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Abstract
Cattle feed yards routinely track and collect data for individual calves throughout the feed-
ing period. Using such operational data from nine U.S. feed yards for the years 2016–2019,
we evaluated the scalability and economic viability of using machine learning classifier pre-
dicted mortality as a culling decision aid. The expected change in net return per head when
using the classifier predictions as a culling aid as compared to the status quo culling pro-
tocol for calves having been pulled at least once for bovine respiratory disease was simu-
lated. This simulated change in net return ranged from −$1.61 to $19.46/head. Average
change in net return and standard deviation for the nine feed yards in this study was
$6.31/head and $7.75/head, respectively.
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Introduction

Cattle feed yards routinely collect, track, and manage large amounts of operational data. While
the specific variables collected and managed by each feed yard can vary, much of the data
collected is consistent across feed yards. Operational data tracks each animal from arrival
to sale providing details of a calf’s specific journey while at the feed yard. This detailed record
and data management can be time-consuming and costly. The continued practice of data col-
lection signals that the information contained in such data must provide expected benefits to
management outweighing the costs. Through monitoring operational data, management can
often identify trends and anomalies that are cause for concern and may warrant corrective
action. Operational data has also proven useful in many scholarly research projects intended
to improve feed yard efficiency and profitability (Rojas et al. 2022; Feuz, Feuz, and Johnson
2021; Moya et al. 2015; Amrine, White, and Larson 2014; and Theurer et al. 2014). There are
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many components affecting profitability in the cattle feeding industry, not the least of which is
a feed yard’s mortality rate (Irsik et al. 2006). The cost of each calf is an investment for a feed
yard and death loss eliminates an individual calf’s expected return on investment. If a feedlot
manager were able to predict mortality, then this loss could be partially avoided through pre-
mature culling and subsequent sale of the calf in the railer market.

The objective of this study is to use machine learning classification algorithms (classi-
fiers) to create mortality predictive models and estimate through simulation the average
expected change in net return per head when using the classifier predictions of mortality as
a culling decision aid. The change in net return will be simulated using the predictions of
the classifier that is shown to have the highest expected net return on average across the
nine feed yards and 4 years of observational data used in the study. In data science, a clas-
sifier is a type of machine learning algorithm used to assign a class label to a data input. In
the case of our objective, the classifier uses inputs from the operational feed yard data to
make predictions of mortality before the end of the feeding period for an animal.

Relevant literature
There have been many important research projects which have relied on observational feed
yard data. Cha et al. (2017) used structural equation models with operational feed yard
data with a focus on health outcomes related to bovine respiratory disease (BRD).
Their model demonstrated indirect effects of arrival weight on average daily gain
(ADG) mediated by BRD-related treatment costs. Irsik et al. (2006) estimated marginal
effects of increased mortality on the feed conversion ratio, ADG, and added feed costs
in a pen of cattle. Babcock et al. (2009) used generalized linear mixed models with opera-
tional feed yard data and determined that the timing of initial BRD treatment is associated
with performance and health outcomes. Decreased ADG, greater hot carcass weight, and
more total treatments were associated with cattle with more weeks on feed between BRD
treatment and slaughter compared with cattle treated closer to slaughter. Babcock et al.
(2013) used a mixed effects multivariable negative binomial regression model to quantify
effects of cohort-level risk factors for combined mortality and culling losses in feed yard
cattle cohorts.

These types of studies (Cha et al. 2017; Irsik et al. 2006; Babcock et al. 2009; Babcock
et al. 2013) are all part of a large body of research using operational feed yard data that
could be described as retrospective. The data are used after cattle have finished the pro-
duction cycle and knowledge gained from the research is used to adjust future production
to increase the efficiency and profitability of the cattle finishing industry.

There are a smaller number of studies that could be described as prospective, as their
objectives are to use operational data to make predictions and adjust management deci-
sions concerning current animals within the feed yard. The most applicable prospective
study for the purposes of the objective of this paper is Feuz, Feuz, and Johnson (2021).
This study used operational feed yard data from a 2-year Noble Research Institute sustain-
ability project. Their objective was to construct mortality predictive models and evaluate
whether the models were accurate enough to ensure a positive financial impact when used
as a culling decision aid. There are other notable prospective studies including Rojas et al.
(2022); Amrine, White, and Larson (2014); Moya et al. (2015); and Theurer et al. (2014).
Rojas et al. (2022) used operational feed yard data to construct predictive models for BRD
risk classification (high or low). They demonstrated that feed yards using the predictive
models to make treatment decisions may see positive economic value as compared to using
traditional methods of BRD risk classification. Amrine, White and Larson (2014) evaluated
the ability of different classification algorithms using feed yard operational data to predict
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a calf’s outcome based on data available at first diagnosis of and treatment for BRD. They
focused on predicting animals that were treated for BRD with an antimicrobial, but ulti-
mately did not finish (DNF) the production cycle with their cohort. Moya et al. (2015) used
feeding behavior pattern recognition techniques to predict morbidity in newly arrived feed
yard cattle. Theurer et al. (2014) used operational feed yard data to evaluate associations of
rectal temperature at first treatment for BRD and the probability of not finishing the pro-
duction cycle.

Feuz, Feuz, and Johnson (2021) and Rojas et al. (2022) are separated from the other
noted prospective studies in their objectives to not only create predictive models, but also
evaluate the economic consequences of using the model predictions as a management deci-
sion aid. However, Feuz, Feuz, and Johnson (2021) are the most relevant to the current
study as their models focused on mortality prediction to be used as a decision aid to cull
railers. Cattle culled and marketed prematurely are commonly referred to as realizers or
railers. These cattle are typically sold at sizable discounts to railer buyers who periodically
visit feed yards. The discounts to price are appropriate as railers are often comprised of the
lame or chronically sick. Managers readily accept the steep discounts for railers, as the
alternative would be a complete loss of revenue in the event of premature death. Feuz,
Feuz, and Johnson (2021) rightly note that “if a feedlot manager were able to predict which
calves were going to die before the end of the feeding period, then naturally the manager
would look to alter their management practices or market these animals prematurely in
order to recoup a portion of the investment” (242). They ultimately concluded through
simulation that the net return would increase on average by $14.01 per head for calves
having been treated at least once for any health incident if the best-performing classifier
(logistic) were used as a culling decision aid. Through using cost-sensitive learning, that
average change in net return per head increased to $45.27 per head.

