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The present research will provide an analytical explanation to experiments destabilising
turbulence in pipe flow reported in Kuehnen et al. (Nat. Phys., vol. 14, 2018, 386–390).
Those experiments show four methods by which turbulence vanishes from steady-state
pipe flow, without decreasing its bulk velocity, until it becomes completely laminar. The
explanation is based on our theory of underlying laminar flow (TULF), which has already
been successfully applied to account for other uncommon experiments reported in the
literature. The TULF is founded on the Reynolds-averaged Navier–Stokes equations and
thus is a theory of ensemble-averaged flows. The zero theorem for steady-state flow is
introduced as a universal result that will help explain the laminarisation process described
in experiments. After presenting the most comprehensive solution for the mean pipe
flow governing equation that, to our knowledge, has ever been reported, we uncover a
general sequence for laminarisation, called the laminarisation pattern, and we introduce
a mathematical model for it. We show that a drastic decrease in a flow’s mean-pressure
gradient, while maintaining constant its Reynolds number, is necessary and sufficient to
erase turbulence. Equations derived from our model are used to calculate the minimum
pressure gradient necessary to cause complete laminarisation in each experiment. Results
are then contrasted with reported experimental data, with noticeable agreement. We
also propose a figure of merit to assess the efficiency of each laminarisation method.
Having disclosed the intrinsic mechanism leading to complete laminarisation, we expect
researchers will propose other ingenious methods to achieve it.
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1. Introduction

Some months ago, an article (Kuehnen et al. 2018b) was brought to our attention about a
set of extraordinary experiments that could turn a turbulent flow into laminar before your
eyes, without reducing its bulk velocity. All experiments begin with a steady-state fully
developed turbulent pipe flow, which is disturbed by different agents until it finally turns
into a laminar Hagen–Poiseuille flow downstream. The bulk velocity (Reynolds number)
is kept strictly constant during each process. In the first experiment, the disturbance is
caused by four small electric rotors inserted within the flow, which can be switched on
and off. While they are static, the flow is turbulent. Upon powering them, they stir the
fluid around vigorously and the flow becomes laminar farther downstream. In the second,
a previously diverted portion of the fluid is reinserted into the flow through a set of 25
thin holes drilled helically in the pipe’s wall, creating 25 identical small radial jets that
disrupt the flow circulating within the pipe. The flow is initially turbulent with the jets
switched off and, again, upon starting the jets, the flow turns laminar farther downstream.
In the third experiment, a short segment of pipe is replaced by a device that has a circular
narrow gap parallel to the pipe’s wall. Again, a previously diverted portion of the fluid
is reinserted into the flow through the gap, creating an annular streamwise jet next to the
wall and, once more, the perturbed flow becomes laminar farther downstream. In the last
experiment, a long segment of pipe is replaced by a slightly thicker one that can slide
streamwise rather rapidly. While the segment is static, the flow is turbulent, whereas after
sliding at velocities slightly above the flow’s bulk velocity, a laminar flow is recorded
downstream. We strongly recommend reading Kuehnen et al. (2018b) before continuing
with this paper, since a previous knowledge of its content is assumed.

A few years ago, we finally solved the Reynolds-averaged Navier–Stokes equation
(RANSE) for any fully developed incompressible pipe flow (García García 2017; García
García & Fariñas Alvariño 2019b), a second-order parabolic partial differential equation
on the mean-velocity field. The general solution takes the form of a Fourier–Bessel
series, rooted in a weighted Hilbert space L2

α(0, 1), which is the functional space where
the ensemble-averaged flow fields are defined. With this solution we can obtain the
mean-velocity field of any flow, regardless of its being laminar, turbulent, steady or
unsteady, always provided that it is fully developed. Using the said general solution as
a cornerstone, we have built a theory that explains and predicts an ever-growing number
of features and properties of pipe flows, some of them radically new. It is known as the
theory of underlying laminar flow (TULF), for reasons that will become clear shortly, and
we have already applied it to successfully explain unsteady flows (U-flows) reported in
the literature (García García & Fariñas Alvariño 2019c, 2020, 2021), some of which have
remained unexplained for decades.

The TULF is a theory of mean flows; it is not a theory about physical flows. Physical
flows (realisations) respond to the Navier–Stokes equations, which are nonlinear, and are
subject to turbulent streaks, coherent structures, nonlinearities, chaos and show an extreme
variability, whereas mean flows (ensemble average of infinite realisations) respond to the
RANSE, which in the case of pipe flow is a perfectly linear differential equation, and does
not show any of the nonlinearities mentioned above. The linear superposition principle
holds in the RANSE for pipe flow (and other canonical flows) and we make good use of it.
This is the main reason why the RANSE has been solved for some canonical flows, while
the corresponding Navier–Stokes equations still await solution. What it is hard to explain
is why the general solution of the RANSE for those canonical flows had to wait almost a
century and a half, until it finally came from Spain. Even harder if one acknowledges the
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Explanation of experiments with vanishing turbulence

particular solution for pipe steady flow (S-flow) offered in Pai (1953), which should have
triggered the quest for the general solution of any mean pipe flow.

