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The Effective Cone of the Kontsevich
Moduli Space

Izzet Coskun, Joe Harris, and Jason Starr

Abstract. In this paper we prove that the cone of effective divisors on the Kontsevich moduli spaces of

stable maps, M0,0(Pr, d), stabilize when r ≥ d. We give a complete characterization of the effective

divisors on M0,0(Pd, d). They are non-negative linear combinations of boundary divisors and the

divisor of maps with degenerate image.

1 Introduction

The ample and effective cones of divisors play a crucial role in the birational geometry

of a variety. The study of these cones for the moduli spaces of stable curves has been
especially fruitful, leading to the proof that the moduli space of stable curves Mg is

of general type when g > 23 (see [HM, H, EH]). Recently, inspired by the work of

G. Farkas, D. Khosla and M. Popa, there has been renewed interest in constructing
divisors of small slope on Mg in order to understand the effective cone of Mg and

to determine the Kodaira dimension of Mg in the remaining cases (see [FaP, Far1,
Far3, Kh]). For instance, Farkas, using his construction of new divisors, announced

a proof that M22 is of general type [Far2].

The aim of this paper is to describe the classes of effective divisors on a related
moduli space, the Kontsevich moduli space of stable maps M0,0(Pr, d). For d > 1,

the scheme parameterizing smooth, degree d, rational curves in Pr is not proper. The
Kontsevich moduli space gives a useful compactification. For integers n, d ≥ 0, the

Kontsevich moduli space M0,n(Pr, d) is a smooth, proper, Deligne–Mumford stack

parameterizing the data (C, (p1, . . . , pn), f ) of

(i) C, a proper, connected, at-worst-nodal curve of arithmetic genus 0,

(ii) p1, . . . , pn, an ordered sequence of distinct, smooth points of C,
(iii) f : C → Pr , a morphism with deg( f ∗OPr (1)) = d satisfying the following sta-

bility condition: every irreducible component of C mapped to a point under f

contains at least 3 special points, i.e., marked points pi and nodes of C.

In this paper we will determine the classes of all effective divisors on M0,0(Pr, d) when

r ≥ d.

R. Pandharipande [Pa] proved that when r ≥ 2, the divisor class H and the classes

of the boundary divisors ∆k,d−k for 1 ≤ k ≤ ⌊d/2⌋ generate the group of Q-Cartier
divisors of M0,0(Pr, d). We recall that
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(i) H is the class of the divisor of maps whose images intersect a fixed codimension
two linear space in Pr (provided r > 1 and d > 0).

(ii) ∆k,d−k, 1 ≤ k ≤ ⌊d/2⌋ is the class of the boundary divisor consisting of maps
with reducible domains, where the map has degree k on one component and

degree d − k on the other component.

The main problem we would like to address is the following.

Problem 1.1 Describe the cone of effective divisor classes on M0,0(Pr, d) in terms
of these generators of the Picard group.

Denote by Pd the Q-vector space of dimension ⌊d/2⌋+ 1 with basis labeled H and
∆k,d−k for k = 1, . . . , ⌊d/2⌋. For each r ≥ 2, there is a Q-linear map

ud,r : Pd → Pic(M0,0(P
r, d)) ⊗ Q

that is an isomorphism of Q-vector spaces.

Definition 1.2 For every integer r ≥ 2, denote by Effd,r ⊂ Pd the inverse image

under ud,r of the effective cone of M0,0(Pr, d).

A more precise version of Problem 1.1 is to describe Effd,r. A first result is that for a

fixed degree d, there is an inclusion between these cones as r increases. Furthermore,
the cones stabilize for r ≥ d.

Proposition 1.3 For every integer r ≥ 2, Effd,r is contained in Effd,r+1. For every

integer r ≥ d, Effd,r equals Effd,d.

In view of Proposition 1.3 it is especially interesting to understand Effd,d. Most of

our paper will concentrate on this case.

The crudest invariant one can associate with the effective cone is the slope of dis-

tinguished rays. For example, Harris and Morrison [HMo1] define the slope of Mg

as the slope of the ray that bounds the effective cone in the subspace spanned by the
Hodge class λ and the total boundary class δ. Determining the slope of Mg is a ma-

jor open problem. In analogy with the case of Mg , we define the slope s(r, d) of the

effective cone of M0,0(Pr, d) as follows.

s(r, d) := sup
α

{

α : H − α

⌊d/2⌋
∑

k=1

k(d − k)∆k,d−k is on the effective cone
}

.

It is possible to determine the slope for the Kontsevich moduli spaces in the stable
range.

Theorem 1.4 If r ≥ d, then the slope s(r, d) of the effective cone of M0,0(Pr, d) is equal

to

s(r, d) =
1

d + 1
.
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When r = d, the effective divisor that achieves the extremal slope has a sim-
ple description. Let Ddeg denote the class of the locus parameterizing stable maps

f : C → Pd of degree d whose set theoretic image does not span Pd. Then Ddeg is a

divisor class in M0,0(Pd, d) which gives the desired slope.
The class Ddeg plays a crucial role in describing the effective cone of M0,0(Pd, d).

