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1. Introduction

Recently A. L. Smel'kin [14] proved that a product variety1 USS is
generated by a finite group if and only if U is nilpotent, S3 is abelian, and
the exponents of U and S3 are coprime. Alternatively, by the theorem of
Oates and Powell [13], we may say that a Cross variety is decomposable
if and only if it is of the above form.

Throughout this paper such a variety will be denoted by 9ffl.n, the
class of 31 by c, and the exponent of -JJ by m : n is the exponent of the
abelian variety 3lB.

In this paper we find the least number / = /(9Mre) such that 3Mn is
generated by its /-generator groups but not by its (I— l)-generator groups.
For c = 1, that is 31 abelian, C. H. Houghton proved, generalizing a result
of Graham Higman [6], that 2Im9ln is generated by its 2-generator groups.
In fact he showed that CmwrCn generates the product variety (unpublished).
(Here Cm, Cn denote cycles of orders m, n.) As a generalization of this it
can be shown easily from the structure of the critical groups in 9Mn,
obtained in § 2, that the verbal wreath product We = Fc(3l)wr^Fe(^in)
generates !K2ln, where Fe(3t) and Fc(^ln) are the free groups of rank c
of 31 and 2lTC respectively. This yields I sS 2c immediately. However the
following theorem is proved.

THEOREM. The variety 3M,n, where 31 is any nilpotent variety of class
c > 1 and exponent m, with (m, n) = 1, is generated by its c-generator
groups but not by its (c-l)-generator groups. That is /(9Mn) = c.

The precision of this result contrasts with the result of Higman [6],
that any nilpotent variety of class c is generated by its c-generator groups,
and the result of Gilbert Baumslag, B. H. Neumann, Hanna Neumann and
Peter M. Neumann [1], that even for the variety S3 say, of all nilpotent
groups of class ^ c, we have

[c/2] ^ /(») ^ c,

1 This and other terms used here seem to be standard now. Full definitions may be found
in [6] and [13].
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with no more precise bounds yet known.
In § 2, £(9<MB) ^ c is proved (this is due to L. G. Kovacs) and in § 5

the properties of Wc are exploited to give the reverse inequality.
It is also shown in § 2 that every critical group in Win needs at most

c-f 1 generators and in § 3 critical groups actually requiring c+1 generators
are constructed for c = 2 and certain pairs of exponents m, n. (Cf. the result
of Paul M. Weichsel [15] that critical groups of class 5S c are c-generator.)

This, together with the result of Hanna Neumann (Theorem 3.1) that
a variety generated by a single critical group which is strictly ^-generator,
cannot be generated by its (k—l)-generator groups, prompts the following
question. Can one construct, for any pair of integers k, I > 0, a variety
generated by its ^-generator groups and also by a set S of critical groups
some of which are strictly (k-\-Z)-generator? This question is answered
affirmatively for k = 2 and arbitrary I, mainly by reference to [2]. How-
ever, if we insist that in the above question not all of the critical groups in
S requiring > k generators be redundant; that is, there exist G e S re-
quiring > k generators such that var (S) ^ var (S\{G}), then the question
remains completely unanswered.

In § 4 a characterization of the normal closure of the top group of an
arbitrary verbal wreath product is obtained. This generalizes a corresponding
result of Peter M. Neumann [12] on the standard restricted wreath product.

In § 5, a special case of the main result of § 4 (Corollary 4.2) and an
embedding theorem for a more restricted class of verbal wreath products,
are used to prove l^Sl%n) Sg c. The embedding theorem is also contained in
A. L. Smel'kin's paper [14] but the proof given here is short and more direct.

We shall denote the least number of generators required to generate
a group G by d(G). The definition and some properties of the verbal wreath
product may be found in [14] from which also the notation has been taken
over.

I am grateful to Professor Hanna Neumann and Dr. L. G. Kovacs
for their great help and encouragement. In particular I thank Professor
Neumann for many corrections and for her help in writing this paper. I
also thank the referee for his careful criticism and for several suggestions
which have been incorporated into the paper.

This work was done under an Australian National University research
scholarship at Canberra.

2. Upper bounds

In this section we prove that:

2.1 d(G) ^ c+1 for any critical group G in 9Mn and for all c 22 1;

2.2. J(3SU ^ c for all c> 1.
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PROOF OF 2.1. Firstly, for all c ^ 1 we obtain the bound 2c for d(G)
where G is any critical group in WHn. The following argument is due to
L. G. Kovacs and is derived in part from an argument in the paper [7]
of Kovacs and Newman.

Lemma 2.4.2 of Oates and Powell [13] is used:

2.3. If a group G has a set of normal subgroups Mlt • • •, M, and a sub-
group L such that

2.3.1 G = LM1- • -Ms;

2.3.2 G is not generated by L together with any proper subset of the set
{M1,--;MS};

2.3.3 [Mw(1), • • •, MnU{\ = E, the unit subgroup, for every permutation
n of the integers 1, • • •, s;

then G is not critical.
Now return to the critical group G in 9Mn. We may assume G is non-

abelian since otherwise G is cyclic and d(G) = 1. By definition, a critical
group is finite. Let F = F(G) be the greatest normal nilpotent subgroup
(the Fitting subgroup) and 0 = 0(G) the Frattini subgroup of G. Since 0
is nilpotent and normal, 0 ^ F. F is a p-group for some prime p, other-
wise G would not be monolithic (i.e. it would not possess a unique minimal
normal subgroup). Furthermore p\m where m is the exponent of 31. For,
by the definition of a product variety and since G has been assumed non-
abelian, G is the extension of a non-trivial subgroup S in 91 by a group in
9lB> and we must have S :g F. Since (m, n) = 1 there is, by the Schur-
Zassenhaus Theorem, a complement L of F in G. It follows that L0/0 ( s L)
is a complement of FJ0 in G\0. By Theorems 2, 5 and 9 of Gashtitz [4], FJ0
is an elementary abelian ^>-group (Clearly 0 # F.) Write