A mean flow only shows streaks or other turbulent structures if they are repeatable
enough to be present in all realisations, at about the same position and time. A mean
flow cannot be physical, and vice versa, except in the case of purely laminar flow.
Mathematically: a turbulent mean flow is not a solution of the Navier–Stokes equations
and a turbulent physical flow is not a solution of the RANSE. Later, we shall see that
solutions of the RANSE belong to a functional space that is essentially different from
physical space.

Since the four experiments destabilising turbulence described above qualify as pipe
flow, it is to be expected that the TULF could also furnish an explication to them, for
they may stand to reason. The present research aims to grant a detailed explanation of
the process and mechanism whereby the turbulence vanishes from a turbulent flow. The
account we shall offer is of a physico-mathematical character, based entirely upon the
TULF, albeit we shall employ a very simple model, lest the description be marred by
complicated mathematics. We shall see that even a simple model suffices to illustrate the
behaviour leading to the flow’s laminarisation. And most important, the model will allow
us to calculate the new pressure gradient that must be enforced in a flow to laminarise it
completely. After learning how (and how much) things happen, we expect researchers to
be successful in designing new insightful ways to remove turbulence from pipe flows.

Possibly, this is the right place to praise the ingenuity demonstrated by the authors of
those experiments, which are so extraordinarily suited to test our theory that we cannot
think of any better set of proofs for it. We, despite having the decisive advantage of
knowledge, would have been unable to design them ourselves, let alone to craft them with
such care and quality.

Of the four experiments, rotors, radial jets, annular streamwise jet and sliding pipe
segment, the first three respond to a common pattern for laminarisation, whereas the fourth
involves a considerably more complex mechanism, in which the sliding-wall velocity
enters into the mathematical equations. Since explaining the laminarisation under a sliding
pipe segment is rather lengthy, and this paper is already long enough, we have decided to
relay the account of this phenomenon to a future publication, and thereby it will not be
considered any further in the remainder of this one.

In order to fully understand the coming explanations, a certain knowledge of the TULF
scope and methods would be necessary. Therefore, we shall begin this work with some
basic notions, albeit a comprehensive account can be found in our previous publications
(García García & Fariñas Alvariño 2019b,c, 2020, 2021). The TULF is a theory heavily
based upon mathematical analysis, and most of the concepts that will be introduced,
however strange they might appear at first sight, arise out of mathematical necessity. Thus,
only the hypothesis leading to some results or the physical interpretation of them would
be subject to discussion, although not the results themselves.

This article is structured as follows. We begin with a brief account of the proposed
formalism, where we shall learn the basic notions of the TULF without which hardly any
explanation would be feasible. This introductory part ends with the most comprehensive
solution to the governing equation of fully developed mean pipe flow that, to our
knowledge, has ever been proposed. Then, we use the information gained to build a
general schematic sequence of the laminarisation process, which is applicable to the three
experiments of (Kuehnen et al. 2018b), and with such a laminarisation pattern we proceed
to explain them. Next, we take the general solution to devise the simple mathematical
model referred to above. The model yields to some equations that are applied to each
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experiment, producing numerical data that are contrasted with the experimental results.
Also, a figure of merit is proposed to assess the effectiveness of each laminarisation
method. Finally, we end this work with a summary of our conclusions and an address
to researchers willing to design experiments in which turbulence vanishes.

In this paper, whenever we say ‘flow’ it should be understood as ‘fully developed
flow’, unless otherwise specified. Henceforth, the terms U-profile, U-field, U-flow,
U-configuration, etc. will be used to denote the unsteady profile of any quantity,
or any characteristic of unsteady flows; whereas the terms S-profile, S-field, S-flow,
S-configuration, etc. will refer to the corresponding statistically steady-state profile or
characteristic. A list of all acronyms used can be found in Appendix A. The present article
is the fifth in a series (García García & Fariñas Alvariño 2019b,c, 2020, 2021) that intends
to explain a number of experimental results reported in the literature, which to date remain
unexplained.