The following theorem, which describes the effective cone of M0,0(Pd, d) completely,

is the main theorem of our paper.

Theorem 1.5 The class of a divisor lies in the effective cone of M0,0(Pd, d) if and only

if it is a non-negative linear combination of the class of degenerate maps Ddeg and the

classes of the boundary divisors ∆k,d−k for 1 ≤ k ≤ ⌊d/2⌋.

Theorem 1.4 follows immediately from Theorem 1.5. However, since it is easy

to give an independent proof and since the curves that span the null-space of the
divisor Ddeg are interesting in their own right, we will give a simple proof of it in

§2. Combining Theorem 1.5 with Proposition 1.3 and Lemma 2.1, we obtain the
following corollary.

Corollary 1.6 When r ≥ d, the class of a divisor lies in the effective cone of M0,0(Pr, d)

if and only if it is a non-negative linear combination of the class

H −
1

d + 1

⌊d/2⌋
∑

k=1

k(d − k)∆k,d−k

and the classes of the boundary divisors ∆k,d−k for 1 ≤ k ≤ ⌊d/2⌋.

The space of curves of a given degree and genus has many distinguished subva-

rieties defined by imposing geometric conditions on the curves. Examples of such

subvarieties are given by curves that have an unexpected secant linear space or curves
with an unexpected osculating linear space or curves with a point of unexpected ram-

ification. An informal way of restating Theorem 1.5 is to say that “geometric condi-

tions” do not give new divisors on the space of rational curves of degree d in Pd.
Rational normal curves are too predictable.

We now briefly outline the proof of Theorem 1.5. Since Ddeg and the classes of the
boundary divisors are effective, their non-negative linear combinations also lie in the

effective cone. The main content of the theorem is to show that there are no other

effective divisor classes.

Definition 1.7 A reduced, irreducible curve C on a scheme X is a moving curve if

the deformations of C cover a Zariski open subset of X. More precisely, a curve C

is a moving curve if there exists a flat family of curves π : C → T on X such that
π−1(t0) = C for t0 ∈ T and for a Zariski open subset U ⊂ X every point x ∈ U is

contained in π−1(t) for some t ∈ T. We call the class of a moving curve a moving

curve class.

An obvious observation is that the intersection pairing between the class of an ef-

fective divisor and a moving curve class is always non-negative. Intersecting divisors

https://doi.org/10.4153/CMB-2008-052-5 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-2008-052-5


522 I. Coskun, J. Harris, and J. Starr

with a moving curve class gives an inequality for the coefficients of an effective di-
visor class. The strategy for the proof of Theorem 1.5 is to produce enough moving

curves to force the effective divisor classes to be a non-negative linear combination
of Ddeg and the boundary classes.

Moving curves in M0,0(Pd, d) are easy to recognize by the following lemma.

Lemma 1.8 If C ⊂ M0,0(Pd, d) is a reduced, irreducible curve that intersects the

complement in M0,0(Pd, d) of the union of the boundary divisors and Ddeg, then C is a

moving curve.

Proof The automorphism group of Pd acts transitively on rational normal curves.
An irreducible curve of degree d that spans Pd is a rational normal curve. Hence, a

curve C ⊂ M0,0(Pd, d) that intersects the complement in M0,0(Pd, d) of the bound-

ary divisors and the divisor of maps whose image is degenerate, contains a point that
represents a map that is an embedding of P1 as a rational normal curve. The transla-

tions of C by PGL(d + 1) cover a Zariski open set of M0,0(Pd, d).

In §3, using certain linear systems on blow-ups of P1 × P1, we will construct one-

parameter families of rational curves whose general member is a rational normal

curve. By Lemma 1.8, these will be moving curves in M0,0(Pd, d). These moving
curves will give us enough inequalities on the effective cone to deduce Theorem 1.5.

Remark 1.9. After we posted our article, S. Keel provided a different proof of The-

orem 1.5. Keel’s argument, although beautiful, does not construct moving curves
dual to effective divisors. Most applications of Theorem 1.5 we have in mind rely

on the existence of the moving curves we construct. For instance, using the moving

curves one can characterize the effective cones of the space of stable maps to other
homogeneous varieties (see [CS] for a discussion of the case of Grassmannians).

2 Preliminaries

In this section we prove Proposition 1.3 and collect basic facts about the divisor class
Ddeg.

2.1 The Stability of the Effective Cone

In this subsection we prove that Effd,r is contained in Effd,r+1 and that Effd,r = Effd,d

for r ≥ d. Recall that Effd,r is the image of the effective cone of M0,0(Pr, d) when
Pic(M0,0(Pr, d)) ⊗ Q is identified with the vector space that has a basis labeled by H

and ∆k,d−k for 1 ≤ k ≤ ⌊d/2⌋.

Proof of Proposition 1.3 Let p ∈ Pr+1 be a point, denote U = Pr+1 − {p}, and let

π : U → Pr be a linear projection from p. This induces a smooth 1-morphism

M0,0(π, d) : M0,0(U , d) → M0,0(P
r, d).

