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Fundamental Functional Equations

Throughout this book, we will make contact with the venerable subject of func-
tional equations. A functional equation is an equation in an unknown function
satisfied at all values of its arguments; or more generally, it is an equation re-
lating several functions to each other in this way.

To set the scene, we give some brief indicative examples. Viewing sequences
as functions on the set of positive integers, the Fibonacci sequence (Fn)n≥1

satisfies the functional equation

Fn+2 = Fn + Fn+1

(n ≥ 1). Together with the boundary conditions F1 = F2 = 1, this functional
equation uniquely characterizes the sequence. But more typically, one is con-
cerned with functions of continuous variables. For instance, one might notice
that the function

f : R ∪ {∞} → R ∪ {∞}
x 	→ 1

1 − x

satisfies the functional equation

f ( f ( f (x))) = x (1.1)

(x ∈ R ∪ {∞}). The natural question, then, is whether f is the only function
satisfying equation (1.1) for all x. In this case, it is not. (This can be shown
by constructing an explicit counterexample or via the theory of Möbius trans-
formations.) So, it is then natural to seek the whole set of solutions f , perhaps
restricting the search to just those functions that are continuous, differentiable,
etc.

15
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16 Fundamental Functional Equations

A more sophisticated example is the functional equation

ζ(1 − s) =
21−s

πs cos
(
πs
2

)
Γ(s) ζ(s)

(s ∈ C) satisfied by the Riemann zeta function ζ (Theorem 12.7 of Apos-
tol [16], for instance). Here Γ is Euler’s gamma function. This functional equa-
tion, proved by Riemann himself, is a fundamental property of the zeta func-
tion.

In this chapter, we solve three classical, fundamental, functional equations.
The first is Cauchy’s equation on a function f : R→ R:

f (x + y) = f (x) + f (y)

(x, y ∈ R) (Section 1.1). Once we have solved this, we will easily be able to
deduce the solutions of related equations such as

f (xy) = f (x) + f (y) (1.2)

(x, y ∈ (0,∞)).
The second is the functional equation

f (mn) = f (m) + f (n)

(m, n ≥ 1) on a sequence ( f (n))n≥1. Despite the resemblance to equation (1.2),
the shift from continuous to discrete makes it necessary to develop quite dif-
ferent techniques (Section 1.2).

Third and finally, we solve the functional equation

f (xy) = f (x) + g(x) f (y)

in two unknown functions f , g : (0,∞) → R. The nontrivial, measurable so-
lutions f turn out to be the constant multiples of the so-called q-logarithms
(Section 1.3), a one-parameter family of functions of which the ordinary loga-
rithm is just the best-known member.

1.1 Cauchy’s Equation

A function f : R→ R is additive if

f (x + y) = f (x) + f (y) (1.3)

for all x, y ∈ R. This is Cauchy’s functional equation, some of whose long
history is recounted in Section 2.1 of Aczél [2]. Let us say that f is linear if
there exists c ∈ R such that

f (x) = cx
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1.1 Cauchy’s Equation 17

for all x ∈ R. Putting x = 1 shows that if such a constant c exists then it must
be equal to f (1).

Evidently any linear function is additive. The question is to what extent the
converse holds. If we are willing to assume that f is differentiable then the
converse is very easy.

Proposition 1.1.1 Every differentiable additive function R→ R is linear.

Proof Let f : R → R be a differentiable additive function. Differentiating
equation (1.3) with respect to y gives

f ′(x + y) = f ′(y)

for all x, y ∈ R. Taking y = 0 then shows that f ′ is constant. Hence there are
constants c, d ∈ R such that f (x) = cx + d for all x ∈ R. Substituting this
expression back into equation (1.3) gives d = 0. �

However, differentiability is a stronger condition than we will want to as-
sume for our later purposes. It is, in fact, unnecessarily strong. In the rest of
this section, we prove that additivity implies linearity under a succession of
ever weaker regularity conditions, starting with continuity and finishing with
mere measurability.

We begin with a lemma that needs no regularity conditions at all.

Lemma 1.1.2 Let f : R → R be an additive function. Then f (qx) = q f (x) for
all q ∈ Q and x ∈ R.