These results showed promise for using classifier predictions as a culling decision aid.
However, noted weaknesses in their study warrant continued exploration of this method.
Chief among the noted weaknesses is the sample size. Feuz, Feuz, and Johnson (2021)
relied on one feed yard over 2 years with the study population data set (SPD) containing
847 observations. They relied on k-fold cross-validation to train and test the model. This is
a reasonable choice with such a limited sample size but may not accurately reflect the true
performance of the model when tested on previously unseen animals. To ensure robust-
ness of the findings (economic benefit) and evaluate the scalability of the method, the sam-
ple size must be greatly increased in terms of both raw cattle numbers as well as additional
feed yards over additional production years. This allows us to avoid using data from the
same animal in both the training of the model and the testing of the model by separating
the data by year and using previous years’ data to train the predictive model for the current
year. Using such an expanded sample, this study identifies the classifier with the highest
average expected change in net return per head and, after simulation, presents the expected
change in net return per head when using the classifier predictions as a culling decision aid.

Data and methods

The operational feed yard data for this study was provided by a consulting veterinary
group. The data is comprised of retrospective, individual animal-level data collected from
nine U.S. feed yards across 4 years (2016–2019). One of the feed yards is located in
Colorado, two in Nebraska, and six in Texas. The SPD for this study is the subset of
the total animals in the feed yards that were pulled at least once for BRD as determined
by feed yard personnel. Diagnosis at initial treatment was determined by feedlot personnel
responsible for daily health management of the cattle. Cases were identified based on
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standard industry procedures including evaluation of animal appearance, demeanor, and
body temperature. Outliers in the data were partially addressed by removing observations
with treatment temperatures <101 and >108 degrees Fahrenheit (2,178 animals) and
treatment weights <300 and >1,700 lbs. (558 animals)1. After removal of these outliers,
the SPD is comprised of 184,032 individual animals pulled collectively 250,217 occasions
for BRD. Table 1 contains summary statistics for the nine feed yards used in this study. The
SPD for this study containing only BRD-related health incidents is a notable difference
from Feuz, Feuz, and Johnson (2021) in that their SPD was a subset of animals pulled
at least once for any health-related incident. In large part, this change is made to greatly
increase the sample size while still using consistent data across all feed yards. The type of
data collected for BRD pulls among the feed yards was found to be consistent and allows
for a dataset of large enough size to begin to evaluate the scalability of using classifier pre-
dicted mortality as a culling decision aid.

The feed yard observational data contained many variables used directly as features
within the classifiers such as initial weight, treatment weight, treatment temperature,

Table 1. Summary Statistics for Feed Yards Included in the Study Population Data set

Yard
Number

Feed
Yard
Sizea

Total
Head in
SPDb

Unique
Head in
SPDc

Average
Unique Head
per Yeard

Average BRD
Morbidity
Ratee

Average
Mortality Rate

of SPDf Location

1 Medium 16,700 11,265 2,816 7.5% 6.2% Nebraska

2 Small 17,854 13,225 3,306 14.2% 4.7% Nebraska

3 Medium 16,385 13,414 3,354 7.0% 3.9% Colorado

4 Large 22,825 14,451 3,613 1.8% 15.7% Texas

5 Large 22,242 15,773 3,943 2.9% 10.3% Texas

6 Large 27,813 21,889 5,472 2.9% 13.4% Texas

7 Large 36,396 28,436 7,109 5.1% 7.8% Texas

8 Large 41,364 31,330 7,833 4.5% 8.3% Texas

9 Large 48,638 34,249 8,562 3.8% 9.0% Texas

Average 27,802 20,448 5,112 5.5% 8.8%

Sum 250,217 184,032 46,008

Note: Numbers were assigned to feed yards based on their respective number of unique head in the SPD with one having
the smallest and nine having the largest.
aFeed yard size is categorized into small, medium, or large to protect the anonymity of the feed yards within the data set.
Size category based on average monthly head count with small:<15,000 hd.; medium: 15,000–40,000 hd.; and large:
>40,000 hd.
bThe total number of ‘pulls’ for BRD as diagnosed by feed yard personnel responsible for health management of animals
within a feed yard from 2016 to 2019.
cThe number of unique animals pulled at least once in a given feed yard for BRD from 2016 to 2019.
dAverage number of unique animals pulled at least once in a given feed yard for BRD within a single year.
eAverage BRD morbidity rate is calculated as the “average unique head per year” as a percentage of average annual
production.
fThe average mortality rate from 2016 to 2019 of animals pulled at least once for BRD calculated as the average number of
deaths per year as a percentage of the “average unique head per year”.

1Outliers were removed from the analysis to limit potential data entry errors and confine the external
validity to the reference range or industry standard for each variable.
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medication administered, sex, etc. Additional features were also created from the operational
data and used for classification following Feuz, Feuz, and Johnson (2021) and Amrine,
White, and Larson (2014). The features used for classification are summarized in Table 2.

Within Feuz, Feuz, and Johnson (2021), a logit model was found to be the classifier with
the largest expected change in net return when used as a culling decision aid among the
five classification algorithms examined for their dataset comprised of a single feed yard.
However, given that the current SPD for this study contains multiple feed yards, we would
not necessarily expect that the Logit classifier would have the highest expected change in
net return. Using a similarly defined SPD (animals pulled at least once for BRD across

Table 2. Features Used in Classification Algorithms

Variable Name Description

Treat_Weight The weight (lbs.) of the calf when treated

Treat_Temperature The temperature (°F) of the calf when treated

Sex Sex of the calf: equal to 1 if steer and equal to 0 if heifer

Head_Received Number of head in a calf’s home lot

Treatment_Number Running total of number of treatments the calf has received

Arrival_Weight The weight (lbs.) of the calf upon arrival to the feed yard

Distbrdcasestothispoint Sum of distinct animals from the calf’s lot that have been treated
for BRD as of the current treatment date of the calf

Txfailure Equal to one if the animal has been previously treated equal to 0 if
otherwise.