Let i : U → Pr+1 be the open immersion. This induces a 1-morphism

M0,0(i, d) : M0,0(U , d) → M0,0(P
r+1, d)
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relatively representable by open immersions. The complement of the image of
M0,0(i, d) has codimension r, which is greater than 2. Therefore, the pull-back mor-

phism

M0,0(i, d)∗ : Pic(M0,0(P
r+1, d)) → Pic(M0,0(U , d))

is an isomorphism. So there is a unique homomorphism

h : Pic(M0,0(P
r, d)) → Pic(M0,0(P

r+1, d))

such that M0,0(π, d)∗ = M0,0(i, d)∗ ◦ h.

Recalling from the introduction that u(r, d) is the map that identifies the Picard

group of M0,0(Pr, d) with the vector space spanned by H and the boundary divisors
∆k,d−k, we see that h ◦ ud,r equals ud,r+1. So to prove Effd,r is contained in Effd,r+1,

it suffices to prove that M0,0(π, d) pulls back effective divisors to effective divisor

classes, which follows since M0,0(π, d) is smooth.

Next assume r ≥ d. Let D be any effective divisor in M0,0(Pr, d). A general point
in the complement of D parameterizes a stable map f : C → Pr such that f (C) spans

a d-plane. Denote by j : Pd → Pr a linear embedding whose image is this d-plane.
There is an induced 1-morphism

M0,0( j, d) : M0,0(P
d, d) → M0,0(P

r, d).

The map M0,0( j, d)∗◦ud,r equals ud,d. By construction, M0,0( j, d)∗([D]) is the class of
the effective divisor M0,0( j, d)−1(D), i.e., [D] is in Effd,d. Thus Effd,d contains Effd,r,

which in turn contains Effd,d by the last paragraph. Therefore Effd,r equals Effd,d.

2.2 The Divisor Class Ddeg

In this subsection we determine the class of the divisor of degenerate maps in
M0,0(Pd, d). We then give a basis of moving curves that span the null-space of Ddeg

in the cone of curves. This completes the proof of Theorem 1.4.

Lemma 2.1 The class Ddeg equals

(2.1) Ddeg =
1

2d

[

(d + 1)H −

⌊d/2⌋
∑

k=1

k(d − k)∆k,d−k

]

.

Proof We will prove the equality (2.1) by intersecting Ddeg with test curves. This

well-developed method was first applied to Kontsevich moduli spaces by Pandhari-

pande [Pa]. Fix a general rational normal surface scroll S of degree i and a general
rational normal curve R of degree d − i − 1 intersecting S in one point p. A general

rational normal surface scroll is the image of P1 × P1 (resp., the blow-up of P2 at
one point) if the degree i is even (resp., odd). Let f denote the class of a fiber of the

scroll. Let e denote the class of the other fiber (resp., of the exceptional curve) when S

is P1 × P1 (resp., the blow-up of P2 at one point). Choose a general pencil of degree
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i + 1 rational curves in the class OS(e + ⌊ i+3
2
⌋ f ) on S having p as a base point. Con-

sider the one-parameter family Ci of degree d rational curves consisting of the union

of the fixed curve R with the elements of the pencil.
The intersection number Ci ·H is the degree of the surface component swept out

by the rational curves parameterized by Ci . By construction, these curves sweep out

the degree i scroll S. Hence, Ci · H = i.
On a rational surface scroll of degree i 6= 1, a pencil of degree i + 1 rational curves

is determined by i + 2 general points (see [C, Lemma 2.5]). When i = 1, a pencil

of conics is determined by 4 base points. One of these points (p) lies on R. The
other i + 1 base points together with the fixed curve R span Pd. Hence, all the curves

parameterized by Ci are non-degenerate. We conclude that Ci · Ddeg = 0.
A general pencil of degree i +1 curves on S becomes reducible i +2 times, breaking

into the union of a curve of degree i and a fiber passing through one of the i + 2 base

points. Suppose that 2 ≤ i ≤ ⌊d/2⌋ − 1. When the fiber passes through p, then Ci

intersects ∆i,d−i . When the fiber passes through one of the other base points, then Ci

intersects ∆1,d−1. Since the total space of the family is smooth at the corresponding

nodes, it is standard that both intersections are transverse. Therefore,

Ci · ∆i,d−i = 1, Ci · ∆1,d−1 = i + 1.

The curve Ci is contained in the boundary divisor ∆i+1,d−i−1. The intersection is
given by the sum of the self-intersections of the sections given by the attaching points.

On R the section is trivial. On the blow-up of the scroll at p, the section obtained

by p has self-intersection −1. Hence, Ci · ∆i+1,d−i−1 = −1. Finally, the intersec-
tion number of Ci with all the other boundary divisors is zero since Ci misses them.

When i = 1, we have to modify the intersection number of C1 with ∆1,d−1 to read
C1 · ∆1,d−1 = 3, since a general pencil of plane conics contains three reducible mem-

bers.

