S. Chowla and H. London

For p a prime $\equiv 1 \pmod{n}$, where n is an odd positive integer, let k(p, n) denote the least integer k such that the numbers x^n and $(-x)^n$, where x = 1, 2, ..., k, yield all the non-zero n-th power residues (mod p) (possibly with repetitions). Clearly

$$k(p, n) < \frac{1}{2}p$$

THEOREM. $k(p, n) < (\frac{1}{2} - \frac{1}{2n}) p$.

<u>Proof</u>. Suppose x_0 is a solution of

(1)
$$\mathbf{x}^n \equiv \mathbf{m} \pmod{p}$$

Then $x_i = x_0 g^{i(p-1)/n}$, i = 1, 2, ..., n-1, where g is a primitive root (mod p), are also solutions of (1). Let $b = g^{(p-1)/n}$ so that $x_i = x_0 b^i$. Note that

$$x_0 + x_1 + \dots + x_{n-1} = x_0 \frac{b^n - 1}{b - 1} \equiv 0 \pmod{p}$$

Suppose that

$$x_0 + x_1 + \dots + x_{n-1} = kp, \quad 1 \le k \le (n-1)/2.$$

Then there is at least one i such that $0 < x_i < kp/n$, for if $x_i > kp/n$ for all i we get a contradiction. Now suppose that

$$x_0 + x_1 + \dots + x_{n-1} = kp$$
, $(n+1)/2 \le k \le n-1$.

Then there is at least one i such that $p > x_i > kp/n$, for if $x_i < kp/n$

for all i we get a contradiction. Thus

$$0 .$$

Remark. Note that

 $2k(p, n) \ge number of non-zero residues of xⁿ (mod p)$ = (p-1)/n,

 \mathbf{so}

$$k(p, n) \ge (p - 1)/2n$$
.

Thus, for n fixed and small, p large in comparison with n,

$$p/2n + O(1) \le k(p, n) < (\frac{1}{2} - \frac{1}{2n}) p.$$

It would be interesting to know if

$$k(p n) = 2(n)p + error$$

as $p \rightarrow \infty$.

Pennsylvania State University

McGill University