Proof First, f (0 + 0) = f (0) + f (0), so f (0) = 0. Then, for all x ∈ R,

0 = f (0) = f (−x + x) = f (−x) + f (x),

so f (−x) = − f (x).
Let x ∈ R. By induction,

f (nx) = n f (x) (1.4)

for all integers n > 0, and we have just shown that equation (1.4) also holds
when n = 0. Moreover, when n < 0,

f (nx) = f
(−(−n)x

)
= − f

(
(−n)x

)
= −(−n) f (x) = n f (x),

using equation (1.4) for positive integers. Hence (1.4) holds for all integers n.
Now let x ∈ R and q ∈ Q. Write q = m/n, where m, n ∈ Z with n � 0. Then

by two applications of equation (1.4),

f (qx) = 1
n f (nqx) = 1

n f (mx) = m
n f (x) = q f (x),

as required. �
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18 Fundamental Functional Equations

Remark 1.1.3 The same argument proves that any additive function between
vector spaces over Q is linear over Q. In the case of functions R → R, our
question is whether (or under what conditions) Q-linearity implies R-linearity,
which here we are just calling ‘linearity’.

Lemma 1.1.2 enables us to improve Proposition 1.1.1, relaxing differentia-
bility to continuity. The following result was known to Cauchy himself (cited
in Hardy, Littlewood and Pólya [137], proof of Theorem 84).

Proposition 1.1.4 Every continuous additive function R→ R is linear.

Proof Let f : R→ R be a continuous additive function, and write c = f (1). By
Lemma 1.1.2, f (q) = cq for all q ∈ Q. Thus, the two functions f and x 	→ cx
are equal when restricted to Q. But both are continuous, so they are equal on
all of R. �

It is now straightforward to relax continuity of f to a much weaker condition.

Proposition 1.1.5 Every additive function R→ R that is continuous at one or
more point is linear.

In other words, every additive function is linear unless, perhaps, it is discon-
tinuous everywhere.

Proof Let f : R → R be an additive function continuous at a point x ∈ R. By
Proposition 1.1.4, it is enough to show that f is continuous. Let y, t ∈ R: then
by additivity,

f (y + t) − f (y) = f (t) = f (x + t) − f (x) → 0

as t → 0, as required. �

Next we show that mere measurability suffices: every measurable additive
function is linear.

Remark 1.1.6 Readers unfamiliar with measure theory may wish to read
the rest of this remark then resume at Corollary 1.1.11. Measurability is an
extremely weak condition. In the usual logical framework for mathematics,
there do exist nonmeasurable functions and nonlinear additive functions (Re-
mark 1.1.9). However, every function for which anyone has ever written down
an explicit formula, or ever will, is measurable (by Remark 1.1.10). So it is not
too dangerous to assume that every function is measurable and, therefore, that
every additive function is linear.
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1.1 Cauchy’s Equation 19

There are several proofs that every measurable additive function is linear.
The first was published by Maurice Fréchet in his 1913 paper ‘Pri la funk-
cia ekvacio f (x + y) = f (x) + f (y)’ [110]. (Fréchet wrote many papers in
Esperanto, and served three years as the president of the Internacia Scienca
Asocio Esperantista.) Here we give the proof by Banach [27]. It is based on a
standard measure-theoretic result of Lusin [235], which makes precise Little-
wood’s maxim that every measurable function is ‘nearly continuous’ [233].

Write λ for Lebesgue measure on R.

Theorem 1.1.7 (Lusin) Let a ≤ b be real numbers, and let f : [a, b] → R be a
measurable function. Then for all ε > 0, there exists a closed subset V ⊆ [a, b]
such that f |V is continuous and λ

(
[a, b] \ V

)
< ε.

Proof See Theorem 7.5.2 of Dudley [85], for instance. �

Following Banach, we deduce:

Theorem 1.1.8 Every measurable additive function R→ R is linear.

Proof Let f : R → R be a measurable additive function. By Lusin’s theorem,
we can choose a closed set V ⊆ [0, 1] such that f |V is continuous and λ(V) >
2/3. Since V is compact, f |V is uniformly continuous.

By Proposition 1.1.5, it is enough to prove that f is continuous at 0. Let
ε > 0. We have to show that | f (x)| < ε for all x in some neighbourhood of 0.