F/0 = MJ0 X • • • X MJ0,

where MJ0, i == 1, • • •, s, is an elementary abelian minimal normal sub-
group of G\0. That such a decomposition exists is a consequence of Maschke's
Theorem (see for example [5] p. 253): F\0 may be regarded as an L\0-
module over GF{p). Then G = LMX • • • M, and conditions 2.3.1 and 2.3.2
are satisfied. If s > c, condition 2.3.3 will also be satisfied, contrary to the
criticality of G. Thus s 5S c.

Since 0 is the (finite) set of non-generators of G, d{G\0) = d(G).
Therefore we can restrict our attention to G/0. Write G/0 = Glt L0/0 = L1(

F/0 = Flt and MJ0 = Nt, i = 1, • • •, s. Let xi be any non-trivial element
from Nvi = 1, • • •, s. Then

2.4 Gx = sgp{Llt Xj, • - •, x,},

since the conjugates of xi under Lr must together generate the whole of
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the minimal normal subgroup Nt. We now bound d(Lx). Let Ki be the
kernel of the representation of Lx on Nt, » = 1, • • •, s: that is Kt = CL (Nt)
<L1. By Theorem 10 of [4], F(G\<t>) = Fj&. This, together with the
abelianness of Llt implies that COi(Fj) gj Fx: that is, Lxis faithfully rep-
resented on F1 = N1x---xN,. Therefore f\'i=1Ki = E. Now L1/Ki is
abelian and is represented faithfully and irreducibly on Nt. By a classical
theorem of representation theory, this implies that LJKi is cyclic. Thus
Lx contains s normal subgroups intersecting trivially and with cyclic
factor groups. It follows that Lx is embeddable in the direct product
LJK-LX-'-XLJK, of s cycles and that d{L) ^ s. We have d(G) =
d{Gx) ^ 2s ^ 2c.

Secondly, we reduce this bound to c+1 with the help of the following
lemma.

2.5 LEMMA. Let B be a finite abelian group with ^ s generators and let
Blt •'', Bt_l be s—1 subgroups such that B/Bf is cyclic, » = 1, • • •, s—1.
Then there exists a set {g1( • • •, gs} of generators of B such that gt e Bi for
* = 1, •;s-l.

PROOF. If B is trivial then so also is the lemma. Assume B =£ E.
Write B as the direct product of its Sylow subgroups: B = SPi X • • • X S^

say. Then, for each /, 1 <; / ^ &, SPf and Bx n SPj, • • •, BB_X n SPj

satisfy the conditions of the lemma. If there exists a set {giVj, • • •, gs])j} of
generators of SPj such that giPj e Bt n 5 ^ , i = 1, • • •, s—1, put

Then {glt • • -, g,} satisfies the requirements of the lemma.
Hence we may assume B is a^>-group. We use induction on s. For s = 1

the lemma holds vacuously. Suppose s > 1 and assume the lemma true
for s—1. Write B = C^n, X • • • X Cpn, where nt ^ 0, i = 1, • • •, s, and
n, ^ nv j < s, and let yt be a generator of Cpn,. Consider the case Bx < B.
In this case there exists some element y = y^ • • - y^^y, $ Bx since ele-
ments of this form generate B. Hence B = Cpn^X' • •xCpn^.1 X sgp{y} =
Axsgp{y} say. For this decomposition of B, the projection of Bx on 4
must be the whole of A since, if a # 1 were not in this projection then,
modulo Blt the set {a, y) would generate a non-cyclic group. Thus for
BX^LB there is a generating set {clt • • •, ct_x, gs] for B such that

Write # = sg^fo, • • •, ct_x} <S Bt and consider the cyclic group
HBtjBt ~ #/ff n £ „ * = 2, • • •, s - 1 . The groups H and H n B2, • • •,
H n B»-i satisfy the conditions of the lemma and so, by the inductive
hypothesis, there exist generators glt • • •, g,_x for H such that
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giCH n Bt-g, Bit for i = 2, • • -, s—1. Since g1 e Blt the set {gx, • • •, gt}
satisfies the requirements of the lemma. This completes the proof of the
inductive step and the proof of the lemma.

For the application of this we return to 2.4: G1 = sgp{Llt xlt • • •, x,}.
L± and Klt • • •,i£,_i satisfy the conditions of 2.5 and hence there is a
generating set {llt • • •, ls) for Lx with lt eKf for i = 1, • • •, s—1. Since
Kt centralizes x{ and they have coprime orders, the set {l1x1, • • •, 1,-xX,^,
ls, xs} generates Gt. This completes the proof of 2.1.