2. Laminar Hagen–Poiseuille pipe flow

Most concepts presented in this section are already well known, but they need be repeated
so that we can cogently link the ideas leading to the object of this article. The physical
system under study is an inclined pipe of diameter D = 2R and indefinite length, filled
with a Newtonian incompressible fluid of constant density ρ and kinematic viscosity ν

(see figure 1 with Vw = 0). A cylindrical coordinate system (r, θ, z) is naturally defined in
the pipe, whose centreline is taken as the z-axis. The fluid is driven by the combined action
of a pressure gradient G = −dp/dz ≥ 0, constant in time, and the gravity force density
−ρg cos Θ , both causing a steady-state flow with velocity field u = [ui] = [ur, uθ , uz].
The influence of gravity across the pipe section is neglected and only its effect along
the streamwise direction is contemplated. Circular symmetry is assumed within the pipe,
thereby uθ = 0 and ∂ui/∂θ = 0 for any component ui. Only fully developed flow is
considered, which implies ∂ui/∂z = 0 . In these conditions, it can be proved (White
2016, § 4.10) that the flow is one-dimensional, parallel to the pipe axis, the velocity
field only depends upon r (u = [0, 0, uz(r)]) and the pressure gradient is also constant in
space. The governing equation for steady-state laminar pipe flow is the one-dimensional
Navier–Stokes equation (see White 2016, p. 265)

d2uz

dr2 + 1
r

duz

dr
= − G

ρν
− g cos Θ

ν
, (2.1)

subject to the no-slip boundary condition, uz(R) = 0, whose solution is the well known
Hagen–Poiseuille flow,

uz(r) = (G + ρg cos Θ)R2

4ρν

(
1 − r2

R2

)
. (2.2)

In (2.1), G + ρg cos Θ acts as the cause of the fluid’s motion, i.e. as the source of the field
uz(r). It is very convenient to express our results in dimensionless form. We shall define
the natural normalisation, in which the dimensionless variables and fields are expressed as

α = r
R

, β = z
R

, τ = tν
R2 , (2.3a–c)

u(α) = uz(r)R
ν

, 𝔭 = ( p − p0)R2

ρν2 , σw = τwR2

ρν2 , Π = GR3

ρν2 , Γ = gR3 cos Θ

ν2 ,

(2.4a–e)
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g

VW

Π

u
Θ

Figure 1. Schematics of general pipe flow.

where p0 is a reference pressure at r = R and z = 0, and τw the wall-shear stress (WSS).
In the natural normalisation, (2.2) adopts the simple form

u(α) = Π + Γ

4
(1 − α2), (2.5)

which is also known as the Hagen–Poiseuille parabola. The mathematical details for
deriving equations in the natural normalisation are found in García García & Fariñas
Alvariño (2019b).

In pipe flow we can also define the dimensionless quantities, WSS (σw), friction velocity
(uτ ), cross-section-averaged or bulk velocity (ũ), Darcy friction factor (f ), skin-friction
coefficient (Cf ), as follows:

σw = du(1)

dα
, uτ =

√
|σw|, ũ = 2

∫ 1

0
αu(α) dα, (2.6a–c)

f = 4(Π + Γ )

ũ2 , Cf = 2|σw|
ũ2 = 2

(uτ

ũ

)2
, (2.7a,b)

and also the Reynolds number, Re = ũzD/ν. These quantities are positive real numbers,
except the WSS which is negative because it opposes motion. We adopt a sign convention
that establishes σw = −(Π + Γ )/2 for Hagen–Poiseuille flow. Among all dimensionless
quantities defining this laminar S-flow, we can establish the following simple relationship
(see White 2016):

Re = 2ũ = u(0) = Π + Γ

4
= −σw

2
= u2

τ

2
= 64

f
= 16

Cf
, (2.8)

whereby given any one of them, the remaining become automatically fixed, and possibly
the easiest to measure in a flow is Π + Γ . Equation (2.8) is decisive for the present
research and we shall call it the zero theorem of laminar fully developed steady-state
Hagen–Poiseuille pipe flow, or simply laminar Hagen–Poiseuille flow. Note the zero
theorem is a rigorous mathematical statement, not a rule of thumb. Also, from the zero
theorem follows the very compact and neat expression for the velocity field,

u(α) = Re(1 − α2), (2.9)

valid only for laminar S-flow. Equations (2.8) and (2.9) illustrate how a convenient choice
of reference units, such as the natural normalisation introduced herein, contributes to
simplify the expressions of a science, which now adopt a very elegant form.
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3. Turbulent Hagen–Poiseuille pipe flow