Txfailuretothispoint Count of Txfailure within the cohort up to this point in time

Txsuccessrate (Distbrdcasestothispoint – sum of TxFailure)/Distbrdcasestothispoint
*100

BRDcasestothispoint Sum of animals from a calf’s lot treated for BRD as of the current
treatment date of the calf

Propbrdcasestothispoint Proportion of treatment cases to this point = (BRDcasestothispoint/
Head_Received)*100

Propdistbrdcasestothispoint Proportion of distinct treatment cases to this point =
(Distbrdcasestothispoint/Head_Received)*100

Deathstothispoint Sum of deaths in a calf’s home lot to this point

Propdeathstothispoint Proportion of deaths to this point = (Deathstothispoint/
Head_Received)*100

Dailyallpulls Sum of the number of pulls from a calf’s home lot pulled on the
event day

Propdailyallpulls Proportion of lot pulled for any reason on this event day =
(Dailyallpulls/Head_Recieved)*100

Dayssincearrival Number of days since the calf arrived at the feed yard

Medicationa This variable is categorical and includes 20 different treatments (i.e.,
medication type) administered at the time of treatment.

aFor all classifiers, the Medication was converted into 20 categorical variables for each specific treatment administered.
Each categorical variable was equal to 1 if the medication was administered and 0 otherwise.
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multiple feed yards), Amrine, White, and Larson (2014) demonstrated how classifier accu-
racy could vary with the ‘best performing’ classifier often differing between feed yards.
They concluded that by pairing the correct classifier with the data available, accurate pre-
dictions could be made. Thus, after data collection and feature creation, we evaluated many
classifiers (e.g., linear models, ensembles, non-parametric tree-based, neural networks)
together with various techniques (e.g., class weighting, boosting, and scaling distributions)
to improve expected economic return from using the classifier predictions as a culling aid.
As the objective of this study centers on the economic viability of using classifier predic-
tions of mortality among the SPD as a culling decision aid, simply identifying the classifier
that maximizes predictive accuracy would not be sufficient to ensure maximum expected
economic return. When evaluating diagnostic testing accuracy, we must also consider both
sensitivity and specificity. Sensitivity refers to the proportion of truly positive cases the
classifier identifies as ‘test positive’. Whereas specificity refers to the proportion of truly
negative cases the test identifies as ‘test negative’. Both Theurer et al. (2015) and Feuz,
Feuz, and Johnson (2021) demonstrated that while an increase in the change in net return
per animal can be expected with an increase in either sensitivity or specificity, increases in
specificity are expected to have a significantly larger marginal effect.

Maximization of specificity or sensitivity would not be sufficient to determine which
classifier would lead to the best improvement in economic performance, as the two must
be considered jointly. A high specificity would allow for all ‘finish’ predictions, due to the
imbalanced nature of the dataset, leading to a relatively high accuracy rate but low or neg-
ative expected change in net return when following the classifier predictions to make cull-
ing decisions. Conversely, sensitivity does not consider false positives— the minimization
of which has been shown to result in relatively larger positive effects as compared to min-
imization of false negatives when using the classifier predictions as a culling aid (Feuz,
Feuz, and Johnson 2021). Instead, to identify the ‘best’ performing classifier, we identified
the classifier that maximized an estimate of expected net return for each feed yard when
using the predictive outcomes to make culling decisions. To do so, we used average simu-
lated net return values of the predictive outcomes in the confusion matrix (true positive,
false positive, true negative, false negative) from Feuz, Feuz, and Johnson (2021). We com-
pare the performance of five classifiers in terms of the estimated net return: Logistic
Regression, Decision Tree, Naive Bayes, Random Forest, and Neural Network. The per-
formance of each classifier was evaluated by calculating the estimated net return from each
feed yard when using the classifier to make culling decisions. The classifier that yielded the
highest estimated net return on average across all feed yards was selected as the classifier to
use within the economic simulation analysis of the individual feed yards.

Although each classifier has distinct advantages and disadvantages, we found that the
neural network produced higher expected average net return for the majority (66%) of
the nine feed yards. The neural network was composed of nodes using Leaky Rectified
Linear Units (LeakyReLU) as activation functions to combat vanishing gradients often
known as the “dying ReLU” problem (Maas, Hannun, and Ng 2013). Additionally, we
employed a randomized dropout layer to prevent overfitting and increase accuracy. This
is a technique used within a neural network where the nodes are randomly excluded
(i.e., dropped out) from a layer of the neural network during the training process. This
has the effect of introducing additional noise into the learning process and driving the net-
work to react accordingly. It can be thought of as a way to simulate an ensemble of multiple
neural networks without incurring the associated increase in training resources required to
train an ensemble neural network. When configured this way, the neural network produced
the highest estimated net return across the different feed yards compared to the other clas-
sifiers evaluated.
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Economic analysis procedure
The primary objective of this paper is to estimate through simulation the average expected
change in net return per head (for BRD diagnosed cattle) when using the classifier predic-
tions of mortality as a culling decision aid. The training and testing of the classifier were
carefully structured to create a realistic scenario in which the data was segregated by year
so that no information on an animal in the test dataset was ever seen in the training dataset.
This was accomplished by using a holdout approach. The prediction model trained on
3 years of data from a yard and then tested on unseen data from the remaining fourth year
of data. This process was repeated four times; each time allowing for a new year to be treated
as the test data set with the other 3 years used for training. This helps ensure robustness of
the results. Given nine yards, the hold-out method produced four models per yard (one for
each of the 4 years), resulting in 36 total tests. We further repeated the training and testing
process 10 additional times, each time re-initializing the neural network with random start-
ing weights. This led to a total of 360 confusion matrices, 40 for each yard.

Critical post-processing steps were required before conducting yard-specific economic
analysis. A calf may have been pulled more than once resulting in more than one classifier
prediction for an individual calf. We reduced the resulting confusion matrix for each test to
contain one prediction per unique animal. We assumed that the first time the classifier pre-
dicts mortality for a given calf, the feed yard management would have taken steps to cull and
market the calf as a railer. If the same animal appeared later in the dataset for an additional
treatment/prediction, that instance was ignored as the calf would have been culled following
the initial prediction of mortality. If at each treatment date a calf was predicted to finish, then
feed yard management would have continued to treat the calf and the final prediction for the
calf was assigned as ‘Finish’. The predicted outcomes were further adjusted to allow for a
fallout period of 7 days. For a calf to be given a final predicted outcome of ‘DNF’, we verified
that the calf survived in the feed yard for at least 7 days following the treatment day when the
initial DNF prediction was made. This helps ensure adequate time for a railer buyer to peri-
odically visit the feed yard and have the opportunity to purchase culled cattle. If a calf died
within the feed yard prior to the seventh fallout day, the final prediction for that calf was
updated to ‘Finish’ to indicate that the prediction came too late to be acted upon. Finally, the
predicted outcome of Finish or DNF was compared to the actual observed feed yard outcome
to categorize each calf into one of four diagnostic categories: True Positive (TP), False
Positive (FP), True Negative (TN), and False Negative (FN). Reference Table A1 in the
appendix for a more complete description of the diagnostic categories. The diagnostic cate-
gory prevalence percentages were averaged for each feed yard across the four years and the
10 training/test repetitions (40 confusion matrices). Summary statistics for the 40 confusion
matrices are included in Table 3. Note that the low and high prevalence of FPs and TNs,
respectively (Table 3), suggests a high degree of test specificity and is a strong indication that
the classifier has been tuned appropriately. Increases in specificity have been shown to have
higher marginal effects on the expected change in net return (Feuz, Feuz, and Johnson 2021).