One further lemma will complete the proof of 2.2. Since 9>l2tn is generated
by its critical groups we have immediately from 2.1 that l(Wln) ^ c+1.
In § 3, for c = 2 and certain m, n, critical groups in <2ffln having not fewer
than 3 generators are constructed. Thus we cannot hope to obtain the upper
bound c for l(WHn) by considering the critical groups alone. However,
L. G. Kovacs has proved the following result.

2.6 LEMMA. For each critical group G in 9?2ln with s > 1 defined as
previously, there exists an s-generator permutational verbal wreath product
lying in 9i3tn and having G as a factor.

PROOF. We retain the notation of the proof of 2.1 for the relevant sub-
groups etc. of the critical group G. Identify Lx with L under the mapping
W ->l,l e L. Then L/Kf, i = 1, • • •, s, is a cyclic group of order dividing n.
Let Zi be a group isomorphic to L\Kit i = 1, • • •, s, such that Zt n Zk = 0
for / ^ k. Let d( : L\Kt -> Zi be an isomorphism, i = 1, • • •, s. Form the
set-theoretical union (J*=î <> = Z s a v - Then for each z{ e Zit i = 1, • • •, s,
a permutation £t of Z is defined as follows:

zd = zz{ if z e Z(;

zCt = z if z $ Z(.

The group Q generated by all such permutations is isomorphic to
Zxy. • • • X Zg and the restriction to Z( Q Z of this group of permutations
is the right regular representation of Zt. Take \Z\ distinct isomorphic
copies of the pa-cyc\e. C^ where pa is the exponent of F(G), and denote
them by C^z), z e Z. We form the verbal -ft-product (see S. Moran, [9])

zeZ

and split-extend B by Q in the usual way for permutational wreath products:
that is, the action of f e Q on C^z) is defined by

{a{z)Y = a(zC).

for a e Cp«. Then BQ is the permutational verbal wreath product mentioned
in the lemma. Obviously BQ e 9J2L,.

https://doi.org/10.1017/S1446788700004195 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700004195


[6] Verbal wreath products and certain product varieties 361

We now choose a subgroup of BQ and find an epimorphism from this
subgroup onto G. Let ip be the isomorphism Zx X • • -xZs^-Q defined by

ZiV> = d, 2 < e Z , . , t = 1, • • • , s.

Then the mapping

6 : / -H- (H

is a monomorphism of Z, into Q. Write Ld = L2 fs=Q- Let b{eM^\0(G),
e{ be the identity of Zf, i = 1, • • •, s, and let a generate Cj,«. Then the map-
ping

a(ei) -> &„ t = 1, • • -, s;
20->/, ZeL,

can be extended to an epimorphism of BL2 onto G. This follows from the
structure of G obtained in the proof of 2.1, from the freeness of B in -K and
the well-known von Dyck's Theorem ([8], Vol. I, p. 130).

Finally we find the number of generators sufficient to generate BQ.
If s = 1, BQ is 2-generator. If s > 1, BQ is s-generator: for, if a(et) generates
C^(e,-) and zt generates Zt,i = 1, • • •, s, then BQ is generated by the set
{a{ei), zty) | i = 1, • • •, s}; but a(e3) and zfcY> commute if j # & and have
comprime orders and hence {a(e{) • (z^i+1)mod,ip) \ i = 1, • • •, s) also gen-
erates BQ. This completes the proof of 2.6 and hence 2.2.

3. Critical groups

Firstly we construct the critical groups promised in § 1, to show that
the bound c+1 for the least number of generators of the critical groups in
922tn is best possible, at least in some cases.

We know from 2.2 that, in particular, for c = 2, 9Mn is generated by
its 2-generator groups. It is also generated by its critical groups.

For a pair of primes p, q related in a way to be described, we shall
construct a critical group G = G(p, q) of exponent pq which is strictly
3-generator and is an extension of a nilpotent group of class 2 and exponent
p, by an abelian group of exponent q.

Suppose a prime p > 2 is given arbitrarily and let q be any prime
dividing p — 1. Then there exists zn r, I <r <p, such that r" = l(mod^>)
since the non-zero integers modulo p form the multiplicative group of
GF(p). Suppose N is the reduced free group of exponent p and class 2
on two free generators a, b, and let x generate a cycle of order q. G is the
splitting extension of N by sgp{x} obtained by defining ax = ar, bx = br.
Thus

G = gp{N, x\x« = 1, a* = aT, If = br).
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G is critical because any proper factor of N is abelian whence it fol-
lows easily that any proper factor of G is metabelian, whereas [a, x] = ar~1

and [b, x] = i '"1 generate the non-abelian group N, so that G itself is not
metabelian.

For the verification of d(G) = 3 we proceed as follows. If G is 2-
generator, some pair {xu, v}, u,veN, will do to generate it. There exists
weN such that wr~x = u since (r—l,p) = l. Thus xu = xwrw~1 =
xze>xw~1 = wxw~1 and G = sgp{x, v'} where v' = w~1vw. However, modulo
sgp{[a, b]}, the monolith of G, sgp{x, v'} is an extension of CP by Cd, whereas
mod sgp{[a, &]}, G is an extension of CPxCv by Cq. Thus we have reached
a contradiction and d(G) = 3.

Let SS be a variety generated by its critical groups and also by its k-
generator groups, for some finite k. We now touch briefly on the question
whether or not there exists a connexion between /(SS) and the numbers of
generators required by the critical groups in SS.