Next consider the one-parameter family B1 of rational curves of degree d > 2 that
contain d + 2 general points and intersect a general line l. Since the points always

span Pd, the curves never become degenerate. Hence, B1 ·Ddeg = 0. The intersection

number of B1 with all the boundary divisors but ∆1,d−1 is zero. Suppose there were
reducible curves of degree i > 1 and d − i > 1. A rational curve of degree i spans at

most Pi . Therefore, at most i + 1 (respectively, d − i + 1) of the points could be con-
tained in the curve of degree i (respectively, d − i). Hence, exactly i + 1 (respectively,

d − i + 1) of the points are contained in them and the components of the curves

lie in the linear spaces spanned by these points. However, if the line l is general, it
cannot meet either of these linear spaces. This is a contradiction. Similar reasoning

yields that the reducible curves that contain d + 2 points and intersect l consist of a

line l̃ containing two of the points and a degree d − 1 curve that contains the other d

points and intersects l and l̃. Using the fact that d + 2 linearly general points in Pd−1

determine a unique rational normal curve, we conclude that

B1 · ∆1,d−1 =
(d + 2)(d + 1)

2
.

Finally, to determine B1 · H, we need to count the number of rational curves of

degree d that contain d + 2 general points, intersect a general line, and intersect a
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general Pd−2. This number may be easily determined to be

B1 · H =
d2 + d − 2

2

by the algorithm proved in [V, Theorem 6.1].

Briefly, if we specialize the linear space Pd−2 to the span Λ of d of the points, then

the degree d curves become reducible by Bezout’s Theorem. Vakil [V, Theorem 6.1]

describes the possible limits and their multiplicities. There is either a component of
degree d−1 or of degree 1 contained in Λ. (We already proved that the curves cannot

break any other way.) If there is a line in Λ, it can join any of the d(d − 1)/2 pairs
of points in Λ. The complementary curve of degree d − 1 is uniquely determined as

before. If there is a curve of degree d − 1 in Λ, then the complementary line l̃ is the

line joining the two points that are not contained in Λ. The curve of degree d − 1
is uniquely determined because it must contain d points in Λ and intersect l and l̃.

It counts with multiplicity d − 1 for the choice of intersection with the linear space

Pd−2 that we specialized to Λ. We obtain the number claimed.

This determines the class of Ddeg up to a constant multiple. In order to determine

the multiple, consider the curve C that consists of a fixed degree d − 1 curve and a
pencil of lines in a general plane intersecting the curve in one point. The curve C

has intersection number zero with all the boundary divisors but ∆1,d−1. Arguing as
above, it is easy to see that C has the following intersection numbers: C · H = 1,

C · Ddeg = 1, and C · ∆1,d−1 = −1. The lemma follows from these intersection

numbers.

Consider the one-parameter family Bk of rational curves of degree d in Pd that

contain d + 2 general fixed points and intersect a general linear space Pk and a general
linear space Pd−k for 1 ≤ k ≤ ⌊d/2⌋. When k = 1, we omit the linear space Pd−1.

A general member of Bk is a rational normal curve. This follows, for example, from

[FP, Lemma 14]. By Lemma 1.8, it follows that Bk is a moving curve for every k. The
only reducible elements of B1 are unions of curves of degree 1 and d − 1. For k > 1,

the only reducible members of Bk have degrees (1, d− 1) or (k, d− k). Since the d + 2

points always span Pd, Bk ·Ddeg = 0 for every k. Since the curves Bk are independent,
they must span the null-space of Ddeg in the cone of curves. Observe that these curves

give a proof of Theorem 1.4.

Proof of Theorem 1.4 By Lemma 2.1, the divisor class Ddeg lies in the plane spanned

by the divisor classes H and
∑⌊d/2⌋

k=1 k(d − k)∆k,d−k. Hence, it determines a ray in
the intersection of this plane with the effective cone. By Lemma 2.1, the slope of this

ray is 1
d+1

. We conclude that the slope of Effd,d is at least 1
d+1

. On the other hand,
there are moving curves that have intersection number zero with Ddeg. Hence, the

ray determined by Ddeg is extremal in the intersection of the effective cone with the

plane spanned by H and
∑⌊d/2⌋

k=1 k(d − k)∆k,d−k. Therefore, the slope of Effd,d is at
most 1

d+1
.
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2.3 A Digression on the Slope of Mg

Recall that the slope s(g) of Mg is defined by

s(g) := inf
α
{αλ − δ is on the effective cone},

where λ is the Hodge class and δ is the total boundary class. Harris and Morrison
[HMo1] proved that the slope of the moduli space of curves Mg is non-negative.

