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Complete manifolds with non-negative Ricci curvature

and the Caffarelli–Kohn–Nirenberg inequalities

Manfredo Perdigão do Carmo and Changyu Xia

Abstract

In this paper, we prove that complete open Riemannian manifolds with non-negative
Ricci curvature of dimension greater than or equal to three in which some Caffarelli–
Kohn–Nirenberg type inequalities are satisfied are close to the Euclidean space.

1. Introduction

Let n � 3 be an integer and let a, b, and p be constants satisfying

−∞ < a <
n − 2

2
, a � b � a + 1, and p =

2n
n − 2 + 2(b − a)

. (1.1)

Denote by C∞
0 (Rn) the space of smooth functions with compact support in the n-dimensional

Euclidean space R
n. In [CKN84], among a much more general family of inequalities, Caffarelli,

Kohn, and Nirenberg proved the following result. There exists a positive constant C depending only
on a, b and n such that(∫

Rn

|x|−bp|u|p dx

)1/p

� C

(∫
Rn

|x|−2a|∇u|2 dx

)1/2

, (1.2)

for all u ∈ C∞
0 (Rn), where |x| is the Euclidean length of x ∈ R

n. Note that the Caffarelli–Kohn–
Nirenberg inequalities contain the classical Sobolev inequality (a = b = 0) and the Hardy inequality
(a = 0, b = 1) as special cases, which have many important applications (see e.g. [Aub82, Aub98,
CKN84, HLP52, Heb96, Heb99, Lie83] and references therein).

Let Ka,b be the best constant for the Caffarelli, Kohn, and Nirenberg inequality (1.1), that is

K−1
a,b = inf

u∈C∞
0 (Rn)−{0}

(
∫
Rn |x|−2a|∇u|2 dx)1/2

(
∫
Rn |x|−bp|u|p dx)1/p

. (1.3)

For the Sobolev inequality (a = b = 0), it has been proved by Aubin [Aub76] and Talent [Tal76]
that

K0,0 =
(

1
n(n − 2)

)1/2( 2Γ(n)
nωnΓ2(n/2)

)1/n

,

where ωn is the volume of the unit ball in R
n, and that a family of minimizers of (1.3) is given by

u(x) = (λ + |x|2)1−n/2, λ > 0.

In [Lie83], Lieb considered the case a = 0, 0 < b < 1, and proved that the best constant is

K0,b =
(

1
(n − 2)(n − bp)

)1/2((2 − bp)Γ((2n − 2bp)/(2 − bp))
nωnΓ2((n − bp)/(2 − bp))

)2(n−bp)/(2−bp)

,
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Manifolds with non-negative Ricci curvature

and a family of minimizers is

u(x) =
1

(λ + |x|2−bp)(n−2)/(2−bp)
, λ > 0.

Chou and Chu [CC93] studied the case a � 0, a � b < a+1, and proved that the best constant is

Ka,b =
(

1
(n − 2a − 2)(n − bp)

)1/2 ((2 − bp + 2a)Γ((2n − 2bp)/(2 − bp + 2a))
nωnΓ2((n − bp)/(2 − bp + 2a))

)2(n−bp)/(2−bp+2a)

,

and that, for a > 0, all minimizers are non-zero constant multiples of the function

u(x) =
1

(λ + |x|2−bp+2a)(n−2−2a)/(2−bp+2a)
, λ > 0.

For the remaining case, the best constant Ka,b and the existence or non-existence of the mini-
mizers have been studied recently in [CW01].

In this paper, we study complete manifolds with non-negative Ricci curvature in which some
Caffarelli–Kohn–Nirenberg inequalities are satisfied. Now we fix some notation. For an integer n � 3,
we will from now on let a and b be constants satisfying

0 � a <
n − 2

2
, a � b < a + 1, (1.4)

and set

p =
2n

n − 2 + 2(b − a)
. (1.5)

For a Riemannian manifold M , we let dv be the Riemannian volume element on M , denote by ∇
the gradient operator, C∞

0 (M) the space of smooth functions on M with compact support,
B(x, r) the geodesic ball with center x ∈ M and radius r, and vol[B(p, r)] the volume of B(p, r).

Our purpose is to prove the following result.

