S. Chowla and H. London

For p a prime $\equiv 1(\bmod n)$, where n is an odd positive integer, let $k(p, n)$ denote the least integer k such that the numbers x^{n} and $(-x)^{n}$, where $x=1,2, \ldots, k$, yield all the non-zero n-th power residues ($\bmod \mathrm{p})$ (possibly with repetitions). Clearly

$$
\mathrm{k}(\mathrm{p}, \mathrm{n})<\frac{1}{2} \mathrm{p} .
$$

THEOREM. $k(p, n)<\left(\frac{1}{2}-\frac{1}{2 n}\right) p$.
Proof. Suppose x_{0} is a solution of
(1) $x^{n} \equiv m(\bmod p)$.

Then $x_{i}=x_{0} g^{i(p-1) / n}, i=1,2, \ldots, n-1$, where g is a primitive $\operatorname{root}(\bmod p)$, are also solutions of (1). Let $b=g^{(p-1) / n}$ so that $x_{i}=x_{0} b^{i}$. Note that ${ }^{\text {. }}$

$$
x_{0}+x_{1}+\ldots+x_{n-1}=x_{0} \frac{b^{n}-1}{b-1} \equiv 0(\bmod p)
$$

Suppose that

$$
x_{0}+x_{1}+\ldots+x_{n-1}=k p, \quad 1 \leq k \leq(n-1) / 2
$$

Then there is at least one i such that $0<x_{i}<k p / n$, for if $x_{i}>k p / n$ for all i we get a contradiction. Now suppose that

$$
\mathrm{x}_{0}+\mathrm{x}_{1}+\ldots+\mathrm{x}_{\mathrm{n}-1}=\mathrm{kp}, \quad(\mathrm{n}+1) / 2 \leq \mathrm{k} \leq \mathrm{n}-1
$$

Then there is at least one i such that $p>x_{i}>k p / n$, for if $x_{i}<k p / n$
for all i we get a contradiction. Thus

$$
0<p-x_{i}<\left(\frac{1}{2}-\frac{1}{2 n}\right) p
$$

Remark. Note that

$$
\begin{aligned}
2 k(p, n) & \geqq \text { number of non-zero residues of } x^{n}(\bmod p) \\
& =(p-1) / n
\end{aligned}
$$

SO

$$
\mathrm{k}(\mathrm{p}, \mathrm{n}) \geq(\mathrm{p}-1) / 2 \mathrm{n} .
$$

Thus, for n fixed and small, p large in comparison with n,

$$
\mathrm{p} / 2 \mathrm{n}+\mathrm{O}(1) \leq \mathrm{k}(\mathrm{p}, \mathrm{n})<\left(\frac{1}{2}-\frac{1}{2 \mathrm{n}}\right) \mathrm{p}
$$

It would be interesting to know if

$$
k(p n)=2(n) p+\text { error }
$$

as $\mathrm{p} \rightarrow \infty$.

Pennsylvania State University
McGill University