However, the lower bounds they obtain on the slope tend to zero as the genus tends

to infinity. On the other hand, none of the currently known effective divisors on Mg

produce a ray in the effective cone of slope less than 6. There are families of effective

divisors, such as the Brill–Noether divisors, whose slopes tend to 6 from above as the
genus tends to infinity. Determining the slope, even giving a positive lower bound

for it, is an important problem with applications to the Schottky problem and the

Kodaira dimension of Mg . One method for proving lower bounds on the slope is
to produce moving curves on Mg . As discussed after Definition 1.7, each moving

curve gives a lower bound on the slope. To the best of our knowledge, currently

known moving curves in Mg give lower bounds on the slope that tend to zero with
the genus.

The proof of Theorem 1.4 suggests a family of moving curves that might improve
known bounds. Recall that the component of the Hilbert scheme parameterizing

canonically embedded curves of genus g in Pg−1 has dimension g2 + 3g − 4. We can

impose g2 +3g−5 conditions on canonical curves by requiring them to intersect “the
appropriate number” of general linear spaces in Pg−1. We thus obtain one-parameter

families of canonical curves depending on the numerical data of the linear spaces. It

is not hard to see that by varying the linear spaces, we can arrange the one-parameter
families to contain a general canonical curve. Hence, each of these one-parameter

families induce moving curves in Mg . These moving curves are especially interesting
when as many of the the linear spaces as possible are points. (A dimension count

shows that when g ≥ 8, this amounts to considering the one-parameter family of

canonical curves that contain g + 5 general points and intersect a general Pg−7.)
In low genus, these moving curves provide the (previously known) sharp lower

bounds on the slope. We will describe this for 3 ≤ g ≤ 6. As in the proof of

Theorem 1.4, to check that the bound is sharp, it suffices to produce an effective
divisor proportional to aλ−δ that has intersection number zero with a moving curve.

In all our examples, the moving curves will have intersection number zero with all
the boundary divisors except for δ0, the divisor of irreducible nodal curves. In the

expressions of the effective divisors, all the coefficients of the boundary divisors will

be negative. Furthermore, the coefficient of δ0 will have the smallest absolute value.
In all cases, we can add positive multiples of the other boundary divisors to obtain an

effective divisor proportional to aλ − δ without changing the intersection numbers

with our moving curves. We will refer the reader to the literature for the details about
the divisors we invoke and leave most of the (easy) verifications to the reader. The

classical facts we use about canonical curves can be found in [Ha, Ch. IV.5] and
[ACGH, Ch. III, V].

Let C3 be the one-parameter family of genus 3 canonical curves that contain 13

general points in P2. The canonical image of a non-hyperelliptic genus 3 curve is
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a quartic plane curve. Hence, C3 is a general pencil of quartic plane curves. Every
member of such a pencil is a non-hyperelliptic stable curve. In M3 the closure of

the locus of hyperelliptic curves forms a divisor whose class is computed in [HMo2,
Ch. 3H]. Hence, C3 has intersection number zero with the divisor of hyperelliptic

curves. By the argument outlined in the previous paragraph, C3 gives the sharp lower

bound 9 on the slope of M3.
Let C4 be the one-parameter family of genus 4 canonical curves that contain 9

general points and intersect 5 general lines in P3. A genus 4 canonical curve is a (2, 3)

complete intersection in P3. Since nine general points determine a unique smooth
quadric, all of these curves lie on a unique smooth quadric surface. Consequently, C4

has intersection number zero with the Petri divisor of curves whose canonical image
lies on a singular quadric (see [EH] for details about the Petri divisor). Hence, C4

gives the sharp lower bound 17/2 on the slope of M4.

Let C5 be the one-parameter family of genus 5 canonical curves in P4 that contain
11 general points and intersect a general line. Canonical images of non-hyperelliptic

and non-trigonal curves are complete intersections of type (2, 2, 2) in P4. Canon-

ical images of trigonal genus 5 curves lie on a cubic scroll. Since the dimension of
cubic scrolls in P4 is 18, there cannot be any cubic scrolls in P4 that contain 11 gen-

eral points. Hence, C5 has intersection number zero with the Brill–Noether divisor
of trigonal genus 5 curves (see [HMo2, Ch. 6F] for the class of the Brill–Noether

divisor). Thus, C5 gives the sharp lower bound 8 on the slope of M5.

Finally, let C6 be the one-parameter family of genus 6 canonical curves in P5 that
contain 11 general points and intersect a general line and a general plane. The canon-

ical image of a non-hyperelliptic genus 6 curve lies on a Del Pezzo surface of degree

5 in P5. An easy dimension count shows that there are only finitely many such Del
Pezzo surfaces that contain 11 general points and intersect a general line and a general

plane. Furthermore, these Del Pezzo surfaces will be smooth. Hence, C6 has inter-
section number zero with the Petri divisor of curves that lie on a singular quintic Del

Pezzo surface (see [EH] for the class), leading to the sharp slope bound 47/6.

The analogy with rational curves and these small-genus examples suggest that the
moving curves in Mg described above are well worth studying. Unfortunately we do

not know the intersection numbers of these curves with the classes λ and δ in general.

We pose calculating these numbers as an interesting open problem.

3 The Effective Cone of M0,0(Pd, d)

In this section we prove Theorem 1.5. Every effective divisor class in M0,0(Pd, d) is a
positive linear combination of Ddeg and the boundary divisors.