Theorem 1.1. Let C � Ka,b be a constant and M be an n-dimensional (n � 3) complete open
Riemannian manifold with non-negative Ricci curvature. Fix a point x0 ∈ M and denote by ρ the
distance function on M from x0. Assume that, for any u ∈ C∞

0 (M), we have(∫
M

ρ−bp|u|p dv

)1/p

� C

(∫
M

ρ−2a|∇u|2 dv

)1/2

. (1.6)

Then for any x ∈ M , we have

vol[B(x, r)] � (C−1Ka,b)n/(1+a−b)V0(r), ∀r > 0, (1.7)

where V0(r) is the volume of the r-ball in R
n.

In the special case that a = b = 0, the above theorem has been proved in [Xia01].
The theorem has several consequences for manifolds with non-negative Ricci curvature.
The Bishop–Gromov comparison theorem (cf. [BC64, Cha93, GLP81]) implies that, if M is

an n-dimensional complete Riemannian manifold with non-negative Ricci curvature, then for any
x ∈ M, vol[B(x, r)] � V0(r), with equality holding if and only if B(x, r) is isometric to an r-ball
in R

n. Combining this fact and Theorem 1.1, one immediately gets the following rigidity theorem.

Corollary 1.2. An n-dimensional (n � 3) complete open Riemannian manifold M with non-
negative Ricci curvature in which the inequality(∫

M
ρ−bp|u|p dv

)1/p

� Ka,b

(∫
M

ρ−2a|∇u|2 dv

)1/2

, ∀u ∈ C∞
0 (M),

is satisfied, is isometric to R
n.
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When a = b = 0, Corollary 1.2 is the main theorem in [Led99].
A theorem of Cheeger and Colding [CC97] states that given integer n � 2 there exists a constant

δ(n) > 0 such that any n-dimensional complete Riemannian manifold with non-negative Ricci
curvature and vol[B(x, r)] � (1 − δ(n))V0(r) for some p ∈ M and all r > 0 is diffeomorphic
to R

n. Thus combining the Cheeger–Colding theorem and Theorem 1.1, one deduces the following
topological rigidity for manifolds with non-negative Ricci curvature.

Corollary 1.3. Given integer n � 3, there exists a positive constant ε = ε(n, a, b) such that any
n-dimensional (n � 3) complete non-compact Riemannian manifold M with non-negative Ricci
curvature in which the inequality(∫

M
ρ−bp|u|p dv

)1/p

� (Ka,b + ε)
(∫

M
ρ−2a|∇u|2 dv

)1/2

, ∀u ∈ C∞
0 (M),

is satisfied, is diffeomorphic to R
n.

A theorem due to Li [Li86] and Anderson [And90] states that, if M is an n-dimensional complete
manifold with non-negative Ricci curvature in which the inequality vol[B(p, r)] � αV0(r) holds for
some constant α > 0 and all r > 0, the fundamental group π1(M) is finite and #π1(M) � 1/α.
Thus from the Li–Anderson theorem and Theorem 1.1 we have the following corollary.

Corollary 1.4. Let C � Ka,b be a constant and M be an n-dimensional (n � 3) complete open
Riemannian manifold with non-negative Ricci curvature. Assume that, for any u ∈ C∞

0 (M), we
have (∫

M
ρ−bp|u|p dv

)1/p

� C

(∫
M

ρ−2a|∇u|2 dv

)1/2

. (1.8)

Then M has finite fundamental group and the order of π1(M) is bounded above by (K−1
a,b C)n/(1+a−b).

One can find some related results about the topology of complete manifolds with non-negative
Ricci curvature, for example, in [AG90, And90, CX00, Col98, Li86, OSY00, Ots89, SS97, She93,
She96, SS01, Sor00, Xia99].

2. A Proof of Theorem 1.1

First notice the following fact. The Bishop–Gromov comparison theorem (cf. [BC64, Cha93, GLP81])
tells us that for any p ∈ M the function vol[B(p, r)]/V0(r) is decreasing and so the limit

lim
r→+∞

vol[B(p, r)]
V0(r)

exists. Also one can easily check that the above limit does not depend on the choice of p. It then
follows that if (1.7) holds for some point p0 ∈ M , then it is satisfied for all x ∈ M . Now we are
going to show that (1.7) holds at the point x0.