By uniform continuity, we can choose δ > 0 such that for v, v′ ∈ V ,

|v − v′| < δ =⇒ | f (v) − f (v′)| < ε.
I claim that | f (x)| < ε for all x ∈ R such that |x| < min{δ, 1/3}. Indeed, take
such an x. Then, writing V − x = {v − x : v ∈ V}, the inclusion-exclusion
property of Lebesgue measure λ gives

λ
(
V ∩ (V − x)

)
= λ(V) + λ(V − x) − λ(V ∪ (V − x)

)
.

Consider the right-hand side. For the first two terms, we have λ(V) > 2/3 and
so λ(V − x) > 2/3. For the last, if x ≥ 0 then V ∪ (V − x) ⊆ [−1/3, 1], if x ≤ 0
then V ∪ (V − x) ⊆ [0, 4/3], and in either case, λ(V ∪ (V − x)) ≤ 4/3. Hence

λ
(
V ∩ (V − x)

)
> 2/3 + 2/3 − 4/3 = 0.

In particular, V ∩ (V − x) is nonempty, so we can choose an element y. Then
y, x + y ∈ V with |y − (x + y)| = |x| < δ, so | f (y) − f (x + y)| < ε by definition of
δ. But since f is additive, this means that | f (x)| < ε, as required. �

The regularity condition can be weakened still further; see Reem [292] for a
recent survey. However, measurability is as weak a condition as we will need.
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20 Fundamental Functional Equations

Remark 1.1.9 Assuming the axiom of choice, there do exist additive func-
tions R → R that are not linear. To see this, first note that the real line R is a
vector space over Q in the evident way. Choose a basis B for R over Q. Choose
an element b of B, and let φ : B → R be the function taking value 1 at b and 0
elsewhere. By the universal property of bases, φ extends uniquely to a Q-linear
map f : R→ R.

Certainly f is additive. On the other hand, we can show that f is not R-linear
(that is, not ‘linear’ in the terminology of this section). Indeed, any R-linear
function R → R either is identically zero or vanishes nowhere except at 0.
Now f is not identically zero, since f (b) = φ(b) = 1. But also, for any b′ � b
in B, we have f (b′) = φ(b′) = 0 with b′ � 0, so f vanishes at some point other
than 0. Hence f is a nonlinear, additive function R→ R.

Remark 1.1.10 It is consistent with the Zermelo–Fraenkel axioms of set the-
ory (that is, ZFC without the axiom of choice) that all functions R → R are
measurable. This is a 1970 theorem of Solovay [318]. If all functions R → R
are measurable then by Theorem 1.1.8, all additive functions are linear.

On the other hand, the axiom of choice is also consistent with ZF. If the
axiom of choice holds then by Remark 1.1.9, not all additive functions are
linear.

Hence, starting from ZF, one may consistently assume either that every ad-
ditive function is linear or that not every additive function is linear.

Theorem 1.1.8 classifies the measurable functions that convert addition into
addition. One can easily adapt it to classify the functions that convert addition
into multiplication, multiplication into multiplication, and so on:

Corollary 1.1.11 i. Let f : R → (0,∞) be a measurable function. The fol-
lowing are equivalent:

a. f (x + y) = f (x) f (y) for all x, y ∈ R;
b. there exists c ∈ R such that f (x) = ecx for all x ∈ R.

ii. Let f : (0,∞) → R be a measurable function. The following are equivalent:

a. f (xy) = f (x) + f (y) for all x, y ∈ (0,∞);
b. there exists c ∈ R such that f (x) = c log x for all x ∈ (0,∞).

iii. Let f : (0,∞) → (0,∞) be a measurable function. The following are equiv-
alent:

a. f (xy) = f (x) f (y) for all x, y ∈ (0,∞);
b. there exists c ∈ R such that f (x) = xc for all x ∈ (0,∞).
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1.1 Cauchy’s Equation 21

Proof For (i), evidently (b) implies (a). Assuming (a), define g : R → R by
g(x) = log f (x). Then g is measurable and additive, so by Theorem 1.1.8, there
is some constant c ∈ R such that g(x) = cx for all x ∈ R. It follows that
f (x) = ecx for all x ∈ R, as required.

Parts (ii) and (iii) are proved similarly, putting g(x) = f (ex) and g(x) =
log f (ex). �

Remark 1.1.12 In this book, the notation log means the natural logarithm ln =
loge. However, the choice of base for logarithms is usually unimportant, as it is
in Corollary 1.1.11(ii): changing the base amounts to multiplying the logarithm
by a positive constant, which is in any case absorbed by the free choice of the
constant c.