Since Ddeg and the boundary divisors are effective, any positive linear combination
also is a class in the effective cone. In order to prove Theorem 1.5 we have to show

that we can write the class of every effective divisor as

αDdeg +

⌊d/2⌋
∑

k=1

βk,d−k ∆k,d−k,

where α and βk,d−k are non-negative.

https://doi.org/10.4153/CMB-2008-052-5 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-2008-052-5


528 I. Coskun, J. Harris, and J. Starr

First we observe that if D is an effective divisor on M0,0(Pd, d) and D has the class

aH +

⌊d/2⌋
∑

k=1

bk,d−k∆k,d−k,

then a ≥ 0. Furthermore, if a = 0, then bk,d−k ≥ 0. Consider a general projection
of the d-th Veronese embedding of P2 to Pd. Consider the image of a pencil of lines

in P2. By Lemma 1.8, this is a moving one-parameter family C of degree d rational
curves that has intersection number zero with the boundary divisors. It follows from

the inequality C · D ≥ 0 that a ≥ 0.

Furthermore, suppose that a = 0. Consider a general pencil of (1, 1) curves on
P1 × P1. Take a general projection to Pd of the embedding of P1 × P1 by the linear

system OP1×P1 (i, d − i). By Lemma 1.8, the image of the pencil gives a moving one-

parameter family C of degree d curves whose intersection with ∆k,d−k is zero unless
k = i. The relation C ·D ≥ 0 implies that if a = 0, then bi,d−i ≥ 0. We conclude that

Theorem 1.5 is true if a = 0. We can, therefore, assume that a > 0.
Suppose that for every 1 ≤ i ≤ ⌊d/2⌋, we could construct a moving curve Ci in

M0,0(Pd, d) with the property that Ci · ∆k,d−k = 0 for k 6= i and that the ratio of

Ci · ∆i,d−i to Ci · H is given by

(3.1)
Ci · ∆i,d−i

Ci · H
=

d + 1

i(d − i)
.

Observe that given these intersection numbers, Lemma 2.1 implies that Ci ·Ddeg = 0.
Theorem 1.5 follows from the inequalities Ci · D ≥ 0.

In the rest of this section we will first give a construction of one-parameter fam-

ilies of Ci with these properties. However, our construction will depend on the
Harbourne–Hirschowitz conjecture. We will then modify the construction to get

a sequence of curves (not depending on any conjectures) that “approximate” these

intersection numbers. These curves will suffice to conclude Theorem 1.5.

3.1 Construction 1: Depending on the Harbourne–Hirschowitz Conjecture

Let F1 and F2 denote the two fiber classes on P1 × P1. We will abuse notation and

denote the proper transform of the fibers in any blow-up of P1 × P1 also by F1 and
F2. Let d, j and k be positive integers subject to the condition that 2k ≤ d. Consider

S the blow-up of P1 × P1 in j(d + 1) general points p1, . . . , p j(d+1). Let Ei denote the

i-th exceptional divisor lying over pi . Let L( j) be the following linear system on S:

L( j) = dF1 +
jk(k + 1)

2
F2 −

j(d+1)
∑

i=1

kEi .

Suppose M is a linear system on S and that M − F2 is non-special, that is,

h1(S, OS(M − F2)) = 0.
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Consider the exact sequence

0 → OS(M − F2) → OS(M) → OF2
(M) → 0.

The long exact sequence of cohomology implies that taking the one-parameter family
of proper transforms of the fiber class F2 under the image of the linear system |M|
gives a one-parameter family of rational curves of degree M · F2 spanning PM·F2 .

In particular, suppose that L( j) − F2 is non-special. Then by the discussion in
the previous paragraph, the linear system L( j) embeds the general curve in the linear

system |F2| on S as a rational normal curve of degree d in Pd. We thus obtain a moving
curve Ck( j) that has intersection number zero with all the boundary classes except for

∆k,d−k. Clearly, Ck( j) ·∆k,d−k = j(d + 1). The degree of the surface that these curves

span is given by L( j)2
= jk(d − k). Hence, Ck( j) · H = jk(d − k). It follows from

Lemma 2.1 that Ck( j) · Ddeg = 0. Hence, Theorem 1.5 would immediately follow if

L( j) − F2 were non-special for at least one value of j.

We recall that the celebrated conjecture due to Harbourne and Hirschowitz char-
acterizes the linear systems that are special on a general blow-up of P2 as those linear

systems that have a multiple (−1)-curve in their base locus. Here we will need a
weaker form of the conjecture (see [CM]).

Conjecture 3.1 (Harbourne–Hirschowitz) Let M be a complete linear system on a

general blow-up S of P2. If E ·M is non-negative for every (−1)-curve E on S, then M is

non-special.

Since the blow-up of P1 × P1 at a point is isomorphic to the blow-up of P2 at

two points, the Harbourne–Hirschowitz conjecture applies to the linear systems L( j).