Set

w = 2a − bp + 2, q =
(n − 2a − 2)p
2a − bp + 2

=
2p

p − 2
, (2.1)

and, for any λ > 0, let

F (λ) =
p − 2
p + 2

∫
M

dv

ρbp(λ + ρw)q−1
. (2.2)

Then, for λ > 0, we have from the Fubini theorem (cf. [SY94]) that

F (λ) =
p − 2
p + 2

∫ +∞

0
vol
{

x :
1

ρbp(λ + ρw)q−1
> s

}
ds.
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Making the variable change s = 1(hbp(λ + hw)q−1) in the above equality, one concludes that

F (λ) =
p − 2
p + 2

∫ +∞

0
vol{x : ρ(x) < h}(bpλ + (bp + (q − 1)w)hw)

hbp+1(λ + hw)q
dh

=
p − 2
p + 2

∫ +∞

0
vol[B(x0, h)]

(bpλ + (bp + (q − 1)w)hw)
hbp+1(λ + hw)q

dh. (2.3)

Since the Bishop–Gromov comparison theorem implies that vol[B(x0, h)] � ωnhn, we have

F (λ) � ωn(p − 2)
p + 2

∫ +∞

0
(bpλ + (bp + (q − 1)w)hw)hn−bp−1(λ + hw)−q dh.

On the other hand, one can deduce from (1.4), (1.5), and (2.1) that

n − bp − 1 > −1, n − bp − 1 + w(1 − q) < −1.

It then follows that 0 � F (λ) < +∞, ∀λ > 0, and that F is differentiable. Also, we have

F ′(λ) = −
∫

M

dv

ρbp(λ + ρw)q
. (2.4)

Consider the function H0 : (0,+∞) → R defined by

H0(λ) =
p − 2
p + 2

∫
Rn

dx

|x|bp(λ + |x|w)q−1
.

Recall that when M = R
n and C = Ka,b, the extremal functions in the inequality (1.6) are the

functions uλ := (λ + |x|w)−q/p, λ > 0. That is, we have

(−H ′
0(λ))2/p =

(∫
Rn

dx

|x|bp(λ + |x|w)q

)2/p

=
(

Ka,bqw

p

)2 ∫
Rn

dx

|x|2(1+a−w)(λ + |x|w)2+2q/p

=
(

Ka,bqw

p

)2 ∫
Rn

dx

|x|bp−w(λ + |x|w)q

=
(

Ka,bqw

p

)2(
H ′

0(λ) +
p + 2
p − 2

H0(λ)
)

.

Substituting H0(λ) = H0(1)λ−2/(p−2) into the above equation, one gets

H0(1) =
p − 2
p + 2

∫
Rn

dx

|x|bp(1 + |x|w)q−1

= 22/(p−2)(p − 2)((n − 2a − 2)2K2
a,b)

−p/(p−2). (2.5)

By a simple approximation procedure, we can apply (1.6) to (λ + ρw)−q/p for every λ > 0 to get(∫
M

dv

ρbp(λ + ρw)q

)2/p

�
(

qwC

p

)2 ∫
M

dv

ρ2(1+a−w)(λ + ρw)2+2q/p

=
(

qwC

p

)2 ∫
M

dv

ρbp−w(λ + ρw)q
.

Let l = (p/qwC)2; then the above inequality becomes

l(−F ′(λ))2/p − λF ′(λ) � p + 2
p − 2

F (λ). (2.6)
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The idea now is to compare the solutions of (2.6) to the solutions H of the following differential
equality:

l(−H ′(λ))2/p − λH ′(λ) =
p + 2
p − 2

H(λ). (2.7)

One can easily check that H1(λ) given by

H1(λ) := Aλ−2/(p−2) (2.8)

is a particular solution of (2.7), where

A = 22/(p−2)(p − 2)
(

l

p

)p/(p−2)

= 22/(p−2)(p − 2)((n − 2a − 2)2pC2)−p/(p−2)

= (C−1Ka,b)2p/(p−2) · 22/(p−2)(p − 2) · ((n − 2a − 2)2pK2
a,b)