We prove firstly the following theorem.

3.1 THEOREM. (Hanna Neumann) The variety generated by a single
critical group G, with d(G) = k, is not generated by its (k—l)-generator
groups.

PROOF. Suppose the theorem false and that G is a counterexample,
G critical, d(G) = k. Denote by Fk_1 the reduced free group of rank ft—1
of var(G). Then var(G) = vax(Fk_1) by the supposition. Hence Fk_1 is
isomorphic to a factor of a cartesian power G1 where / ^ 0 is some index set.
Since Fk_1 is free in var(G), it is in fact embeddable in G1 : Fk_1 ^ A ^ G1,
say. Let 6iti el, be the projection of G1 on its i-th co-ordinate. If A{ s G
for some i eI,G would be isomorphic to a factor group of 4 s Fk_x and
would then have fewer than k generators. Thus Adi is isomorphic to a
proper subgroup of G for all i e I. Hence Fk_x is in the variety generated by
all Adt which is in turn in the variety generated by the proper subgroups
of G. This gives us a contradiction and completes the proof.

This gives rise to the question asked in § 1.
It can be proved (see [2], chapter 6) that if SS (as above) is also Cross,

then it is generated by its ^-generator critical groups. Assuming that
/(•JMJ = c (the proof of this is completed in § 5) it follows that the Cross
variety SftSln must contain at least one critical group G with d(G) = c.
Hence there exists for each c2g 1, a critical group Ge such that d(Ge) = c.
The group Ge can be embedded in some finite symmetric group S(c) say,
which has a set of two generators. Thus var(5(c)) is generated by its 2-
generator groups (and its critical groups since it is Cross) and contains at
least one critical group requiring c generators. This answers the question
asked in § 1, for k = 2.
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However the question of the existence of a set of critical groups some
of which require > k generators, generating irredundantly (in the sense
given in § 1) a variety generated by its ^-generator groups, remains un-
answered.

An an example of what may happen, let us return for the moment to
the variety Wia, where 91 is assumed to be of class 2 and exponent p > 2,
and the primes p, q are such that q\p—l. (There is only one such variety
31.) In [2], chapter 6, the complete subvariety lattice of 5K2t8 is determined
by means of its critical groups. It turns out that the strictly 3-generator
group G = G(p, q) constructed above is the only such in 9121,,, and that
if 35 is any subvariety of $J£2le containing the critical group G, and such that
/($) = 2, then G can be omitted from any set S of critical groups generating
33. That is, if 85 = var(S) then 33 = var (S\{G}).

4. The verbal wreath product

In this section we prove a theorem on the standard verbal wreath
product W = AwrsB where A and B are arbitrary non-trivial groups and
23 is an arbitrary variety. It is a generalization of Theorem 4.1 of [12]
and part of the proof is a generalization of the proof in [12].

Since our only concern from now on will be with the standard verbal
wreath product, the adjective "standard" will, for brevity, be dropped.

The theorem is applied in § 5 in the special case V(A) = E (Corollary
4.2) to obtain a lower bound for /(9$tTC). For this special case a simpler
proof is possible. However the full theorem is of independent interest and
not much is saved by proving only the weaker version.

Before we can state the theorem, some definitions are needed. Suppose
F is a free group on a countably infinite set {x1, x2, • • •} of free generators.
Let V be any fully invariant subgroup of F and D the derived group of F.
For any group G let V(G) denote the verbal subgroup of G determined by
V, and SB the variety of all groups G for which V{G) = E. V and D are
verbal subgroups of F and therefore V n D is fully invariant and hence
also a verbal subgroup. It is easy to verify that, for any group G,
(V n D){G) 5S V(G) n D(G). In view of subsequent arguments it is worth
while pointing out that B. H. Neumann [11] has found an example where
the inequality is strict. (Cf. also S. Moran [10].). Finally we shall use
without comment that V(Gd) = V{G)0 for every homomorphism 0.

Let K denote the base group of W. Then we have the following result.

4.1 THEOREM. Let Bx> E be normal in B, Tx be any transversal for
Br in B, and P denote the verbal product Y[%T A (t) < K. Then
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B?nK= [BltK] =

^ 1; bt e Bu a* e P, for i = 1, • • •, r;

J5" denotes the normal closure of Bz in W.
The proof consists of a string of lemmas. The first two, 4.1.1 and 4.1.2,

reduce the problem to the case Bx = B. Lemma 4.1.1 is well known and
the proof is omitted.

4.1.1 LEMMA. / / B2 is any subgroup of B and T2 is any left transversal
for B2 in B, then ffl

Bt-K* (IT A{t))wr9Bt.
teT,

If, in the right hand side, we interpret the action of B2 on J l f € r s ^ (0
as in W, we may (and shall in future) replace £ by = .

4.1.2 LEMMA. The normal closure of Bx in W is B^LB1, K].

PROOF. The subgroup [Blt K] of W is normalized by K: for, if bt e B1;
k, kx e K, then

[b1,kp={b1,k^{b1,kk^e[Bl,K\.

Also, [Blt K] is normalized by B since Bt^B and K < W. Hence [B1, K]
is normal in BK = W.

The subgroup B1[B1, K] is obviously normalized by B. Also, if k e K,
bre Bx, then

bl = b1tb1,k]eBi[B1,K].