Turbulent flows are normally approached from a different standpoint. As the physical fields
are so fluctuating, knowing the instantaneous flow is both difficult and less interesting;
instead, it is preferred to determine the average fields and there are various averaging
methods (see García García 2017, § 3.2), being the ensemble average over an infinite
number of realisations that is chosen herein. With this approach, the velocity field in S-flow
would be expressed as u(t, x) = 〈u(x)〉 + u′(t, x) ≡ U(x) + u′(t, x), whereby u(t, x) is
the time-dependent instantaneous physical field, 〈u(x)〉 ≡ U(x) is the time-constant
average or mean field and u′(t, x) is simply the difference between the two, called the
fluctuating component. A similar decomposition can be performed for any other flow
field: pressure, temperature, vorticity, etc. Note that mean fields are not physical fields,
meaning that not a single realisation of the actual flow would yield a set of values equal
to those of the mean field; in mathematical terms, the set of space–time points at which
u′(t, x) = 0 has measure zero, i.e. is a null set. Mean fields are mathematical entities that
belong to, shall we say, the mean space, which is not the physical spacetime. To fix ideas,
we shall denote with 𝔐 the set of mean fields arising in fully developed pipe flow; we
shall see later, in § 5, that the mean space is actually a subset of the weighted Hilbert space
L2

α(0, 1), 𝔐 ⊂ L2
α(0, 1). Of course, in the case of a strictly laminar flow, mean fields and

instantaneous physical fields are coincident.
The governing equation for the mean-velocity field is not the Navier–Stokes equation,

but rather the RANSE. The RANSE is almost formally identical to the Navier–Stokes
equation: an extra term must be added including the so-called Reynolds stresses 〈ρu′

iu
′
j〉.

In the case of turbulent fully developed statistically steady-state Hagen–Poiseuille mean
pipe flow (see figure 1 with Vw = 0), or simply turbulent Hagen–Poiseuille flow, the only
component of interest for this section is the time-constant Reynolds shear stress (RSS)
〈ρu′

ru′
z〉(x), whose dimensionless version in the natural normalisation is given by

σ(α) = 〈ρu′
ru′

z〉R2

ρν2 . (3.1)

The mean flow, which only exists in the mean space 𝔐, is determined by the combined
action of the mean pressure gradient (MPG), gravity and RSS. The physical velocity field
of any particular realisation, u(t, x), does not ‘feel’ the Reynolds stress: each individual
flow is exclusively driven by actual pressure gradient, gravity and viscous forces. Only
upon averaging does the notion of Reynolds stress emerge, and averaging is a mathematical
operation, not a physical one. One of the most paradoxical facts of turbulent flows is that
the mean-velocity field is not a solution of the Navier–Stokes equation, and vice versa,
the physical instantaneous velocity field cannot be a solution of the RANSE. Mean and
physical fields are disjoint sets in turbulent flows; we shall never see any mean turbulent
flow occurring in laboratory. In computational fluid dynamics terms, even if the Reynolds
stresses were perfectly modelled, a perfect Reynolds-averaged simulation cannot yield the
same results as one perfect direct numerical simulation (DNS), for the equations solved
are different.

The dimensionless mean-velocity field is also denoted by u(α), since laminar flow would
be the particular case of mean flow with σ(α) = 0. Taking into account the RSS, the
RANSE is expressed as

d2u
dα2 + 1

α

du
dα

= −Π − Γ + 1
α

d(ασ)

dα
= −Π − Γ − Σ(α), α ∈ (0, 1), u, σ, Σ ∈ 𝔐,

(3.2)
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Explanation of experiments with vanishing turbulence

together with the no-slip boundary condition u(1) = 0, the symmetry boundary condition
du(0)/dα = 0 and boundary conditions for the RSS, σ(0) = σ(1) = 0. The field Σ(α) =
−(1/α)d(ασ)/dα is the RSS radial gradient (RSSRG). The solution of (3.2) in the natural
normalisation is (Pai 1953)

u(α) = Π + Γ

4
(1 − α2) −

∫ 1

α

σ (α′) dα′, σ (α) = du
dα

+ Π + Γ

2
α. (3.3a,b)

In (3.2) Π , Γ and Σ(α) act as the sources of motion (forces). Note that u(α) in (3.3a,b)
has the general form u = uL + uT , where

uL(α) = Π + Γ

4
(1 − α2), (3.4)

is a laminar Hagen–Poiseuille flow that we call the underlying laminar flow (ULF),
whereas

uT(α) = −
∫ 1

α

σ (α′) dα′, (3.5)

is the purely turbulent component (PTC), a term that encompasses the contribution of
turbulence to the mean flow. Note the ULF is created by a constant MPG, Π ∈ R, and the
gravity field Γ ∈ R, and hence the ULF is referred to as mean-laminar flow; the physical
pressure gradient has a fluctuating component. Figure 2 plots solutions (3.3a,b) and (3.4)
for three Reynolds numbers, according to table 1 (Γ = 0 in table 1). This figure shows,
dramatically, what turbulence does to a pipe flow: most of the energy is dissipated by the
turbulence. We shall explain later how this figure has been obtained, for now it is only
important to appreciate the different sizes of each curve: the mean-velocity profiles are
dwarves when compared with the giant ULF profiles. The ULF is the aspect a flow would
have if turbulence were non-existent. A similar figure is also reported by Marusic, Joseph
& Mahesh (2007, figure 1), who, albeit using a different approach, obtain results and reach
conclusions complementary to ours.