The average diagnostic outcome prevalence percentages (Table 3) were used as weights
to calculate the weighted average expected net returns per animal in the SPD when using
the classifier predictions as a culling decision aid as in

NR Ci � NR TPi %TPi� � � NR TNi %TNi� � � NR FPi %FPi� � � NR FNi %FNi� � (1)

where NR Ci is the expected net return ($/head) for the ith feed yard for cattle pulled at
least once for BRD when adhering to classifier predictions in making culling decisions,
%TPi, %TNi, %FPi, and %FNi are the average diagnostic outcome prevalence percentages
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(Table 3), NR TPi, NR TNi, NR FPi, and NR FNi are the average expected net returns ($/
head) across all years for TP, TN, FP, and FN cattle, respectively, for the ith feed yard.

The expected net returns ($/head) for TP, TN, FP, and FN cattle are calculated as in

NR TPi � RWi � RP� � � IWi � SP� � � FC � DOF Pi� � � TC Pi� � (2)

NR Ni � DP � CW� � � IWi � SP� � � FC � DOF TN� � � TC TNi� � (3)

NR FPi � NR TPi � NR TNi � NR TPi� � (4)

NR FNi � � IWi � SP� � � FC � DOF FNi� � � TC FNi� 	 � �NR TPi � � IWi � SP� �
� FC � DOF FNi� � � TC FNi�	

(5)

where NR TPi, NR TNi, NR FPi, and NR FNi are as defined in equation (1), RWi is the
railer weight (lbs.), RP is the railer price ($/lb.), IWi is the initial weight (lbs.), SP is the
stocker price ($/lb.), FC is the feed costs ($/hd./day) including feed, yardage, and interest2,
DOF TN , DOF Pi and DOF FNi are the days on feed for TN, positives (TP or FP), and FN
calves, respectively, TC TNi, TC Pi; and TC FNi are the treatment costs ($) for treating a
TN, positive (TP or FP), and FN calf, respectively, DP is the dressed price ($/lb.), and CW
is the carcass weight (lbs.).

Simulating net returns per head using model predictions
Variables within equations (2-5) were made stochastic to allow for simulation. Fitted dis-
tributions3 using the data provided by the individual feed yards were used for all variables

Table 3. Mean and Standard Deviation of Diagnostic Category Prevalence Percentages for the 40
Confusion Matrices of Each Feed Yard

Feed Yard TP TN FP FN

1 1.36% (0.41) 92.77% (2.08) 1.06% (1.30) 4.81% (0.87)

2 0.28% (0.25) 95.05% (1.66) 0.25% (0.30) 4.42% (1.31)

3 0.47% (0.20) 95.66% (1.35) 0.43% (0.29) 3.43% (1.01)

4 3.12% (1.55) 83.61% (1.68) 0.74% (0.73) 12.53% (0.76)

5 1.82% (1.13) 88.98% (3.67) 0.69% (0.69) 8.52% (2.25)

6 1.72% (0.85) 85.98% (5.53) 0.59% (0.43) 11.71% (4.58)

7 0.93% (0.56) 92.00% (1.20) 0.21% (0.22) 6.85% (0.65)

8 1.25% (0.42) 91.37% (0.44) 0.35% (0.22) 7.03% (0.57)

9 1.18% (0.40) 90.65% (1.51) 0.33% (0.33) 7.84% (0.97)

Notes: Values listed are the average prevalence percentages with the standard deviation in parenthesis for the 40
confusion matrices of each feed yard.

2No additional cost for data collection and use within the culling decision aid model were included as it
was assumed that the feedlots already routinely collect this data for other uses and thus no additional costs
are incurred to use it within the culling model.

3Distributions were selected according to the best fit as determined through minimization of Akaike
Information Criterion (AIC). The distributions selected were allowed to vary across feed yards for any given
variable according to the minimization of the AIC.
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other than stocker price, dressed price, treatment costs, days on feed for TN, railer price,
and carcass weight. For stocker price and dressed price, historical price data for Kansas
from the Livestock Marketing Information Center (LMIC, 2019a; LMIC, 2019b) was used.
Kansas prices were used for all feed yards to hold constant the effect of price volatility
across the various feed yards. Kansas is a state that is central to the feed yards used in
this study. To estimate total treatment cost for TP and FP, TN, and FN we used a triangle
distribution to select a direct cost per treatment of BRD multiplied by the number of treat-
ments assumed for each diagnostic outcome. The triangular distribution of direct cost per
treatment relied on the USDA Animal and Plant Health Inspection Service’s (2013) esti-
mate of the average cost of treatment for a single case of respiratory disease of $23.60 as the
most common and maximum value with a minimum value of $4.00. The minimum value
was set based on the author first-hand knowledge of similar BRD treatment costs within a
number of the feed yards in the dataset. The number of treatments for each diagnostic
category was also stochastically determined using triangle distributions fit to the number
of treatments for each diagnostic category within each feed yard. In addition to these direct
treatment costs, the treatment cost for TN cattle also included indirect costs to account for
performance (quality and yield grade) decreases associated with BRD treatment. The indi-
rect costs were added to the direct costs and were equal to $23.23, $30.15, and $54.01 for
cattle treated on one, two, or at least three occasions, respectively, for BRD (Schneider
et al., 2009). By considering these increases in treatment cost (both direct and indirect)
as a function of number of pulls, we were able to effectively account for presumed increases
to treatment costs associated with yards that are known to pull more aggressively
(increased frequency). The distributions for feed cost per head per day, days on feed
for TN, railer price, and carcass weight relied on the same distributions of Feuz, Feuz,
and Johnson (2021) as the current dataset for this study did not include data for these
variables. Efforts were made to ensure the use of these distributions were appropriate
for analysis using the current dataset. The distribution for feed costs was evaluated and
found to be in line with the industry average. The distributions for the days on feed
for TNs as well as the carcass weight from Feuz, Feuz, and Johnson (2021) were also found
to be adequate representations for the current data. To provide this assurance, we verified
that the distributions of initial weights between the datasets were similar and that both the
cattle in the Feuz, Feuz, and Johnson (2021) study as well as this current study were fed to
industry average finished weights. The distribution for railer price was an adequate repre-
sentation of railer prices for the current dataset, as the location of the feed yards was
regionally similar as well as the years the cattle were fed. While railer prices were not
recorded within our dataset, the authors first-hand knowledge of the yards confirms that
the railer price distribution used is an adequate representation of the railer prices received
by the yards in this study.