Theorem 1.1.8 also allows us to classify the additive functions that are de-
fined on only half of the real line.

Corollary 1.1.13 Let f : [0,∞) → R be a measurable function satisfying f (x+
y) = f (x)+ f (y) for all x, y ∈ [0,∞). Then there exists c ∈ R such that f (x) = cx
for all x ∈ [0,∞).

Proof First we extend f : [0,∞) → R to a measurable additive function
g : R→ R. By the hypothesis on f , for all a+, a−, b+, b− ∈ [0,∞),

a+ − a− = b+ − b− =⇒ f (a+) − f (a−) = f (b+) − f (b−).

We can, therefore, consistently define a function g : R→ R by

g(a+ − a−) = f (a+) − f (a−)

(a+, a− ∈ [0,∞)). To prove that g is additive, let x, y ∈ R, and choose a±, b± ∈
[0,∞) such that

x = a+ − a−, y = b+ − b−.

Then

x + y = (a+ + b+) − (a− + b−)

with a+ + b+, a− + b− ∈ [0,∞). Hence

g(x + y) = f (a+ + b+) − f (a− + b−)

= f (a+) + f (b+) − f (a−) − f (b−)

= f (a+) − f (a−) + f (b+) − f (b−)

= g(x) + g(y),
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22 Fundamental Functional Equations

as required. To prove that g is measurable, note that

g(x) =

⎧⎪⎪⎨⎪⎪⎩ f (x) if x ≥ 0,

− f (−x) if x ≤ 0

(x ∈ R), as if x ≥ 0 then we can take a+ = x and a− = 0 in the definition of g,
and similarly for x ≤ 0. Since f is measurable, so is g.

By Theorem 1.1.8, there exists a constant c such that g(x) = cx for all x ∈ R.
It follows that f (x) = cx for all x ∈ [0,∞). �

The techniques and results of this section can be assembled in several ways
to derive variant theorems. Rather than attempting to catalogue all the possi-
bilities, we illustrate the point with two particular variants needed later.

Corollary 1.1.14 Let f : (0, 1] → R be a measurable function. The following
are equivalent:

i. f (xy) = f (x) + f (y) for all x, y ∈ (0, 1];
ii. there exists a constant c ∈ R such that f (x) = c log x for all x ∈ (0, 1].

Proof Trivially, (ii) implies (i). Now assuming (i), define g : [0,∞) → R by
g(u) = f (e−u). Then g is measurable and g(u + v) = g(u) + g(v) for all u, v ∈
[0,∞), so by Corollary 1.1.13, g(u) = bu for some real constant b. It follows
that f (x) = −b log x for all x ∈ (0, 1], as required. �

The moral of Corollary 1.1.14 is that for the Cauchy-like functional equation
f (xy) = f (x) + f (y), there is no substantial difference between solving it on
the domain (0,∞) and solving it on the domain (0, 1] (or [1,∞), similarly). But
matters become very different when we seek solutions on the discrete domain
{1, 2, 3, . . .}, as we will discover in the next section.

Remark 1.1.15 In this text, we always use the terms ‘increasing’ and ‘de-
creasing’ in their non-strict senses. Thus, a function f : S → R on a subset
S ⊆ R is increasing if

x ≤ y =⇒ f (x) ≤ f (y)

(x, y ∈ S), and decreasing if − f is increasing. It is strictly increasing or de-
creasing if x < y implies f (x) < f (y) or f (x) > f (y), respectively. The same
terminology applies to sequences.

Corollary 1.1.16 Let f : (0, 1) → (0,∞) be an increasing function. The fol-
lowing are equivalent:

i. f (xy) = f (x) f (y) for all x, y ∈ (0, 1);
ii. there exists a constant c ∈ [0,∞) such that f (x) = xc for all x ∈ (0, 1).
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1.2 Logarithmic Sequences 23

Proof Trivially, (ii) implies (i). Assuming (i), define g : (0,∞) → R by g(u) =
− log f (e−u). Then g(u + v) = g(u) + g(v) for all u, v ∈ (0,∞), and g is also
increasing.