The class of any (−1)-curve on S may be expressed as αF1 +βF2−
∑ j(d+1)

i=1 γiEi , where

α and β are non-negative integers and γi ≥ −1 is an integer. Since for a (−1)-curve
E we have E · K = −1, it follows that

−

j(d+1)
∑

i=1

γi = 1 − 2α − 2β.

The intersection of the (−1)-curve with L( j) − F2 is

dβ + α
( jk(k + 1)

2
− 1

)

− k

j(d+1)
∑

i=1

γi = (d − 2k)β + α
( jk(k + 1)

2
− 2k − 1

)

+ k.

When k > 3 and j ≥ 1, or k = 2, 3 and j > 1, or k = 1 and j ≥ 3, the intersection

is non-negative. We conclude the following.

Proposition 3.2 Suppose Conjecture 3.1 holds for L( j)−F2 for some j ≥ 1. Then the

effective cone of M0,0(Pd, d) is spanned by the classes of Ddeg and the boundary divisors.

Furthermore, every codimension 1 face of the effective cone is the null-locus of a moving

curve.

Remark 3.3. It is easy to prove that L( j) − F2 is non-special for small values of d and

k and to deduce Proposition 3.2 without any conditions. However, we could not see

how to prove the non-specialty of L( j) − F2 in general.
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3.2 Construction 2: Completing the Proof

We modify the previous construction by imposing fewer k-fold points on the linear

system dF1 + jk(k+1)
2

F2 on P1 × P1. If we do not impose too many k-fold points on

the linear system, we can prove the non-specialty of the desired linear system. The

following proposition makes this precise.

Proposition 3.4 Let k, j and d be positive integers subject to the condition that 2k ≤ d.

There exists an integer n(k, d) depending only on k and d such that the linear system

L ′( j) = d F1 +
( jk(k + 1)

2
− 1

)

F2 −

j(d+1)−n(k,d)
∑

i=1

kEi −

j(d+1)+n(k,d) (k−1)(k+2)
2

∑

i= j(d+1)−n(k,d)+1

Ei

on the blow-up of P1 × P1 at j(d + 1) + n(k, d) (k−1)(k+2)
2

general points is non-special

for every j ≫ 0. The integer n(k, d) may be taken to be n(k, d) = ⌈2(d + 1)/k⌉.

Proposition 3.4 implies Theorem 1.5. As in the previous subsection, we consider

the blow-up of P1 × P1 in

j(d + 1) +
n(k, d)(k − 1)(k + 2)

2

general points. The proper transform of the fibers F2 under the linear system

dF1 +
jk(k + 1)

2
F2 −

j(d+1)−n(k,d)
∑

i=1

kEi −

j(d+1)+n(k,d) (k−1)(k+2)
2

∑

i= j(d+1)−n(k,d)+1

Ei

gives a one-parameter family Ck( j) of rational curves of degree d that has intersection
number zero with Ddeg. Letting j tend to infinity, we obtain a sequence of moving

curves Ck( j) in M0,0(Pd, d) that has intersection zero with all the boundary divisors

but ∆1,d−1 and ∆k,d−k. Unfortunately, the intersection of Ck( j) with ∆1,d−1 is not
zero and the ratio of Ck( j) · H to Ck( j) · ∆k,d−k is not the one required by (3.1).

However, as j tends to infinity, the ratio of the intersection numbers Ck( j) · ∆1,d−1

to Ck( j) · H tends to zero and the ratio of Ck( j) · ∆k,d−k to Ck( j) · H tends to the
desired ratio d+1

k(d−k)
. Theorem 1.5 follows.

Proof of Proposition 3.4 The proof of this proposition is an application of the stan-
dard degeneration techniques used to study the Harbourne–Hirschowitz conjecture.

The global sections of a linear system

aF1 + bF2 −
∑

i

riEi

on a blow-up of P1 × P1 at points pi correspond to proper transforms of curves of

type (a, b) on P1 × P1 that have multiplicity ri at pi . In general, it is hard to obtain

an upper bound on the dimension of global sections directly. However, if the points
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pi are in a special position, it might be possible to estimate the dimension of global
sections using the special geometry. By the upper-semi-continuity, the same estimate

holds also when the points are in general position.

A specialization that works well is to set the points pi one at a time to a fixed

point q. More precisely, for our linear system L( j) ′ we specialize the k-fold points as
follows: we begin with a k-fold point p in general position. We first specialize p along

a fiber f1 (in the class F1) onto the fiber f2 in (the fiber class F2) containing the point
q. We then specialize the point p onto q along f2. The limiting linear systems that

result from this specialization are well known. For example, they have been elegantly

described by a checker game [Ya, §2]. We will use Yang’s description to complete
the proof. We note that Yang works on P2, but since the blow-up of P1 × P1 at one

point is isomorphic to the blow-up of P2 at two points, the description carries over

to P1 × P1 with little modification.

