,θ
)+ k̂ (θ,ηM) σ̂l (θ)

)
+2k̂ (θ,ηM) σ̂l (θ)

}
.

(B.19)
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5. Compute

ĉ(θ,1−α) = (1−α) -quantile of

{
sup

l∈L̂ (θ)

(
ĵl (θ)′ zr

/∥∥∥ĵl (θ)

∥∥∥),r = 1, . . . ,R

}
(B.20)

and set ĝ(θ,α) = infl∈L
{
gl
(
p̂,θ
)+ ĉ(θ,1−α) σ̂l (θ)

}
.

One rejects θ ∈ I if ĝ(θ,α) < 0.
To reduce the computational burden of the grid search, one should leverage the fact that

the conditions in Proposition 2(iii) drastically shrink the identified set. The simulations
therefore use as starting values of θ the values on the grid which are closest to the ones
that solve (B.6) and (B.10).
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