By the same argument as in the proof of Lemma 1.1.2, g(qu) = qg(u) for
all q, u ∈ (0,∞) with q rational. Define g̃ : (0,∞) → R by g̃(u) = g(1)u.
Then g(q) = g̃(q) for all q ∈ (0,∞) ∩ Q. Since g is increasing and g̃ is either
increasing or decreasing (depending on the sign of g(1)), it follows that g̃ is
increasing. But now g, g̃ : (0,∞) → R are increasing functions that are equal
on the positive rationals, so g = g̃. Hence f (x) = xg(1) for all x ∈ (0, 1). �

1.2 Logarithmic Sequences

A sequence f (1), f (2), . . . of real numbers is logarithmic if

f (mn) = f (m) + f (n) (1.5)

for all m, n ≥ 1. Certainly the sequence (c log n)n≥1 is logarithmic, for any
real constant c. But in contrast to the situation for functions f : (0,∞) → R

satisfying f (xy) = f (x) + f (y) (Corollary 1.1.11(ii)), it is easy to write down
logarithmic sequences that are not of this simple form. Indeed, we can choose
f (p) arbitrarily for each prime p, and these choices uniquely determine a log-
arithmic sequence, generally not of the form (c log n).

However, there are reasonable conditions on a logarithmic sequence ( f (n))
guaranteeing that it is of the form (c log n). One such condition is that f is
increasing:

f (1) ≤ f (2) ≤ · · · .
An alternative condition is that

lim
n→∞

(
f (n + 1) − f (n)

)
= 0.

We will prove a single theorem implying both of these results. But a direct
proof of the result on increasing sequences is short enough to be worth giving
separately, even though it is not logically necessary.

Theorem 1.2.1 (Erdős) Let ( f (n))n≥1 be an increasing sequence of real num-
bers. The following are equivalent:

i. f is logarithmic;
ii. there exists a constant c ≥ 0 such that f (n) = c log n for all n ≥ 1.
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24 Fundamental Functional Equations

This was first proved by Erdős [92]. In fact, he showed more: as is customary
in number theory, he only required equation (1.5) to hold when m and n are
relatively prime. But since we will not need the extra precision of that result,
we will not prove it.

The argument presented here follows Khinchin ([188], p. 11).

Proof Certainly (ii) implies (i). Now assume (i). By the logarithmic property,

f (1) = f (1 · 1) = f (1) + f (1),

so f (1) = 0. Since f is increasing, f (n) ≥ 0 for all n. If f (n) = 0 for all n
then (ii) holds with c = 0. Assuming otherwise, we can choose some N > 1
such that f (N) > 0.

Let n ≥ 1. For each integer r ≥ 1, there is an integer �r ≥ 1 such that

N�r ≤ nr ≤ N�r+1

(since N > 1). As f is increasing and logarithmic,

�r f (N) ≤ r f (n) ≤ (�r + 1) f (N),

which since f (N) > 0 implies that

�r
r
≤ f (n)

f (N)
≤ �r + 1

r
. (1.6)

As log is also increasing and logarithmic, the same argument gives

�r
r
≤ log n

log N
≤ �r + 1

r
. (1.7)

Inequalities (1.6) and (1.7) together imply that∣∣∣∣∣∣ f (n)
f (N)

− log n
log N

∣∣∣∣∣∣ ≤ 1
r
.

But this conclusion holds for all r ≥ 1, so

f (n)
f (N)

=
log n
log N

.

Hence f (n) = c log n, where c = f (N)/ log N. And since this is true for all
n ≥ 1, we have proved (ii). �

We now prove the unified theorem promised above. Before stating it, let us
recall the concept of limit inferior. Given a real sequence (g(n))n≥1, define

h(n) = inf
{
g(n), g(n + 1), . . .

} ∈ [−∞,∞)
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1.2 Logarithmic Sequences 25

(n ≥ 1). The sequence (h(n))n≥1 is increasing and therefore has a limit (perhaps
±∞), written as

lim inf
n→∞ g(n) = lim

n→∞ h(n) ∈ [−∞,∞].

If the ordinary limit limn→∞ g(n) exists then lim infn→∞ g(n) = limn→∞ g(n).
However, the limit inferior exists whether or not the limit does. For instance,
the sequence 1,−1, 1,−1, . . . has a limit inferior of −1, but no limit.

If ( f (n)) is a sequence that either is increasing or satisfies f (n+1)− f (n) → 0
as n → ∞, then

lim inf
n→∞

(
f (n + 1) − f (n)

) ≥ 0.