The zero theorem for turbulent Hagen–Poiseuille flow is somewhat different, and is
expressed as

ReL = 2ũL = uL(0) = Π + Γ

4
= −σw

2
= u2

τ

2
= 64

fL
= 16

CfL
, (3.6)

where ReL, uL(0), ũL and fL = 8|σw|/ũ2
L = 4CfL refer to the ULF, whereas the MPG

Π , gravity Γ , WSS σw and friction velocity uτ are those of the actual turbulent flow.
This blend of mean-flow quantities, which can be measured directly on the flow, and
those belonging to the ULF, will reveal itself as a most powerful tool. In fact, Π + Γ

is the quantity that can be measured most easily of all above and plays a prominent role
within the TULF, as we shall see in the coming pages. Note how the zero theorem, (3.6),
imposes another strong analytical constraint: given any smooth-pipe S-flow, complete
laminarisation can only take place if Re → ReL = (Π + Γ )/4, or vice versa, ReL =
(Π + Γ )/4 → Re, if Re is kept constant. This last situation implies necessarily to
decrease Π + Γ , which constitutes, at least, one of the driving mechanisms for complete
laminarisation at constant Re. In any successful laminarisation instance, the PTC would
be non-existent and the whole flow field would be determined by the ULF alone.

The consequences of the zero theorem are also observed in other experiments with
horizontal pipes (Mullin 2011): if the pressure gradient of a laminar flow is slowly and
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(Ũ)R/ν × 105

Figure 2. Mean velocity and corresponding ULF S-profiles for Princeton Superpipe flows SP1, SP2, and SP3
(see table 1).

gradually increased, its Re increases proportionally until transition to turbulence occurs,
which is accompanied by a noticeable reduction in Re. Also, once the flow becomes
turbulent, a proportionally ever-higher MPG must be applied to obtain each unit increase of
Re. This additional MPG increases directly and proportionally the ULF (as in any ordinary
laminar flow), and also serves to power the PTC (see figure 2); in turn, this implies that
ReL grows proportionally more than Re with each unit increase of MPG. The decrease
of Re during transition to turbulence is also predicted in Marusic et al. (2007, p. 471),
although it is not necessarily accompanied by an adverse MPG, as suggested by those
authors. Instead, the loss of bulk velocity may be due to the increased dissipation caused
by the newly arisen RSSRG, source of the PTC. Conversely, as shown by (3.3a,b), any
action that reduces the PTC, without modifying the MPG, will increase significantly the
bulk velocity of the flow, as also suggested in Marusic et al. (2007, § 5).

A consequence of (3.3a,b) and boundary condition σ(1) = 0 is du(1)/dα = −(Π +
Γ )/2. Equation (2.6a–c) defines du(1)/dα as the WSS σw, and (2.8) confirms the well
known fact that the WSS of a turbulent S-flow is coincident with that of a laminar S-flow
driven by the same MPG. Thus, it follows that, in the neighbourhood of the wall, the
turbulent S-flow has properties of laminar S-flow (viscous sublayer). One can check by
zooming into figure 2 how each pair SPi-ULFi is coincident about the wall, including the
curve’s slope at α = 1. In a previous paper (García García & Fariñas Alvariño 2019c), we
showed that the near-wall viscous sublayer observed in turbulent Hagen–Poiseuille flow
is a domain where the S-ULF prevails and the S-PTC is virtually zero. The field uT(α) is
negligible about the wall in any S-flow and wall-related quantities, such as σw or uτ , are
exclusively defined by the S-ULF. In other words, the viscous sublayer is the manifestation
of the S-ULF in the actual physical flow, and is the region where the mathematical concept
becomes real. The S-ULF is the agent directly causing wall-related stresses and constitutes
a very useful notion for the study of pipe flows, and for the present research, as will be
shown in § 6.
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We shall now offer a very intuitive (and rigorous) demonstration of how the familiar
viscous sublayer stems from the S-ULF. We begin with the laminar Hagen–Poiseuille
equation that represents the S-ULF,

uL(α) = Π + Γ

4
(1 − α2). (3.7)

The zero theorem (3.6) states that u2
τ /2 = (Π + Γ )/4, therefore

uL(α) = u2
τ

2
(1 − α2) (3.8)

or
uL(α)

uτ

= u+(α) = uτ

2
(1 − α2), (3.9)

with u+ the ULF expressed in wall units. Now we write α = 1 − y/R = 1 − ŷ, where y is
the distance measured from the wall, not from the centreline as α = r/R. Thus,