Hence B^B^ K] is normal in W and must be the normal closure of Bx in W.

4.1.3 COROLLARY. The normal closure of Bx in W is the same as its
normal closure in BXK.

This follows at once from Lemma 4.1.2. This corollary, together with
Lemma 4.1.1, allows us to assume that Bt = B. The following few lemmas
are concerned with this case and with a particular verbal wreath product.

We consider in particular the verbal wreath product W* = Awr^B
(which is in fact isomorphic to the free product A*B — but we shall not
need this) since the more general wreath product W is a factor group of
it. The base group of W* is the free product Tl*eBA{b) = lT*^(&)> s a v -
Now by the definition of the verbal product,

K=f[A{b)= Tl*A(b)l(V([l*A(b)) n C),
beB

where C is the cartesian subgroup of the free product Y1*A (b). We put for
brevity, A = V(]J*A(b)) n C, so that
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K = n * ^ (b)IA; W = W*/A

Any element of JJ*^4 (b) can be written uniquely in the normal form
ai(bi) * ' ' ar{br) where at eA.bfeB, i = 1, • • •, r; b} ̂  bj+1, j = 1, • • •,
r—1. Write

X = {a(l)a-1(6)|ae^,&eB}

= {[a-1(l),b]\aeA,bsB}CU*A(b).

Then the following is true.

4.1.4 LEMMA. If a^bj) • • • ar(br), a( e A.b^ B, b} =fi bi+1, is any ele-
ment of \\*A (b), then the element

g=(a1---ar)-i{b1)a1(b1)---ar(br)
lies in sgp(X).

PROOF. Any element of the form a-1(i ' )a(6"),«e^;i ' ,J"£JB, be-
longs to sgp(X) since

a-i(b')a(b") = (a-Hl)a(b'))-iari(l)a(b")esgp(X).
Write

x1 = a-1{b)Tar{br_1),

Then
xxx% • • • xr_x = g-1,

and since xtx2 • • • xr_x e sgp(X) by the preceding remark, the required
result is obtained.

4.1.5 COROLLARY. In W*, [B, Yl*A(b)] = sgp(X).

PROOF. Obviously

To prove the reverse inclusion, we show that every generator \b', k] of
[B, H*A (&)], b' e B, k eJJ*A {b), lies in sgp(X). Suppose k = a^bj • • • aT(br)
is in the normal form. Then

[&', k] = (a^Wb') • • • a&b'))-!^) • • • aT(br)

= a~l(bfb') • • • « r W K ( & i ) • • • *r(br).

Thus, by Lemma 4.1.4, (a'1 • • • a^1^ • • • ar){brb')[b', k] esgp(X); that is

[b',k]esgp(X),
and the proof is complete.
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The next lemma is concerned with the free product 11*^4(6) only.

4.1.6 LEMMA. The epimorphism 6 : JJ*A (b) -» A defined by a(b)6 = a,
a e A, b e B, (that is, 0 amalgamates the A (b)) maps A = V(Yl*A (b)) r\C
onto {V nD){A).

This is slightly surprising as one might expect on the face of it that
Ad = V(A) n D(A) which, as remarked above, it not always the same as
(VnD)(A).

Before proving this lemma we need the following result which for clarity
we state and prove separately.

When we say that a word in F "involves" the variable xit we shall
mean that the word contains xt or xj1 when written in reduced form. A
commutator with entries from {xf1, xf1, • • • } that involves xt, takes the
value 1 when xt is replaced by 1. (See Higman [6], p. 169.)

4.1.7 LEMMA
 2. The verbal subgroup V n D is generated by the set of all

those words w = w(xx, • • •, xt) in V n D each of which can be written as a
product cx- • • cs say, of commutators of weight > 1 with entries from
{xf1, • • •, xf1}, such that there exist two distinct subscripts j and k with the
property that each commutator ct, 1 f^ i fSL s, involves both x^ and xk.

PROOF. The proof is by induction on the number of variables a word
in V n D involves. If this number is 2, the word already has the required
form. Suppose that words in V n D involving fewer than I variables are
products of words of the form w, and let v = v(xx, • • •, xt) be any element
of V n D which involves all of x±, • • •, xt. Since v e D, it can be written as
a product of commutators of weight > 1 in xf1, • • •, xf1. By using the
identity y^y% = y^yxiHn Vz\ repeatedly, we see that we can write

where the v{, i = 1,2, 3, 4, are products of commutators of weight > 1 in
the x/s and their inverses, and in vx all factors involve neither xx nor xz;
in v 2 all involve xx but not x2; in vz all involve x2 but not xx; and the factors
of vi all involve both xx and x2. If we put successively xx = x2 = 1; xt = 1;
x% = 1, in v, we see that v1)vi,v3,v4eV n D. Now vlt v2 and v3 involve at
most l—l variables and so, by the inductive hypothesis, they are products
of words in V n D of the right form. The element »4 is already of the re-
quired form. Obviously no generality has been lost by working with the
particular / variables xx,'--,xx, and the proof is complete.