−p/(p−2)

= (C−1Ka,b)2p/(p−2) · p − 2
p + 2

∫
Rn

dx

|x|bp(1 + |x|w)q−1

= (C−1Ka,b)n/(1+a−b) · p − 2
p + 2

∫
Rn

dx

|x|bp(1 + |x|w)q−1
. (2.9)

Observe that

H1(λ) = (C−1Ka,b)n/(1+a−b) · λ−2/(p−2) · p − 2
p + 2

∫
Rn

dx

|x|bp(1 + |x|w)q−1

= (C−1Ka,b)n/(1+a−b)H0(λ). (2.10)

Before we can conclude the proof of Theorem 1.1, we shall need the following two lemmas.

Lemma 2.1. If for some λ0 > 0, F (λ0) < H1(λ0), then F (λ) < H1(λ) ∀λ ∈ (0, λ0].

Proof. Suppose that Lemma 2.1 is false. Set

λ1 = sup{λ < λ0;F (λ) = H1(λ)}.
For each λ > 0, the function φλ : [0,+∞) → R defined by

φλ(s) = ls2/p + λs

is increasing. By (2.6), we have

φλ(−F ′(λ)) � p + 2
p − 2

F (λ),

which gives

−F ′(λ) � φ−1
λ

(
p + 2
p − 2

F (λ)
)

.

On the other hand, (2.7) implies that

−H ′
1(λ) = φ−1

λ

(
p + 2
p − 2

H1(λ)
)

.

Thus, on the subset {s | F (s) � H1(s)}, we have

F ′(λ) − H ′
1(λ) � φ−1

λ

(
p + 2
p − 2

H1(λ)
)
− φ−1

λ

(
p + 2
p − 2

F (λ)
)

.

Since (F − H1)|[λ1,λ0] � 0, we conclude therefore that (F − H1)′ � 0 on [λ1, λ0]. Consequently, one
gets

0 = (F − H1)(λ1) � (F − H1)(λ0) < 0.
This is a contradiction and completes the proof of Lemma 2.1.
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Lemma 2.2. We have

lim inf
λ→0

F (λ)
H0(λ)

� 1. (2.11)

Proof. Fix a small ε > 0. Since

lim
u→0

vol[B(x0, u)]
V0(u)

= 1,

there exists a δ > 0 such that vol[B(x0, h)] � (1 − ε)V0(h), ∀h � δ.
It then follows from (2.3) that

F (λ) � p − 2
p + 2

(1 − ε)
∫ δ

0
V0(h)

(bpλ + (bp + (q − 1)w)hw)
hbp+1(λ + hw)q

dh

=
p − 2
p + 2

(1 − ε)λ[(n+bp)/w]+1−q

∫ δ/λ1/w

0
V0(s)

(bp + (bp + (q − 1)w)sw)
sbp+1(1 + sw)q

ds

=
p − 2
p + 2

(1 − ε)λ−2/(p−2)

∫ δ/λ1/w

0
V0(s)

(bp + (bp + (q − 1)w)sw)
sbp+1(1 + sw)q

ds.

On the other hand, it is easy to see that

H0(λ) =
p − 2
p + 2

λ−2/(p−2)

∫ +∞

0
V0(s)

(bp + (bp + (q − 1)w)sw)
sbp+1(1 + sw)q

ds.

We conclude therefore that

lim inf
λ→0

F (λ)
H0(λ)

� 1 − ε.

Letting ε → 0, one gets

lim inf
λ→0

F (λ)
H0(λ)

� 1. (2.12)

This completes the proof of Lemma 2.2.

Now we continue on the proof of Theorem 1.1. We separate the proof into two cases.