1 − α2 = 1 − (1 − ŷ)2 = 2ŷ − ŷ2. (3.10)

Insert this result into (3.9), and we have

u+(α) = u+(ŷ) = uτ

2
(2ŷ − ŷ2) = uτ ŷ − uτ

2
ŷ2 = y++O(ŷ2). (3.11)

Near the wall, the term O(ŷ2) becomes negligible and we find the very expression defining
the viscous sublayer, u+ = y+, which has emanated directly from the Hagen–Poiseuille
equation of the S-ULF. This simple exercise furnishes two important pieces of information:
(i) the viscous sublayer is the physical manifestation of the S-ULF near the wall; and
(ii) the viscous sublayer is a Hagen–Poiseuille flow.

The TULF puts forward a new interpretation of the Moody chart, i.e. the relationship
between the flow rate (Re) and Π + Γ (or the friction factor f ) for a smooth-pipe S-flow.
To understand it, we show first the general expression for the bulk velocity of turbulent
Hagen–Poiseuille flow, obtained from (2.6a–c) and (3.3a,b),

ũ = ũL + ũT = Π + Γ

8
− 2

∫ 1

0
dα α

∫ 1

α

dα′ σ(α′). (3.12)

The double integral of the RSS (the bulk S-PTC) is what explains the different behaviour
of the Moody chart in the turbulent region. Using (3.12) and the definition of Darcy friction
factor f , (2.7a,b), we get the following relationship between f and the bulk S-PTC for
smooth pipes: ∫ 1

0
dα α

∫ 1

α

dα′σ(α′) = Re
4

(
f Re
64

− 1
)

. (3.13)

If the S-flow were laminar, f = 64/Re and the expression between brackets would be zero.
Equation (3.13) shows that for any smooth-pipe S-flow of given Re there is a one-to-one
mapping between f and the double integral of the RSS (or bulk S-PTC). And also, that the
wall-roughness changes the distribution of RSS within a pipe flow, for given Re.

To end this section, the TULF brings forth a very intuitive field to assess, just at a glance,
how turbulent a mean flow is in a given region. This scalar field is called the turbulence
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index ℑ(α), and is defined as the ratio of the mean velocity to the ULF (see García García
& Fariñas Alvariño 2019c, 2020, 2021),

ℑ(α) = u(α)

uL(α)
= 1 + uT(α)

uL(α)
, (3.14)

with 0 < ℑ ≤ 1 in a S-flow, and ℑ = 1 in regions where the flow is mean laminar; that
is, in regions where uT = 0. We shall see later that ℑ(α) is very useful in determining
where a turbulent flow is laminarised, and the degree of laminarisation it presents. The
turbulence index thereby defined is itself a mean scalar field that measures, at each point,
how much the mean velocity departs from the ULF. The turbulence is seen as an agent
that detaches the flow from its best possible configuration, which is the ULF. A turbulent
Hagen–Poiseuille flow verifies limα→1 ℑ(α) = 1; otherwise put, the viscous sublayer is a
retrodiction of the TULF, see García García & Fariñas Alvariño (2019c) and (3.11).

It is also possible to define the bulk turbulence index

ℑ̃ = 2
∫ 1

0
αℑ(α) dα, (3.15)

with which the complete S-flow is characterised by a single real number 0 < ℑ̃ ≤ 1. Note
ℑ̃ = 1 in laminar S-flow, i.e. in Hagen–Poiseuille flow.

4. Turbulent Hagen–Poiseuille–Couette pipe flow

Although the experiment with a sliding pipe segment will not be explained in this paper,
for the sake of completeness we shall also consider briefly the mixed fully developed
turbulent steady-state Hagen–Poiseuille–Couette mean pipe flow, or simply turbulent
Hagen–Poiseuille–Couette flow, in which the flow is driven by a constant Π + Γ ,
a constant RSSRG Σ(α) = −(1/α) d(ασ)/dα and a pipe moving in the streamwise
direction with constant velocity Vw (see figure 1). The governing equation for such a mean
flow is also (3.2), together with the boundary conditions,

u(1) = Vw,
du(0)

dα
= 0, σ (0) = σ(1) = 0, (4.1a–c)

where Vw is the constant velocity of the pipe’s wall in the natural normalisation. The
solution for the turbulent Hagen–Poiseuille–Couette flow is

u(α) = Vw + Π + Γ

4
(1 − α2) −

∫ 1

α

σ (α′) dα′, σ (α) = du
dα

+ Π + Γ

2
α, (4.2a,b)

thereby the wall velocity Vw is added to (Π + Γ )(1 − α2)/4 to yield the S-ULF,

uL(α) = Vw + Π + Γ

4
(1 − α2), (4.3)

which is coincident with the laminar Hagen–Poiseuille–Couette velocity field. Note this
RSS σ(α) is formally indistinguishable from that of the turbulent Hagen–Poiseuille flow,
(3.3a,b); this follows from the fact that the mean field uw(α) ≡ u(α) − Vw is, from a
mathematical standpoint, a turbulent Hagen–Poiseuille flow with the same sources Π + Γ

and Σ(α). We shall use this result later in § 7.1.
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Explanation of experiments with vanishing turbulence