The following theorem therefore implies both of the results mentioned above.

Theorem 1.2.2 (Erdős, Kátai, Máté) Let ( f (n))n≥1 be a sequence of real
numbers such that

lim inf
n→∞

(
f (n + 1) − f (n)

) ≥ 0.

The following are equivalent:

i. f is logarithmic;
ii. there exists a constant c such that f (n) = c log n for all n ≥ 1.

This result was stated without proof by Erdős in 1957 [93], then proved
independently by Kátai [183] and by Máté [245], both in 1967. Again, the
logarithmic condition can be relaxed by only requiring that (1.5) holds when m
and n are relatively prime, but again, we have no need for this extra precision.

The proof below follows Aczél and Daróczy’s adaptation of Kátai’s argu-
ment (Theorem 0.4.3 of [3]). The strategy is to put c = lim infn→∞ f (n)/ log n
and show that f (N)/ log N = c for all N.

Proof It is trivial that (ii) implies (i). Now assume (i). I claim that for all
N ≥ 2,

lim inf
n→∞

f (n)
log n

=
f (N)

log N
. (1.8)

Let N ≥ 2. First we show that the left-hand side of (1.8) is less than or equal
to the right. For each r ≥ 1, the logarithmic property of f implies that

f (Nr)
log(Nr)

=
r f (N)
r log N

=
f (N)

log N
.

Since Nr → ∞ as r → ∞, it follows from the definition of limit inferior that

lim inf
n→∞

f (n)
log n

≤ f (N)
log N

.
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26 Fundamental Functional Equations

Now we prove the opposite inequality,

lim inf
n→∞

f (n)
log n

≥ f (N)
log N

. (1.9)

Let ε > 0. By hypothesis, we can choose k ≥ 1 such that for all n ≥ Nk,

f (n + 1) − f (n) ≥ −ε. (1.10)

Any integer n ≥ Nk has a base N expansion

n = c�N� + · · · + c1N + c0

with c0, . . . , c� ∈ {0, . . . ,N − 1}, c� � 0, and � ≥ k. Then

f (n) ≥ f (c�N� + · · · + c1N) − c0ε (1.11)

≥ f (c�N� + · · · + c1N) − Nε (1.12)

= f (c�N�−1 + · · · + c1) + f (N) − Nε, (1.13)

where inequality (1.11) follows from (1.10) using induction and the fact that
� ≥ k, inequality (1.12) holds because c0 ≤ N, and equation (1.13) follows
from the logarithmic property of f . As long as � − 1 ≥ k, we can apply the
same argument again with c�N�−1 + · · · + c1 in place of n = c�N� + · · · + c0,
giving

f (c�N�−1 + · · · + c1) ≥ f (c�N�−2 + · · · + c2) + f (N) − Nε

and so

f (n) ≥ f (c�N�−2 + · · · + c2) + 2( f (N) − Nε).

Repeated application of this argument gives

f (n) ≥ f (c�Nk−1 + · · · + c�−k+1) + (� − k + 1)( f (N) − Nε).

Hence, writing A = min
{
f (1), f (2), . . . , f (Nk)

}
,

f (n) ≥ A + (� − k + 1)( f (N) − Nε). (1.14)

In (1.14), the only term on the right-hand side that depends on n is �, which is
equal to �logN n�, and �logN n�/ logN n → 1 as n → ∞. Hence

lim inf
n→∞

f (n)
logN n

≥ lim inf
n→∞

{
A

logN n
+

( �logN n�
logN n

+
−k + 1
logN n

)(
f (N) − Nε

)}
= f (N) − Nε.

This holds for all ε > 0, so

lim inf
n→∞

f (n)
logN n

≥ f (N).
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1.2 Logarithmic Sequences 27

Since logN n = (log n)/(log N), this proves the claimed inequality (1.9) and,
therefore, equation (1.8).

Putting c = lim infn→∞ f (n)/ log n ∈ R, we have f (N) = c log N for all N ≥
2. Finally, the logarithmic property of f implies that f (1) = 0, so f (1) = c log 1
too. �

Corollary 1.2.3 Let ( f (n))n≥1 be a sequence such that

lim
n→∞

(
f (n + 1) − f (n)

)
= 0. (1.15)

The following are equivalent:

i. f is logarithmic;
ii. there exists a constant c such that f (n) = c log n for all n ≥ 1. �

To apply this corollary, we will need to be able to verify the limit condi-
tion (1.15). The following improvement lemma will be useful.