Within the simulations, correlations were appropriately assigned to several key var-
iables to ensure correlations as would be expected within a feed yard. The distribution of
initial weight was negatively correlated with the distributions of both stocker price and
days of feed (TN) while the distribution of days on feed (positives) was positively corre-
lated with the distributions of both railer weight and number of treatments (positives).
The specific values of the correlation coefficients are contained within the notes of
Tables A2–A11 in the appendix.

Simulating the status quo
The net return per animal in the SPD if the manager were to retain the status quo culling
protocol was calculated and simulated as in Feuz, Feuz, and Johnson (2021). We assumed
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that under current culling protocol every animal was treated as a negative by the feed yard
and either survived until finishing (TN) or died prematurely (FN). In reality, an unknown
number of cattle would have been railed (positive prediction) by the yard suggesting some
level of positive predictions within the status quo would be appropriate. However, railers
were not recorded within our dataset and therefore all cattle were treated as negative pre-
dictions within the status quo. This suggests that a relatively small number of railer animals
have been incorrectly assigned the true negative diagnostic outcome both within the status
quo and classifier predicted mortality model. Discussions with professionals within the
feedlot industry have informed us that feedlots target somewhere in the range of 4:1 to
10:1 ratio of railers to deads depending on current market conditions. If death percentages
for feedlots are assumed to be in the range of 1–3%, then the railer percentage would typi-
cally be somewhere between 0.1 and 0.75%. Thus, the overall impact of the unknown out-
come for railed animals as either true or false positives is limited, and its effect has been
held constant within the simulation of net returns for both the status quo and classifier
predicted mortality model. Equation (1) was updated to weight the net returns to fit
the status quo protocol as in

NR SQi � NR TNi 1 � %mortalityi
� �� NR FNi %mortalityi

� �
(6)

where NR SQi is the expected net return ($/head) for the ith feed yard when following the
status quo culling practices, %mortalityi is the average percentage of the SPD that died
prior to finishing in the ith feed yard across all years, and NR TNi and NR FNi are as out-
lined in equation (1).

The simulated difference ΔNRi � NR Ci � NR SQi is the average change in expected
net return per head of cattle treated at least once for BRD for the ith feed yard when using
the classifier predictions as a decision aid versus keeping the status quo culling protocol in
place. If ΔNRi is positive, feed yard managers would expect a net benefit to using the clas-
sifier predictions in making culling decisions. The ΔNRi was simulated over 10,000 iter-
ations using Palisades @Risk Decision Tools Suite (2019). Analyzing the simulated results
of ΔNRi for each feed yard and averaged across feed yards accomplishes the objective of
this study.

Results

Summary statistics for the simulation results for the nine feed yards are included in
Table 4. The average ΔNR across all nine feed yards in our study is $6.31/hd. with a stan-
dard deviation of $7.75/hd. This indicates if the classifier predictions are used as a culling
decision aid a feed yard could expect the net return per head of each animal pulled at least
once for BRD to increase by $6.31 on average as compared to keeping the current culling
protocol in place. Feed yard 3 has the lowest mean expected ΔNR with −$1.61, while feed
yard 4 has the highest with $19.46. Cumulative distribution functions (CDF) of simulated
ΔNR for feed yards 3 and 4 are graphed together in Figure 1, allowing for a simple com-
parison of the expected probabilities associated with the change in net return over the
range of expected values. While feed yard 4 does have the highest expected mean
ΔNR, it also has the greatest standard deviation ($14.86). Even with the increased standard
deviation, a closer examination of the CDF for feed yard 4 (Figure 1) suggests that ΔNR
would be expected to be positive with a probability greater than 0.9.

In general, the results demonstrate that using the classifier predictions as a culling deci-
sion aid would be expected to result in an increase in net return per head on average for
seven of the nine feed yards within the study. This expected positive financial result
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provides continued motivation for further exploration of using similar methodology to aid
in making culling decisions within feed yards. With feed yards routinely characterized by
thin profit margins, however, there is little room for error in using this methodology to
make culling decisions. Two of the feed yards in the study have an expected negative
change in net return per head with a third (feed yard 1) only having an approximate
$2/hd. expected mean change in net return. This suggests that further evaluation of
key drivers into the simulation results as well as characterization of the feed yards is nec-
essary to better understand in what circumstances a feed yard could expect a positive
change in net return when using classifier predictions to make culling decisions.

Feed yards 1, 2, and 3 have the lowest expected ΔNR. These three yards are also the
smallest yards in terms of average monthly head count and number of unique head in the
SPD (unique calves pulled for BRD) as compared to the other six feed yards. Thus, the first
observation we make in comparing the different feed yards is that larger feed yards (aver-
age monthly head count) with more observations in the SPD (unique head in SPD) are

Table 4. Results Summary: Simulation of Change in Net Return ($/head) by Feed Yard