The zero theorem for turbulent Hagen–Poiseuille–Couette flow is not too different from
the turbulent Hagen–Poiseuille flow, and with the same nomenclature takes the form

ReL = 2ũL = 2Vw + Π + Γ

4
= Vw + uL(0) = 2Vw − σw

2

= 2Vw + u2
τ

2
= 64(Π + Γ )

fL(8Vw + Π + Γ )
, (4.4)

with fL = 8|σw|/ũ2
L = 4CfL . Again, note how the knowledge of Π + Γ and Vw permits to

determine the relevant quantities of the S-flow, and also that (4.4) provides a necessary
condition for the flow to become laminar: any attempt to approximate Re to ReL = 2Vw +
(Π + Γ )/4, or vice versa, would laminarise the flow and increase the turbulence index
field.

We also end this section with the general expression for the bulk velocity of turbulent
Hagen–Poiseuille–Couette flow, obtained from (2.6a–c) and (4.2a,b),

ũ = ũL + ũT = Vw + Π + Γ

8
− 2

∫ 1

0
dα α

∫ 1

α

dα′σ(α′). (4.5)

5. General incompressible fully developed mean pipe flow

We have just covered the most important instances of pipe S-flow. Now we shall consider
the case of general incompressible fully developed mean flow, regardless of its being
steady, unsteady, laminar or turbulent. As mentioned in § 3, this exercise is entirely
developed in the mean space 𝔐.

Let the incompressible fully developed pipe flow be as shown in figure 1, which we
assume circularly symmetric on average, i.e. ∂Ψ/∂θ = 0 for any mean-flow quantity
Ψ ∈ 𝔐. Mean-flow quantities are supposed the result of an ensemble-average over
denumerable infinite realisations of the same flow, see García García (2017, § 3.2.1). The
flow is actuated upon by a MPG Π(τ) and a RSSRG Σ(τ, α), the pipe wall is moving
streamwise with dimensionless velocity Vw(τ ), and it is undergoing the force of gravity.
The angle Θ = Θ(τ) is assumed variable, always provided its variation causes negligible
radial and azimuthal mean-velocity components, i.e. the mean flow always remains
one-directional along the pipe’s axis. A pipe-wall velocity Vw(τ ) could be interpreted
as a sliding pipe, as in Kuehnen et al. (2018b), or, for example, as the flow created in
the longitudinal pipes of a decelerating train, or any other moving vessel. Leaving aside
electromagnetic forces and fancy effects, like spinning or shaking pipes, the flow illustrated
in figure 1 would rank as rather comprehensive. The action of gravity is expressed in the
natural normalisation as the following time-dependent dimensionless quantity:

Γ (τ) = gR3 cos Θ(τ)

ν2 . (5.1)

We neglect the difference in gravity across the pipe diameter, for it would lead to
circular-symmetry breaking. At τ = 0, which is taken as the initial instant without loss
of generality, the mean-velocity field within the pipe is

u0(α) = u0L(α) + u0T (α), u0 ∈ 𝔐, (5.2)

which is decomposed into an ULF and a PTC. Here u0(α) might be a S-flow or the frozen
profile at τ = 0 of any U-flow, thus corresponding to real mean flows, or it could be any
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arbitrary smooth function fulfilling the boundary conditions. Let also Vw0 = Vw(0) ∈ R

be the initial velocity at τ = 0 of the pipe’s wall.
The governing equation for the dynamical system thus described is the RANSE, which

in the natural normalisation adopts the form

∂u
∂τ

−
(

∂2u
∂α2 + 1

α

∂u
∂α

)
= Π(τ) + Γ (τ) − 1

α

∂(ασ)

∂α
= Π(τ) + Γ (τ) + Σ(τ, α), (5.3)

α ∈ (0, 1), τ ∈ R
+, u, Π, Γ, σ, Σ ∈ 𝔐, (5.4)

subject to the boundary conditions in α = 0 and α = 1,

u(τ, 1) = Vw(τ ),
∂u(τ, 0)

