Abstracts of Australasian PhD theses
 Bounds for solutions of
 diophantine equations

David Paul Lloyd

In this thesis, I consider two independent problems on bounds for solutions of diophantine equations in several variables. Part I concerns a pair of simultaneous diagonal quadratic equations, and Part II a single non-diagonal cubic equation. In each case, I show that, under suitable hypotheses, the equations have non-trivial integer solutions whose size is bounded in terms of the coefficients in the equations. The main theorems are as follows:

PART I. Consider the equations

$$
f(x)=\lambda_{1} x_{1}^{2}+\ldots+\lambda_{n} x_{n}^{2}=0,
$$

$$
\begin{equation*}
g(x)=\mu_{1} x_{1}^{2}+\ldots+\mu_{n} x_{n}^{2}=0 \tag{I}
\end{equation*}
$$

where the λ_{i}, μ_{i} are integers, and let
(2)

$$
\begin{aligned}
& \Lambda=\max _{1 \leq i \leq n}\left(\left|\lambda_{i}\right|,\left|\mu_{i}\right|\right) \\
& \theta=\prod_{i, j} \Delta_{i j},
\end{aligned}
$$

where the product is over all pairs i, j such that

$$
\Delta_{i j}=\lambda_{i} \mu_{j}-\lambda_{j} \mu_{i} \neq 0
$$

Also let v be the number of subscripts in the largest set $\left\{i_{1}, \ldots, i_{v}\right\}$
Received 29 May 1975. Thesis submitted to the University of Adelaide, May 1975. Degree approved, February 1976. Supervisor: Dr Jane Pitman.
with $\Delta_{i_{j} i_{k}}=0 \quad(1 \leq j \leq v, 1 \leq k \leq v)$.
Suppose that, for $a l l$ real a, b (not both 0), the form $a f+b g$ is indefinite and explicitly contains at least 5 variables (which implies $v \leq n-5$), and that

$$
n=9, \quad v \leq 2 \quad(=n-7)
$$

Then
(a) if (f, g) is "normalised" in the sense that Θ in (2) cannot be reduced by operations of a specified kind on the pair (f, g), then the system (1) has an integer solution x satisfying

$$
0<|x| \ll \Lambda^{139}
$$

(b) without the normalisation hypothesis, (1) has an integer solution x satisfying

$$
0<|x| \ll \Lambda^{144} \theta^{279}\left(\ll \Lambda^{40320}\right)
$$

(Here, and below, $|x|=\max \left|x_{i}\right|$ and \ll denotes an inequality with an unspecified constant factor.)

PART II. Consider the equation

$$
\begin{equation*}
C(x)=\sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{k=1}^{n} c_{i j k} x_{i} x_{j} x_{k}=0 \tag{3}
\end{equation*}
$$

where the $c_{i j k}$ are integers, and let

$$
M=\max \left|c_{i j k}\right|
$$

If $n=17$ and $C(x)$ is non-singular, then (3) has an integer solution x satisfying

$$
0<|x| \ll M^{\psi}
$$

where $\psi=8 \times 10^{8}$.
The existence of non-trivial solutions to the equations (1) and (3) has previously been proved by Cook [1] and Davenport [2], [3]. Earlier work on bounds for solutions of such diophantine equations has been
essentially restricted to a single diagonal equation (see, for example, [4]). The method used in this thesis, as in all the work just mentioned, is an adaptation of the Hardy-Littlewood circle method. The major difficulties to be overcome in seeking bounds for solutions of simultaneous diagonal equations (Part I) and of a non-diagonal equation (Part II), rather than for a single diagonal equation, arise in connection with the so-called singular series and singular integral.

References

[1] R.J. Cook, "Simultaneous quadratic equations", J. London Math. Soc. (2) 4 (1971/1972), 319-326.
[2] H. Davenport, Analytic methods for diophantine equations and diophantine inequalities, 2nd printing (Campus Publishers, Ann Arbor, Michigan, 1962).
[3] H. Davenport, "Cubic forms in sixteen variables", Proc. Roy. Soc. Ser. A 272 (1963), 285-303.
[4] Jane Pitman, "Bounds for solutions of diagonal equations", Acta Arith. 19 (1971), 223-247.