Feed Yard ID Graph Min Mean Max Std. Dev. 5%b 95%c

Feed Yard 1 −$60.45 $1.93 $40.82 $11.24 −$17.47 $19.32

Feed Yard 2 −$13.43 −$0.10 $9.64 $2.37 −$4.21 $3.55

Feed Yard 3 −$18.77 −$1.61 $14.39 $4.34 −$8.98 $5.18

Feed Yard 4 −$56.36 $19.46 $73.53 $14.86 −$5.41 $43.60

Feed Yard 5 −$36.37 $7.00 $48.86 $10.70 −$11.41 $23.90

Feed Yard 6 −$31.50 $10.82 $41.01 $9.14 −$4.88 $25.19

Feed Yard 7 −$19.57 $6.37 $28.01 $4.62 −$1.18 $13.77

Feed Yard 8 −$22.25 $6.21 $29.18 $6.41 −$4.52 $16.54

Feed Yard 9 −$23.61 $6.68 $28.65 $6.03 −$3.37 $16.25

Averagea −$31.37 $6.31 $34.90 $7.75 −$6.83 $18.59

aThe average results across all nine feed yards included in the sample.
bValues as taken from the simulated CDF from each yard at the 5% level.
cValues as taken from the simulated CDF from each yard at the 95% level.
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preferred relative to smaller and fewer when relying on classifier predictions to aid in cull-
ing decisions. Average monthly head count and unique head in SPD are both positively
correlated with expected ΔNR with Pearson correlation coefficients of 0.771 and 0.161,
respectively. The second observation we make is that the six feed yards with the expected
highest ΔNR are all located within Texas. The three yards with the lowest expected ΔNR
previously identified are in Colorado and Nebraska. This may point to some level of spatial
dependence in the economic results. However, we find it more probable that the results are
closely related to the current feed yard management practices. One, aspect of management
that appears to be closely related to expected ΔNR, is the aggressiveness of pulling prac-
tices within the yard. Each feed yard is subject to different internal protocols and methods
by which they identify and pull morbid animals. Some may pull more aggressively while
others take a more conservative approach. These types of protocol differences are difficult
to identify within our data but limited observations within the data analysis can be
strengthened through anecdotal observation. Personal observations and experiences in
working with the feed yards included in this study suggest that feed yards 1, 2, and 3 pull
more aggressively as compared to the six Texas feed yards. This anecdotal observation is
supported by comparing the average BRDmorbidity rates in Table 1. Feed yards 1, 2, and 3
have much higher morbidity rates—7.5%, 14.2%, and 7%, respectively, as compared to the
Texas yards, which average around 3.5%. This would suggest that feed yards 1, 2, and 3
have a higher pull rate compared to the other six feed yards. This indicates either actual
increased levels of morbidity or an increased overall level of “pulling aggression”. The
change in net return has a strong negative correlation (r=−0.734) with the average
BRD morbidity of the feed yards. Additional insight is gained when comparing the mor-
tality rates of the nine feed yards in relation to their respective expectedΔNR. The Pearson
correlation coefficient of mortality rate within the SPD of each yard and theΔNR is 0.968.
This observation of high correlation is expected as a higher mortality rate among the SPD
provides more opportunities for the classifier to identify TPs and improves the balance in
the data set, which can greatly aid in increasing the classifier’s performance (Das,
Krishnan, and Cook 2015; Feuz and Cook 2017).

Figure 1. Cumulative Distribution Functions of Simulated Change in Net Return ($/hd.) from Using Model
Predictions as Culling Decision Aid as Compared to Status Quo Culling Protocol.
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It is clear that using the classifier predictions to make culling decisions has a greater net
benefit when the feed yard has a higher mortality rate within cattle pulled at least once for
BRD. A higher mortality rate among the SPD does not necessarily suggest a higher overall
mortality rate within a feed yard. The mortality rate within the SPD of feed yards that pull
aggressively may be relatively low because of the aggressive nature of the treatment.
However, pulling aggressively may also lower the mortality rate within the SPD through
increased pulling of relatively healthy cattle (false positive BRD diagnosis). We performed
a sensitivity analysis surrounding the mortality rate used in the status quo to determine the
breakeven level of mortality rate that would result in the expected change in net return to
be equal to $0 when using the classifier predictions versus the status quo. Simulated results
demonstrated that the mortality rate within the status quo is positively related to the ΔNR
for all feed yards. Thus, for yards with an expected negative ΔNR the mortality rate of the
status quo would have to be lowered to find the breakeven rate while yards with a positive
ΔNR the rate would be increased. We estimated the average breakeven mortality rate of
the SPD to be 8.43% across all feed yards. Additionally, we calculated the average marginal
effect of the mortality rate on the expected ΔNR. This was done by repeated simulation of
theΔNRi changing the mortality rate in increments of one percent at each new simulation.
Then the change in theΔNRi was calculated for each new simulation and averaged over all
the feed yards. We estimated the marginal effect of mortality rate within the SPD to be
$16.54/hd. This suggests that with each 1% increase in the mortality rate of BRD-positive
animals, feed yards should expect that the ΔNR would increase by $16.54/hd. when using
the classifier predictions of mortality to make culling decisions.

For each positive prediction of the classifier: 1) the prediction is either correct (TP)
which decreases the prevalence percentage of FN as compared to the status quo or 2)
the prediction is incorrect (FP) which decreases the prevalence percentage of TN as com-
pared to the status quo. Each FP prediction decreases the expected ΔNR as compared to
the status quo by the difference α � NR FP � NR TN . Whereas each TP prediction
increases the expected ΔNR as compared to the status quo by the difference
β � NR TP � NR FN . The ratio �α=β can then be interpreted as the number of correctly
predicted positives (TP) required for every one incorrectly predicted positive (FP) for the
expectedΔNR to be equal to $0. We averaged the simulation net return mean values of the
four diagnostic categories (TN, TP, FN, and FP) across the nine feed yards and found
NR_TN= −$12, NR_TP= −$685, NR_FN= −$1,665, and NR_FP= −$1,358. The average
ratio �α=β is then equal to � �$1; 358 � �$12� �� �= �$685� $1; 665� � � 1:37. Thus,
when using classifier predictions as a culling decision aid, as long as for every one incorrect
positive prediction (FP) the classifier correctly predicts positives (TP) at a rate of 1.37, we
would expect feed yard net return per head in the SPD on average to be no worse off than
when following the status quo culling protocol.

Limitations
One major limitation of the current study is the absence of consideration of medication
withdrawal requirements. We assumed a 7-day opportunity to rail cattle upon initial ‘pos-
itive’ classification (7-day fallout). This helps to ensure the availability of a railer buyer to
purchase and pick up railed animals. However, cattle with low days on feed (DOF) when
pulled and classified as a positive may still have withdrawal periods due to initial process-
ing regiments4 (vaccine, dewormer, antibiotic, etc.). Additionally, positively classified

4Initial feed yard processing/metaphylaxis data was not recorded in our dataset, and therefore, no with-
drawal time for initial processing could be incorporated into the modeling assumptions.
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cattle may have been pulled previously, classified as a negative, treated with a medication,
and still face withdrawal periods at the time of positive classification. Drug withdrawal is
not a binding constraint for cattle at the end of the feeding period. Additional research is
needed to account for the processing withdrawal periods needed to apply to real-world
situations to further refine the economic advantage of implementing classifier predictions
of mortality as a culling aid in the field.

Incorporating medication withdrawal times into the analysis would be analogous to
adjusting the ‘fallout’ period from 7 days to match each animals required days to meet
withdrawal requirements and be picked up by a railer buyer. This change would have
the same effect as increasing the number of animals that the model correctly predicts
as TP but ultimately die before clearing the fallout/withdrawal date. However, this increase
would at least in part be offset if this methodology was applied in reality. Consider the
portion of animals classified as a positive that died before expiration of the 7-day fallout
period. Within this group, some animals would not have been treated previously or would
have already cleared the withdrawal period of a previously administered medication. This
suggests that these animals could have been railed and sold any time after positive classi-
fication had a railer buyer been available prior to the assumed 7-day fallout. Thus, some
percentage of this group is being counted as FN (no revenue) within this analysis when in
fact they could have been sold to a railer buyer for some recouperation of revenue had a
buyer been available prior to the assumed maximum 7-day fallout expiration. Thus, the
limitation surrounding the lack of a medication withdrawal constraint would be partially
offset from this unknown percentage of animals. Even still, we expect the inclusion of with-
drawal assumptions in the analysis would further constrain the model and would most
likely decrease the magnitude of the estimated change in net return values. However,
we feel that such a change would be unlikely to impact the results qualitatively.