Case 1: C > Ka,b. In this case, it follows from (2.10) and Lemma 2.2 that

lim inf
λ→0

F (λ)
H1(λ)

=
(

C

Ka,b

)n/(1+a−b)

lim inf
λ→0

F (λ)
H0(λ)

�
(

C

Ka,b

)n/(1+a−b)

> 1, (2.13)

which, combining with Lemma 2.1, implies that

F (λ) � H1(λ), ∀λ > 0. (2.14)

That is, for any λ > 0, we have∫ +∞

0
(vol[B(x0, s)] − (C−1Ka,b)n/(1+a−b)V0(s))

bpλ + (bp + (q − 1)w)sw

sbp+1(λ + sw)q
ds � 0. (2.15)

Recall that the Bishop–Gromov comparison theorem says that the function |B(x0, s)|/V0(s) is
decreasing. Set d = (C−1K(n, q))n/(1+a−b) and assume that

lim
s→+∞

|B(x0, s)|
V0(s)

= d0.
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The proof of Theorem 1.1 will be completed if we can show that d0 � d. We prove this fact by
contradiction. Thus suppose that d0 = d − ε0, for some ε0 > 0. Then there exists an N0 > 0 such
that

vol[B(x0, s)]
V0(s)

� d − ε0

2
, ∀s � N0. (2.16)

By introducing (2.16) into (2.15), one derives for every λ > 0 that

0 �
∫ +∞

0

(
vol[B(x0, s)]

V0(s)
− d

)
sn(bpλ + (bp + (q − 1)w)sw)

sbp+1(λ + sw)q
ds

�
∫ N0

0

vol[B(x0, s)]
V0(s)

sn(bpλ + (bp + (q − 1)w)sw)
sbp+1(λ + sw)q

ds

+
∫ +∞

N0

(
d − ε0

2

) sn(bpλ + (bp + (q − 1)w)sw)
sbp+1(λ + sw)q

ds

− d

∫ +∞

0

sn(bpλ + (bp + (q − 1)w)sw)
sbp+1(λ + sw)q

ds

�
∫ N0

0

sn(bpλ + (bp + (q − 1)w)sw)
sbp+1(λ + sw)q

ds

+
∫ +∞

N0

(
d − ε0

2

) sn(bpλ + (bp + (q − 1)w)sw)
sbp+1(λ + sw)q

ds

− d

∫ +∞

0

sn(bpλ + (bp + (q − 1)w)sw)
sbp+1(λ + sw)q

ds

=
∫ N0

0

(
1 − d +

ε0

2

) sn(bpλ + (bp + (q − 1)w)sw)
sbp+1(λ + sw)q

ds

− ε0

2ωn

∫ +∞

0

V0(s)(bpλ + (bp + (q − 1)w)sw)
sbp+1(λ + sw)q

ds

=
∫ N0

0

(
1 − d +

ε0

2

) sn(bpλ + (bp + (q − 1)w)sw)
sbp+1(λ + sw)q

ds

− ε0

2ωn
· p + 2
p − 2

· H0(λ)

�
(
1 − d +

ε0

2

)
λ−q

∫ N0

0
(bpλsn−bp−1 + (bp + (q − 1)w)sn+w−bp−1) ds

− ε0

2ωn
· p + 2
p − 2

· λ−2/(p−2) · H0(1)

=
(
1 − d +

ε0

2

)
λ−q

(
λbpNn−bp

0

n − bp
+

(bp + (q − 1)w)Nn+w−bp
0

n + w − bp

)

− ε0(p + 2)H0(1)
2ωn(p − 2)

· λ−2/(p−2),

which implies for any λ > 0 that

ε0(p + 2)H0(1)
2ωn(p − 2)(1 − d + ε0/2)

� λ2/(p−2)−q

(
λbpNn−bp

0

n − bp
+

(bp + (q − 1)w)Nn+w−bp
0

n + w − bp

)
.

Letting λ → +∞ in the above inequality and observing that 2/(p − 2) − q + 1 < 0, one obtains
the desired contradiction. Thus d0 � d. This completes the proof of Theorem 1.1 in the case that
C > Ka,b.
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Case 2: C = Ka,b. In this case, we have for any fixed δ > 0 that(∫
M

ρ−bp|u|p dv

)1/p

� (Ka,b + δ)
(∫

M
ρ−2a|∇u|2 dv

)1/2

.

Thus for any x ∈ M we have from case 1 that

vol[B(x, r)] �
(

Ka,b

Ka,b + δ

)n/(1+a−b)

V0(r), ∀r > 0.

Letting δ → 0, one obtains that

vol[B(x, r)] � V0(r), ∀r > 0.

This completes the proof of Theorem 1.1 for the case that C = Ka,b.
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