Lemma 1.2.4 Let (an)n≥1 be a real sequence such that an+1 − n
n+1 an → 0 as

n → ∞. Then an+1 − an → 0 as n → ∞.

Our proof of Lemma 1.2.4 follows that of Feinstein [99] (pp. 6–7), and uses
the following standard result.

Proposition 1.2.5 (Cesàro) Let (xn)n≥1 be a real sequence, and for n ≥ 1,
write

xn =
1
n (x1 + · · · + xn).

Suppose that lim
n→∞ xn exists. Then lim

n→∞ xn exists and is equal to lim
n→∞ xn.

Proof This can be found in introductory analysis texts such as Apostol [15]
(Theorem 12-48). �

Proof of Lemma 1.2.4 It is enough to prove that an/(n + 1) → 0 as n → ∞.
Write b1 = a1 and bn = an − n−1

n an−1 for n ≥ 2; then by hypothesis, bn → 0 as
n → ∞. We have nan = nbn + (n − 1)an−1 for all n ≥ 2, so

nan = nbn + (n − 1)bn−1 + · · · + 1b1

for all n ≥ 1. Dividing through by n(n + 1) gives

an

n + 1
=

1
2
· 1

1
2 n(n + 1)

(b1 + b2 + b2 + b3 + b3 + b3 + · · · + bn + · · · + bn︸���������︷︷���������︸
n

)

=
1
2
· M1(b1, b2, b2, b3, b3, b3, . . . , bn, . . . , bn︸�����︷︷�����︸

n

), (1.16)
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28 Fundamental Functional Equations

where M1 denotes the arithmetic mean. Since bn → 0 as n → ∞, the sequence

b1, b2, b2, b3, b3, b3, . . . , bn, . . . , bn︸�����︷︷�����︸
n

, . . .

also converges to 0. Proposition 1.2.5 applied to this sequence then implies that

M1(b1, b2, b2, b3, b3, b3, . . . , bn, . . . , bn︸�����︷︷�����︸
n

) → 0 as n → ∞.

But by equation (1.16), this means that an/(n + 1) → 0 as n → ∞, completing
the proof. �

Remark 1.2.6 Lemma 1.2.4 can also be deduced from the Stolz–Cesàro theo-
rem (Section 3.1.7 of Mureşan [258], for instance). This is a discrete analogue
of l’Hôpital’s rule, and states that given a real sequence (xn) and a strictly in-
creasing sequence (yn) diverging to ∞, if

xn+1 − xn

yn+1 − yn
→ �

as n → ∞ then xn/yn → � as n → ∞. Lemma 1.2.4 follows by taking xn = nan

and yn =
1
2 n(n + 1). (I thank Xı̄lı́ng Zhāng for this observation.)

1.3 The q-Logarithm

The q-logarithms (q ∈ R) form a continuous one-parameter family of functions
that include the ordinary natural logarithm as the case q = 1. They can be re-
garded as deformations of the natural logarithm. We will show that as a family,
they are characterized by a single functional equation.

For q ∈ R, the q-logarithm is the function

lnq : (0,∞) → R
defined by

lnq(x) =
∫ x

1
t−q dt

(x ∈ (0,∞)). Thus,

ln1(x) = log(x)

and for q � 1,

lnq(x) =
x1−q − 1

1 − q
. (1.17)

Then lnq(x) → ln1(x) as q → 1, by l’Hôpital’s rule.
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1.3 The q-Logarithm 29

Let q ∈ R. The q-logarithm shares with the natural logarithm the property
that

lnq(1) = 0.

However, in general

lnq(xy) � lnq(x) + lnq(y).

One can see this without calculation: for by Corollary 1.1.11(ii), the only mea-
surable functions that transform multiplication into addition are the multiples
of the natural logarithm. There is nevertheless a simple formula for lnq(xy) in
terms of lnq(x) and lnq(y):

lnq(xy) = lnq(x) + lnq(y) + (1 − q) lnq(x) lnq(y).