Conclusions

Using operational feed yard data to construct mortality predictive models to be used as a
culling decision aid has previously been shown to improve expected feed yard profitability
within a small sample size in one feed yard over 2 years (Feuz, Feuz, and Johnson 2021). To
evaluate scalability and ensure robustness of those findings, we greatly expanded the sam-
ple size to 250,217 total observations consisting of 184,032 unique calves treated at least
once for BRD among nine individual feed yards across four production years. This
expanded sample size allows us to avoid using data from the same animal in both the train-
ing and test sets of the model by separating the data by year and using previous years’ data
to train the predictive model for the current year. A neural network using LeakyReLU as
activation functions was determined to be the classifier on average across all yards and
years that maximized the expected net return. The neural network predictions were then
used to simulate the average ΔNRi. The minimum and maximum ΔNRi are −$1.61 (feed
yard 3) and $19.46 (feed yard 4), respectively. The average expected change in net return
per head for animals treated at least once for BRD across all nine feed yards is $6.31 with
standard deviation of $7.75. This positive change in net return suggests that we would
expect feed yard profitability to increase when using the classifier predictions to make cull-
ing decisions versus keeping the status quo culling protocol in place. The results for ΔNR
are not as positive as Feuz, Feuz, and Johnson (2021) and the large standard deviation
suggests there is sizable variation in the ΔNR per head. However, as a positive ΔNR is
estimated for seven of the nine feed yards included in this study, the results provide addi-
tional support for continued research and exploration of using operational feed yard data
within mortality predictive models to aid in making culling decisions. Additional research
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efforts should build on this study and the other prospective studies cited previously, by
evaluating this methodology in a field setting. Only then can the true impact to net return
be evaluated when using classifier predictions of mortality as a culling decision aid as a
field study at a collaborating feed yard would eliminate all model assumptions.

The average change in net return is shown to be positively correlated with average
monthly head count (r=0.771), unique head in SPD (r=0.161), and the mortality rate
within the SPD of each yard (r=0.968). The average marginal effect of mortality rate
within BRD-positive animals on the ΔNR is estimated to be $16.54/hd. This indicates that
as the mortality rate increases by 1 percent, feed yards should expect the ΔNR would
increase by $16.54/hd. when using the classifier predictions of mortality to make culling
decisions. Additionally, theΔNR is expected to decrease for yards that pull aggressively for
presumed BRD morbidity. This is demonstrated by ΔNR having a strong negative corre-
lation (r=−0.771) with the average BRD morbidity rate. All these noted correlations con-
sidered together suggest that using classifier predictions to make culling decisions is
expected to have more positive financial impacts when a feed yard is large, has lower mor-
bidity/pulls less aggressively, and has a relatively high mortality rate within cattle pulled at
least once for BRD. Managers of feed yards fitting these characteristics would be ideal can-
didates for further evaluation by using mortality predictive models to make culling deci-
sions. As further research proceeds in this field, researchers and feed yard management
must aim for correctly predicting positive DNFs at a rate greater than 1.37 for every
one incorrectly predicted positive DNF to ensure a positive financial impact from using
classifier predictions to make culling decisions.
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Appendix

Table A1. Classification Model Predictions, Ground Truth, Diagnostic Outcomes, and Management
Decision

Model Prediction Ground Trutha Diagnostic Outcome Decision

Do not finish Do not finish True positive Cull

Finish Finish True negative Continue treatment

Do not finish Finish False positive Cull

Finish Do not finish False negative Continue treatment

aThe ground truth represents the actual outcome (finish or do not finish) a calf experienced at the feed yard.
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Table A2. Feed Yard 1 Summary of Distributions Used within Change in Net Return Simulations

Variable Graph Distribution Average Value

Days on Feed FNa Kumaraswamy 93.95

Days on Feed Pb Inverse Gaussian 43.97

Number of Treatments TN Triangle 3.15

Number of Treatments P Triangle 2.87

Number of Treatments FN Triangle 3.28

Initial Weight (lbs.)c Log logistic 665.07

Railer Weight (lbs.)d Beta 776.67

aTruncated to [0,200] days minimum and maximum.
bTruncated to [0,200] days minimum and maximum and Positively correlated (0.5) with Number of Treatments P and
Railer Weight.
cInitial Weight was negatively correlated (–0.236) with Stocker Price and Days on Feed TN.
dRailer Weight was positively correlated (0.5) with Days on Feed P and Number of Treatments P.

Table A3. Feed Yard 2 Summary of Distributions Used within Change in Net Return Simulations

Variable Graph Distribution Average Value

Days on Feed FNa Inverse Gaussian 74.01

Days on Feed Pb Log normal 38.82

Number of Treatments TN Triangle 4.44

Number of Treatments P Triangle 2.93

Number of Treatments FN Triangle 3.02

(Continued)
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Table A3. (Continued )

Variable Graph Distribution Average Value

Initial Weight (lbs.)c Kumaraswamy 670.61

Railer Weight (lbs.)d Pearson Type 5 754.82

aTruncated to [0,200] days minimum and maximum.
bTruncated to [0,200] days minimum and maximum and Positively correlated (0.5) with Number of Treatments P and
Railer Weight.
cInitial Weight was negatively correlated (–0.236) with Stocker Price and Days on Feed TN.
dRailer Weight was positively correlated (0.5) with Days on Feed P and Number of Treatments P.