PROOF OF 4.1.6. Let w = w(xx, • • •, xt) be as in the statement of
Lemma 4.1.7: w = cx • • • c8 and the ct simultaneously involve the variables

2 This lemma was suggested by Professor Hanna Neumann as a correction of my original
proof of 4.1.6.
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xi,xk. Since B ^ E, there exist b', b" e B for which b' =£b". Substitute in
w any / elements gi,'",gi^A, for xlt • • •, x% respectively. The resulting
element is in (V n D)(A). On the other hand, if we substitute gi(b') for
xiti ^ k, andgk(b") for xk, the form of w ensures that the resulting element
is in A. Now

w{gi(b'), • • ; &(&"), •' ;8l(b'))6 = w(gl, • • •,gt),

and since, by 4.1.7, all such elements w(g1, • • •, gt) generate (V n D)(A),
we have proved that

^(V nD)(A).

We now prove the reverse inclusion.
Let R be the kernel of an epimorphism y from a free group F± of

suitable rank, onto A : A ^ FJR. Take \B\ isomorphic copies of F1,
denoted by F^b), b e B. Then corresponding to y> we have, for each b e B,
the obvious epimorphism y>(b) : F^b) ->A(b). Consider the free product
n*eB-Fi(&) = n * ^ ^ ) . saY- Let ̂  be the epimorphism n*-P"i(S) ->Tl*A{b),
whose restriction to F^b) is ip{b). It then suffices to prove that

4.1.8 (FnZ))(n*fi(4))^i

For,
(VnD)(U*F1(b))<f>9=(VnD)(A),

and so, from 4.1.8,
(V

4.1.8 is proved as follows. Let v(x) = v(x1, • • •, xt) e V be such that
for some klt • • •, kt e Y1*A (b), we have

v(ki> '' '<ki) eC.

Every element g of A = V(Yl*A(b)) n C is obtainable in this way from
some v(x) e V. Suppose ft<f> = k{, where ft e Y\.*F1(b), i = 1, • • •, I. We
now consider the element v(f) = v(/i, • • •, /,). Modulo its cartesian,
XI* Fx{b) is the direct product of the Fr{b). From this, together with the
fact that the complete inverse image of C under <f> is the product of the
cartesian of JJ* F^b) and the normal closure in JJ* F^b) of all R{b), we
see that we may write

v(f) = d • h^) - • • ht(bt),

where d belongs to the cartesian of XT* F^b); h( e R,bte B,i = 1, • • •, t,
and bj ̂  bk for / ̂  k.

Next suppose {yy \y e F} (F some index set) is a set of free generators
of Ft. Then {yy{b)\y eT, b e B} generates JJ* F^b) freely and the /,.
may be regarded as reduced words in these generators. Consider the subset
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S = {yr{b)\yy{b) occurs in /,- for some i = 1, • • •, /}, and let /i : gp(S) -*• F
be the monomorphism extending any (1, 1) mapping from S into the free
generators {xlt x2, • • •} of F. Then v(f)fi e V. If, for some fixed /, 1 ^ / 5S t,
we set xi = 1 in the word v(f) whenever x^-1 $ F^bj), then we find that
also

/*,(&> e V, j = 1, • • -, t.

Hence d/i e V; obviously dfi e D. Write dft = v'.
Thus, for each element g e A, we have found a word v' eV n D such

that the substitution fi~x4> gives g : v'fi-1^ = g. Now v'^r1 e (V n D)
(IT* Fifi)) an<^ hence (V n £))(IX* F^b))^ S: A as required. This completes
the proof of 4.1.8 and thence of Lemma 4.1.6.

4.1.9 COROLLARY. For all b e B, (V n D)(A (b)) is contained in sgp(X)A.

PROOF. Corollary 4.1.5 implies that sgp(X) is normal in W*. Let g be
any element in (V n D)(A). Then by Lemma 4.1.6 there exists an element
h = a^b-,) • • • ar(bT) in A such that ax • • • aT = g. By Lemma 4.1.4
g-1 (bx)h e sgp(X), whence gfij) e sgp(X)A. The normality of sgp(X) in W*
then gives the stated result.

Finally we return to W for which we obtain the following corollary.

4.1.10 COROLLARY. [B, K] = sgp(X)A/A — M, where M is the set of
cosets

{«!(&!) • • • ar)br)A\r^ 1; bx e B, at eA, i = 1, • • •, r;

bt ^ bi+1, j = 1, • • •, r - 1 ; ax • • • ar e (F n D)(A)}.

PROOF. It is easy to see from 4.1.6 that the set M forms a subgroup
of W. Thus, since XA/ACM, we have sgp{X)AJA ^ M. To prove the
reverse inclusion write h = a^bj • • • ar(br), where ax • • • ar e (V n D)(A).
Then, by 4.1.4,

(a1---ar)-i(b1)a1(b1)---ar(br)esgp(X).
Therefore

which by 4.1.9 is contained in sgp(X) • A.

PROOF OF THEOREM 4.1. The proof is immediate from Lemmas 4.1.1,
4.1.2 and Corollary 4.1.10).

For the application of Theorem 4.1 in § 5, we require it only in the case
V(A) = E. In this case, for convenience, we restate it as a corollary.

4.2 COROLLARY. With the same notation as in Theorem 4.1, suppose
further that V{A) = E. Then the normal closure of the normal subgroup
Bj > E of B {with a transversal 7 \ in B) in W = AwrnB, is B1M1 where
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•^1 = W ' ' • ' a r r I r = ^ bi 6 #1> a i

* = 1, • • •, r; bj =£ bi+1, j = 1, • • •, r— 1; a2a2 • • • ar = 1}.