We now recall Yang’s description (phrased for P1 × P1). The global sections of
the linear system OP1×P1 (a, b) are bi-homogeneous polynomials of bi-degree a and

b in the variables x, y and z, w, respectively. A basis for the space of global sections

is given by the monomials xi ya−iz jwb− j , where 0 ≤ i ≤ a and 0 ≤ j ≤ b. We can
record the coefficients of these monomials in a rectangular (a + 1) × (b + 1) grid. In

this grid, the box in the i-th row and the j-th column corresponds to the coefficient
of the monomial xi ya−iz jwb− j .

Figure 1: Imposing a triple point on OP1×P1 (4, 6).

A point p is a k-fold point of a curve if the first k − 1 derivatives of the defining

equation of the curve vanish at p. If we impose a k-fold point on the linear system at
the point ([x : y], [z :w]) = ([0 :1], [0 :1]), then the coefficients of the monomials

yawb, xya−1wb, . . . , xk−1 ya−k+1zk−1wb−k+1

must vanish. We depict this condition by filling the k × k triangle of boxes corre-
sponding to the coefficients of these monomials with checkers. See Figure 1 for an

example. In general, an (a + 1) × (b + 1) checker diagram with checkers filled in at

some boxes will denote the subspace of H0(P1 × P1, OP1×P1 (a, b)) spanned by the
monomials corresponding to the boxes that do not contain checkers.

Suppose we begin with a linear subseries of H0(P1 × P1, OP1×P1 (a, b)) defined by

a checker diagram. If initially all the boxes in the k × k upper left triangle are empty,

then the linear series obtained by imposing a new k-fold point at p corresponds to
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Drop the checkers Slide the checkers to the right

Figure 2: Depicting the degenerations by checkers.

the checker diagram where in addition the k × k upper left triangle is filled with
checkers. The first panel of Figure 2 depicts an example. We first slide the k-fold point

along the fiber f1 onto the point ([x : y], [z :w]) = ([1 :0], [0 :1]). This corresponds

to the degeneration ([x : y], [z : w]) 7→ ([x :t y], [z :w]). The flat limit of the linear
series under this degeneration is again a linear series which corresponds to a checker

diagram. The new checker diagram is obtained from the old one by dropping the

checkers vertically down until they reach a box that already contains a checker. The
second panel in Figure 2 depicts the result of such a degeneration.

We then follow this degeneration with a degeneration that specializes the k-fold
point to q by sliding along the fiber f2. This degeneration is explicitly given by

([x : y], [z :w]) 7→ ([x : y], [z :tw]).

The flat limit of the linear system is another linear system that corresponds to a
checker diagram. The new checker diagram is obtained from the old one by sliding

all the checkers as far right as possible. The third panel in Figure 2 gives an example.
The proof consists of writing down a general member of the linear series, factoring

out the lowest power of t from the expression and setting t = 0. We refer the reader

to the proof of [Ya, Lemma 2] for the computation.
If one can carry out the checker degeneration with all the multiple points that one

imposes on a linear system without any checkers falling off the grid, one can conclude

that the linear system is non-special. The dimension of a linear system corresponding
to a checker diagram is the number of empty boxes. If none of the checkers fall off the

grid, then each point of multiplicity m imposes m(m + 1)/2 conditions. Hence, the
expected dimension is equal to the actual dimension. Riemann–Roch then implies

that the linear system is non-special. The obstruction to proving the non-specialty is

that there might not be enough empty boxes to impose a k-fold point. Specifically, in
the initial diagram some of the boxes in the upper left k × k triangle may be full. In

that case we cannot impose a k-fold point at p without losing a checker. See [Ya] for

examples.
In order to conclude the proposition we need to show that if we impose at most

j(d + 1)− n(k, d) points of multiplicity k on the linear system OP1×P1 (d, jk(k + 1)/2)
where 2k ≤ d, we do not lose any checkers when we specialize all the k-fold points

by the degeneration just described. This suffices to conclude the proposition because

general simple points always impose independent conditions.
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The main observation is that if there is a safety net of empty boxes at the top of
the rectangle, then the checkers will not fall out of the box. If we perform the checker

degeneration using k-fold points, then, after specializing each of the k-fold points to
q, the diagram clearly satisfies the following two properties:

• The uppermost row that contains any checkers is at most k rows higher than the
uppermost row completely filled with checkers.

• The leftmost checker of a row is to the lower left of the leftmost checker of any row

above it.

If there are at least (k + 1)(d + 1) empty boxes in our rectangle, then by the above

two observations we do not lose any of the checkers when we specialize a k-fold point.
As long as n(k, d) ≥ ⌈2(d + 1)/k⌉, there are always at least (k + 1)(d + 1) boxes empty.

Hence we can specialize without losing any conditions.

Remark 3.5. While the asymptotic approach gives a proof of Theorem 1.5 indepen-
dent of the Harbourne–Hirschowitz conjecture, it does not construct a moving curve

that is dual to the codimension one faces of the effective cone of M0,0(Pd, d). How-

ever, the moving curves we have constructed approximate arbitrarily well the duals
to the codimension one faces and suffice for the applications.
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