Table A4. Feed Yard 3 Summary of Distributions Used within Change in Net Return Simulations

Variable Graph Distribution Average Value

Days on Feed FNa Kumaraswamy 87.96

Days on Feed Pb Kumaraswamy 46.89

Number of Treatments TN Triangle 2.40

Number of Treatments P Triangle 2.16

Number of Treatments FN Triangle 2.16

Initial Weight (lbs.)c Weibull 713.18

Railer Weight (lbs.)d Kumaraswamy 673.65

aTruncated to [0,200] days minimum and maximum.
bTruncated to [0,200] days minimum and maximum and Positively correlated (0.5) with Number of Treatments P and
Railer Weight.
cInitial Weight was negatively correlated (–0.236) with Stocker Price and Days on Feed TN.
dRailer Weight was positively correlated (0.5) with Days on Feed P and Number of Treatments P.
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Table A5. Feed Yard 4 Summary of Distributions Used within Change in Net Return Simulations

Variable Graph Distribution Average Value

Days on Feed FNa Weibull 93.90

Days on Feed Pb Inverse Gaussian 63.42

Number of Treatments TN Triangle 3.84

Number of Treatments P Triangle 2.55

Number of Treatments FN Triangle 2.57

Initial Weight (lbs.)c Weibull 687.00

Railer Weight (lbs.)d Pearson Type 5 712.19

aTruncated to [0,200] days minimum and maximum.
bTruncated to [0,200] days minimum and maximum and Positively correlated (0.5) with Number of Treatments P and
Railer Weight.
cInitial Weight was negatively correlated (–0.236) with Stocker Price and Days on Feed TN.
dRailer Weight was positively correlated (0.5) with Days on Feed P and Number of Treatments P.

Table A6. Feed Yard 5 Summary of Distributions Used within Change in Net Return Simulations

Variable Graph Distribution Average Value

Days on Feed FNa Kumaraswamy 91.25

Days on Feed Pb Kumaraswamy 56.04

Number of Treatments TN Triangle 2.78

Number of Treatments P Triangle 2.54

Number of Treatments FN Triangle 2.92

(Continued)
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Table A6. (Continued )

Variable Graph Distribution Average Value

Initial Weight (lbs.)c Kumaraswamy 662.82

Railer Weight (lbs.)d Beta 683.82

aTruncated to [0,200] days minimum and maximum.
bTruncated to [0,200] days minimum and maximum and Positively correlated (0.5) with Number of Treatments P and
Railer Weight.
cInitial Weight was negatively correlated (–0.236) with Stocker Price and Days on Feed TN.
dRailer Weight was positively correlated (0.5) with Days on Feed P and Number of Treatments P.

Table A7. Feed Yard 6 Summary of Distributions Used within Change in Net Return Simulations

Variable Graph Distribution Average Value

Days on Feed FNa Kumaraswamy 107.02

Days on Feed Pb Inverse Gaussian 53.04

Number of Treatments TN Triangle 3.07

Number of Treatments P Triangle 2.14

Number of Treatments FN Triangle 2.49

Initial Weight (lbs.)c Beta 701.23

Railer Weight (lbs.)d Inverse Gaussian 725.30

aTruncated to [0,200] days minimum and maximum.
bTruncated to [0,200] days minimum and maximum and Positively correlated (0.5) with Number of Treatments P and
Railer Weight.
cInitial Weight was negatively correlated (–0.236) with Stocker Price and Days on Feed TN.
dRailer Weight was positively correlated (0.5) with Days on Feed P and Number of Treatments P.
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Table A8. Feed Yard 7 Summary of Distributions Used within Change in Net Return Simulations

Variable Graph Distribution Average Value

Days on Feed FNa Beta 89.04

Days on Feed Pb Inverse Gaussian 51.34

Number of Treatments TN Triangle 2.75

Number of Treatments P Triangle 2.56

Number of Treatments FN Triangle 2.55

Initial Weight (lbs.)c Minimum Extreme Value 730.80

Railer Weight (lbs.)d Inverse Gaussian 749.07

aTruncated to [0,200] days minimum and maximum.
bTruncated to [0,200] days minimum and maximum and Positively correlated (0.5) with Number of Treatments P and
Railer Weight.
cInitial Weight was negatively correlated (–0.236) with Stocker Price and Days on Feed TN.
dRailer Weight was positively correlated (0.5) with Days on Feed P and Number of Treatments P.

Table A9. Feed Yard 8 Summary of Distributions Used within Change in Net Return Simulations

Variable Graph Distribution Average Value

Days on Feed FNa Kumaraswamy 90.49

Days on Feed Pb Beta 62.19

Number of Treatments TN Triangle 2.76

Number of Treatments P Triangle 2.94

Number of Treatments FN Triangle 2.87

(Continued)
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Table A9. (Continued )

Variable Graph Distribution Average Value

Initial Weight (lbs.)c Weibull 695.21

Railer Weight (lbs.)d Kumaraswamy 716.76

aTruncated to [0,200] days minimum and maximum.
bTruncated to [0,200] days minimum and maximum and Positively correlated (0.5) with Number of Treatments P and
Railer Weight.
cInitial Weight was negatively correlated (–0.236) with Stocker Price and Days on Feed TN.
dRailer Weight was positively correlated (0.5) with Days on Feed P and Number of Treatments P.

Table A10. Feed Yard 9 Summary of Distributions Used within Change in Net Return Simulations

Variable Graph Distribution Average Value

Days on Feed FNa Kumaraswamy 88.69

Days on Feed Pb Inverse Gaussian 53.33

Number of Treatments TN Triangle 4.12

Number of Treatments P Triangle 3.93

Number of Treatments FN Triangle 3.91

Initial Weight (lbs.)c Logistic 705.11

Railer Weight (lbs.)d Gamma 709.71

aTruncated to [0,200] days minimum and maximum.
bTruncated to [0,200] days minimum and maximum and Positively correlated (0.5) with Number of Treatments P and
Railer Weight.
cInitial Weight was negatively correlated (–0.236) with Stocker Price and Days on Feed TN.
dRailer Weight was positively correlated (0.5) with Days on Feed P and Number of Treatments P.
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Table A11. Summary of Distributions Used within Change in Net Return Simulations for All Feed Yards

Variable Graph Distribution Average Value

Stocker Price ($/cwt.)a Weibull 124.88

Dressed Price ($/cwt.) Triangle 166.00

Days on Feed TNb Uniform 170.00

Carcass Weight (lbs.) Normal 848.45

BRD Treatment Cost ($) Triangle 17.07

Railer Price ($lb.) Minimum Extreme Value 0.52

Feed Costs ($/day/head) Weibull 2.74

Note: all of the distributions for the variables within this table were used in the simulation of change in net return for all of
the nine feed yards.
aStocker price was negatively correlated (−0.236) with the initial weight.
bDays on Feed TN was negatively correlated (−0.236) with the initial weight.

Cite this article: Feuz, R., K. Feuz, J. Gradner, M. Theurer, andM. Johnson (2022). “Scalability and robustness of
feed yard mortality prediction modeling to improve profitability.” Agricultural and Resource Economics Review
51, 610–632. https://doi.org/10.1017/age.2022.19
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