Later, we will use a second formula for lnq(xy):

lnq(xy) = lnq(x) + x1−q lnq(y). (1.18)

Similarly, in general

lnq(1/x) � − lnq(x),

but instead we have the following three formulas for lnq(1/x):

lnq(1/x) =
− lnq(x)

1 + (1 − q) lnq(x)

= −xq−1 lnq(x)

= − ln2−q(x). (1.19)

By (1.19), replacing lnq by the function x 	→ − lnq(1/x) defines an involution
lnq ↔ ln2−q of the family of q-logarithms, with a fixed point at the classical
logarithm ln1. Finally, there is a quotient formula

lnq(x/y) = yq−1(lnq(x) − lnq(y)
)
, (1.20)

obtained from equation (1.18) by substituting y for x and x/y for y.

Remark 1.3.1 The history of the q-logarithms as an explicit object of study
goes back at least as far as a 1964 paper of Box and Cox in statistics (Sec-
tion 3 of [49]). The notation lnq appeared in a 1994 article of Tsallis [332],
and the name ‘q-logarithm’ has been used since at least the late 1990s (as in
Borges [45]).

But there is more than one system of q-analogues of the classical notions
of calculus. For instance, there is the system developed by the early twentieth-
century clergyman F. H. Jackson [155] (a modern account of which can be
found in Kac and Cheung [175]). In particular, this has given rise to a different
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30 Fundamental Functional Equations

notion of q-logarithm, as developed in Chung, Chung, Nam and Kang [70].
Ernst [94] gives a full historical treatment of the various branches of q-calculus.
In any case, none of the developments just mentioned use the q-logarithms
considered here.

We now prove that the q-logarithms are characterized by a simple functional
equation. The proof is essentially the argument behind Theorem 84 in the clas-
sic text of Hardy, Littlewood and Pólya [137].

Theorem 1.3.2 Let f : (0,∞) → R be a measurable function. The following
are equivalent:

i. there exists a function g : (0,∞) → R such that for all x, y ∈ (0,∞),

f (xy) = f (x) + g(x) f (y); (1.21)

ii. f = c lnq for some c, q ∈ R, or f is constant.

Proof First suppose that (ii) holds. If f = c lnq for some c, q ∈ R then equa-
tion (1.21) holds with g(x) = x1−q, by equation (1.18). Otherwise, f is constant,
so (1.21) holds with g ≡ 0.

Now assume (i). Since f (xy) = f (yx), equation (1.21) implies that

f (x) + g(x) f (y) = f (y) + g(y) f (x),

or equivalently

f (x)
(
1 − g(y)

)
= f (y)

(
1 − g(x)

)
, (1.22)

for all x, y ∈ (0,∞). If f ≡ 0 then f is constant and (ii) holds. Assuming
otherwise, we can choose y0 ∈ (0,∞) such that f (y0) � 0. Taking y = y0

in (1.22) and putting a = (1 − g(y0))/ f (y0) gives

g(x) = 1 − a f (x) (1.23)

(x ∈ R). Since f is measurable, so is g. There are now two cases: a = 0 and
a � 0.

If a = 0 then g ≡ 1, so the original functional equation (1.21) states that
f (xy) = f (x) + f (y). Since f is measurable, Corollary 1.1.11(ii) implies that
f = c log = c ln1 for some c ∈ R.

If a � 0 then equation (1.23) can be rewritten as

f (x) = 1
a (1 − g(x)) (1.24)

(x ∈ (0,∞)). Substituting this into the original functional equation (1.21) gives

g(xy) = g(x)g(y) (1.25)
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(x, y ∈ (0,∞)). In particular, g(x) = g(
√

x)2 ≥ 0 for all x ∈ (0,∞). There are
now two subcases: g either sometimes vanishes or never vanishes.

If g(x0) = 0 for some x0 ∈ (0,∞) then

g(x) = g(x0)g(x/x0) = 0

for all x ∈ (0,∞), so g ≡ 0. Hence by equation (1.24), f is constant.
Otherwise, g(x) > 0 for all x ∈ (0,∞). Since g is measurable and satisfies

the multiplicativity condition (1.25), Corollary 1.1.11(iii) implies that there is
some constant t ∈ R such that g(x) = xt for all x ∈ (0,∞). We have assumed
that f � 0, so g � 1 (by equation (1.24)), so t � 0. Hence

f (x) = 1
a (1 − xt) = −t

a ln1−t(x)

for all x ∈ (0,∞), completing the proof. �
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