5. Lower bound for

In this section we aim at proving that

5.1 l{mn)^cforallc^ 1.

This, together with 2.2, yields ll$®in) = c for c > 1. (For c=l, 2(9MJ = 2.)
For any variety 33 we shall denote by Fk(%$) the reduced free group of

rank k of 33. As mentioned in § 1, the method of proving 5.1 uses certain
properties of the verbal wreath product

e
where Cn is the direct product of c isomorphic copies of Cn. Clearly
WeeWLn. We show that if Wc e var{F K_x{WSin)) then We is not only a
factor of, but can be embedded in, a (finite) direct power of JT

c_1(9?Stn).
Hence there must be a set of normal subgroups of We, with trivial inter-
section, giving rise to factor groups embeddable in Fc_1(9

(Z9tn). We prove
that, for all possible such sets, the factor group of at least one normal
subgroup is not so embeddable.

In addition to Corollary 4.2, a few lemmas are needed. The following
lemma has also been proved by A. L. Smel'kin [14]. His proof relies on the
main theorem of that paper. We give a short, more direct proof.

5.2 LEMMA. Let U and S3 be locally finite varieties of coprime exponents
m and n respectively. Then the verbal wreath product

W(k) = Fk(U)wruFk(%)

can be embedded in F2Jfc(lt33), the free group of rank 2k of USS, for all k^ 1.

PROOF. Let F2k be absolutely free on free generators xlt • • •, x2k. Then,
by the Schur-Zassenhaus Theorem and the conditions of the lemma,
Fik(VL%) = F2kIU(V{F2k)) is a splitting extension of F(F2fc)/C/(F(.F2i:)) by
F»&) = F2kIV(F2k).

If we write Fk = sgp{x1, •••, xk}, the same remark applied to Fk < F2k

shows that there exists a set T C Fk which is a transversal for V(Fk) in
Fk and is also, modulo U(V(F2k)), a complement of V(Fk) in Fk. Let 7\ be
a right Schreier transversal for V(Fk) in Fk. Since V(Fk) = Fk n V(F2k),
T and 7\ are subsets of some transversals for V(F2k) in -F2fc. For each
t-L e 7\ there exists a unique t eT such that
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5.2.1 t± = att,

where at depends on t and at e V(Fk). The mapping Tx -> T so defined is
(1, 1) and onto.

We now show briefly that one can choose a right Schreier transversal
T2 for V(F2k) in F2k which contains the set

S = fea?* |*i e Tlt 0 ^ a, ^ n - 1 , * = * + l , • • •, 2k},

by the following simple modification of the usual argument. It can easily
be seen that the elements of S lie in distinct cosets and have the Schreier
property. Choose the elements of S as representatives of their cosets. Let
Q be the set of cosets not so represented. To find suitable representatives
for the cosets in Q we use induction on the smallest length of elements in
each coset in Q (as in [8], vol. II, p. 33). Thus we obtain the required T2.
(See also M. J. Dunwoody [3].)

A set of free generators of V(F2k) is then

s2* = (WWto))-11* = i,---. 2£; h e Tty\{i},
where (f>(g), g e File, is the element of T2 representing the coset gV{F2k).
The set

ii))-11* = 1. • • •> *. k e

is a set of free generators of V(Fk). By the way T2 was chosen, Sk C S2k.
Write

= ( K ) ' " I h 6 r i f » = k+1, • • ; 2k} C

By 5.2.1,

Write

Since at e sgp (Sk) for alH e T and Y is obtained from X C 52^X5^ by suitable
conjugation by the at, it follows that the set (S2k\X) u Y is an alternative
set of free generators of V(F2k).

Modulo U(V(F2k)), sgp{z? \i = k+1,- • -,2k} is isomorphic to Fk(U).
Because of the way T was chosen, we have, modulo U{V(F2k)),

>\i = k+l,'--,2k}wrVLsgp{T)

which is isomorphic (modU(V(F2k))) to W(k). This completes the proof.

5.3 COROLLARY. If Fv(Wt$) generates U3S for some cardinal v, then
W(k) can be embedded in some finite direct power of FV(W8).
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PROOF. Any free group of W8 can be embedded in some suitably large
finite direct power of Fy(W8). In particular, this applies to JF2S(U9S) and
thus to W(k) by Lemma 5.2.

5.4 LEMMA. / / n = p, a prime, then every non-empty set of normal
subgroups of We = F ei^t)wr3lC

c
n, such that none of the normal subgroups is

wholly contained in the base group, has non-trivial intersection.
For the proof a corollary of the following lemma is needed.

5.4.1 LEMMA. (Cf. Higman [6].) Let Fk be (absolutely) free on
xlt • • •, xk, k ^ 2, and let SB be a nilpotent variety of class c. Denote the sub-
sets of {xlt • • •, xk} containing not less than 2 and not more than c elements by
Slt S2, • • •, St, and form C(S{) = sgp{y | y a commutator of weight c with set of
entries precisely S,}. Then, if 6 is the natural homomorphism Fk-> FkIV(Fk),
we have

sgP{C(S<)\i = 1, • • -, l}6 =

PROOF. It suffices to prove that if

YiV* • • • Yi e V{Fk),

where yf e C(Stf), i = 1, • • •, /, then

yi e V(Fk) for each *'.

We use induction on the cardinal of Sf. Let <̂  be the endomorphism of
Fk which fixes the elements of St and maps all other free generators in
{x1, • • •, xk} onto 1. Then if \St\ = 2,

(Y1Y2 • • • Yi)<t>i = rAxyAi • • • yAi = yt-

Therefore y{ e V(Fk). Assume as inductive hypothesis that yt e V(Fk) for
all Sj with |S,| ^ s < k. We may then omit from y1 • • • yt those y/s whose
corresponding S/s contain ^ s elements, and then have the remaining
product still belonging to V(Fk). If |S,| = s + 1 , an application of $t to
this smaller product completes the proof of the inductive step and thence
the proof of the lemma.

We apply this lemma to the base group K of We. Suppose xlt • • •, xc

freely generate Fc(^l), the bottom group of Wc. Then there is a commutator
of weight c with its set of entries precisely {xlt • • •, xc} which does not reduce
to 1. Otherwise, since FC(%1) is reduced free, all commutators of weight c
would be 1 and Fe (92) would be nilpotent of class < c. Denote such a com-
mutator by y(x1, • • •, xe). An obvious set of free generators of K is

{xt{b)\i=l,-;c;beC'n}
Then we have
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5.4.2 COROLLARY. The elements of the set

are all non-trivial of order mx where m1 divides m, the exponent of 31, and in-
dependent. If mx = qm2 where q is a prime, then

is a basis for a direct product of n" isomorphic copies of Ca, considered as a
vector space of dimension n"* over GF(q).

PROOF OF LEMMA 5.4. We shall use P. Hall's well known theorem (see
[5], p. 141) the relevant parts of which we shall state here for convenience.

5.4.3 Let G be a soluble group of order rs where (r, s) = 1.
Then

5.4.4 G has at least one subgroup of order r;

5.4.5 any two subgroups of order r are conjugate;

5.4.6 any subgroup whose order divides r, is contained in a subgroup of
order r.

Since Win is a soluble, locally finite variety, we may apply this theorem
to any of its finitely generated groups.

We have \We\ = p°t where (p, t) = 1. (We are now dealing with the
case Wc = F cl^l)wr^lCv where p is a prime.) The base group K has order
t and K < Wc. By 5.4.5. K is then the only subgroup of order t and by 5.4.6
K contains every subgroup of order prime to p. Let N be any normal sub-
group of Wc not wholly contained in X. Suppose | N\ =pat1where (p,tx) = 1.
Then by the above, a > 0. By 5.4.4 N contains a subgroup of order tx and
this must be N r>K. Again by 5.4.4 N n K is complemented in N by B,
say, and by 5.4.5, 5.4.6 we may choose B to be a subgroup of the top group
c; of we.

Thus the truth of the lemma will follow if we show that the intersection
of the normal closures in Wc of all ^-cycles contained in Cc

p, is non-trivial.
This we proceed to do.

Denote the elements of 5 (5.4.2) by yx, • • -, y3 where s = pc*. We shall
prove that an element of K of the form

x = y h . . . yi.

lies in the above-mentioned intersection for some llt • • •, I, not all = 0
(mod q).

Let F s Cv be any ^-cycle in the top group Ce
p of Wc and let T be any

transversal for F in Cp. Then \T\ = p"-1. Denote by <f>r the mapping of
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CP into itself which sends each element onto its representative in T. Then
let (j>'r : sgp(S) -> sgp(S) be the homomorphism obtained by extending the
mapping defined by

By Corollary 4.2, y[i • • • y\> e Fw° if and only if

5.4.7 (yii • • • y\')4>'r = 1.

If we collect the y/s which have become identified under <f>'r, then in the
collected expression we must have powers of distinct y/s congruent to
0 (mod q) for 5.4.7 to be satisfied. In this way we are led to | r | c =^ c ( c ~ 1 )

linear homogeneous equations in lx, • • •, lt over GF(q). Thus y[l • • • y1' e Fw°
if and only if l1, • • •, lB is a solution of this system of equations. It follows
that if x is to lie in the intersection of the normal closures of all ^-cycles
contained in Ce

p,llt • • -,l, must be a solution simultaneously of the cor-
responding systems of linear equations.

Since there are (̂ >c—1)/(/>—1) distinct ^-cycles in Ce
p, we get in all

(pe—l)l(p — l) • pcic-u (not necessarily independent) equations whose
solutions are precisely the admissible values for lx, • • •, I,. Now

s = p~\
for all p and therefore there exist non-trivial solutions. This completes the
proof.

PROOF OF 5.1 : l(Win) ^ c. Suppose Fe_1i^Hn) generates WHn. Then,
by Corollary 5.3, we can find a (finite) set £ of normal subgroups of
Wc with trivial intersection and with factor groups embeddable in
27

(!_1(9
Ii2ln). Let p be any prime dividing n, and consider the unique sub-

group H of the top group Cn of We such that H s C c
v. At least one normal

subgroup, say M eS, must intersect H trivially. For otherwise Lemma 5.4
together with Lemma 4.1.1 would tell us that (~)Mex M ^ E. Thus WJM
contains a subgroup isomorphic to Cc

p and therefore, by our supposition, so
does F^Cm^. If Fe_1(SR3lB) contains a subgroup G ~ C%, then, by
5.4.3, G is contained in a subgroup isomorphic to CB~X, which is impossible.
We have reached a contradiction and the proof is complete.
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