∂α
= 0, σ (τ, 0) = σ(τ, 1) = 0 (5.5a–c)

and to the initial condition for τ = 0,

u(0, α) = u0(α) = u0L(α) + u0T (α), (5.6)

plus the dimensionless Reynolds-averaged continuity equation,

∂u(τ, α)

∂β
= 0, (5.7)

which is trivial in this case. The boundary condition at α = 0, ∂u(τ, 0)/∂α = 0,
is necessary to maintain the circular symmetry of the mean flow (independence of
azimuth coordinate θ ), since only mean-velocity fields with continuous derivatives are
acceptable as solutions. Equation (5.3) is a non-homogeneous parabolic partial differential
equation for the function u(τ, α), and the function Π(τ) + Γ (τ) + Σ(τ, α) is called the
non-homogeneous term in mathematics texts, the input in signal analysis theory, or the
source in electrodynamics parlance, which is the usage we shall adopt herein. The mean
field Σ(τ, α) is called the RSSRG. Note the different role of the sources involved in (5.3):
Π(τ) and Γ (τ) contribute to create motion in the fluid and may be loosely called active
forces or agents, whereas Σ(τ, α) is meant to dissipate energy from the flow and thus
deserves the name of reactive force or agent. Vw(τ ) qualifies also as an active agent,
because it transmits momentum to the flow, but it is not itself a force, although a force
is needed to set in motion the pipe’s wall. Likewise, σ(τ, α) would be a reactive agent,
albeit not a force by itself.

The TULF considers the mean flow as a dynamical system, whose evolution is described
and explained through its governing equation (5.3), in which the sources (inputs) cause the
changes in the mean-velocity field (output). Here Vw(τ ) is not a mathematical source of
motion, but a boundary condition that contributes to imparting momentum. A force (and
thus a source of motion) makes the wall move, which is indirectly transmitted to the fluid
to cause flow.

Equation (5.3) is solved considering first the associated homogeneous equation, i.e.
the same expression with Π + Γ + Σ ≡ 0 and zero boundary conditions, Vw ≡ 0. After
separation of variables, the homogeneous equation in α corresponds to the eigenvalue
problem for the Laplace operator in the open unit disc with rotational (∂/∂θ = 0) and
axial (∂/∂z = 0) symmetry (see García García (2017, § 3.4.2) and García García & Fariñas
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Alvariño (2019b)),

1
α

dφ

dα
+ d2φ

dα2 = −λ2φ, φ(1) = 0, α ∈ (0, 1), λ ∈ R, (5.8)

which constitutes a classical Sturm–Liouville problem whose solution is the set of
normalised eigenfunctions,

φn(α) =
√

2 J0(λnα)

J1(λn)
, (5.9)

with λn the nth root (or zero) of J0(α), the Bessel function of the first kind of order
zero. Being a Sturm–Liouville eigenvalue problem, it is guaranteed that the set {φn(α)}
constitutes an orthonormal basis of the weighted Hilbert space of square-integrable
functions in the interval (0, 1), see García García (2017, § 3.4.2) and García García &
Fariñas Alvariño (2019b). Among other things, this last statement means that any mean
field Ψ (τ, α) ∈ 𝔐 ⊂ L2

α(0, 1) can be uniquely expressed in the basis {φn(α)} as

Ψ (τ, α) =
∞∑

n=1

〈Ψ, φn〉φn =
∞∑

n=1

Ψn(τ )φn(α), (5.10)

whereby 〈Ψ, φn〉 is the inner product naturally defined in the weighted Hilbert space
L2

α(0, 1), namely

Ψn(τ ) = 〈Ψ, φn〉 ≡
∫ 1

0
αΨ (τ, α)φn(α) dα. (5.11)

Every function appearing in (5.3)–(5.6) has its corresponding expansion in a
Fourier–Bessel series as in (5.10). Thereby, making good use of the mathematical
apparatus of partial differential equations and functional analysis in Hilbert spaces, the
general analytic solution for incompressible fully developed mean pipe flow is obtained,
which takes the form (García García (2017, § 3.4.2); García García & Fariñas Alvariño
(2019b)),

u(τ, α) =
∞∑

n=1

un(τ )φn(α) =
∞∑

n=1

(uILn
+ uPn + uGn + uWn + uITn

+ uRn)φn(α)

=
∞∑

n=1

{(
u(0)

Ln
−

√
2Vw0

λn

)
e−λ2

nτ +
√

2
λn

∫ τ

0
[Π(τ ′) + Γ (τ ′)]e−λ2

n(τ−τ ′) dτ ′

+
√

2
λn

(
Vw(τ ) −

∫ τ

0
V̇w(τ ′) e−λ2

n(τ−τ ′) dτ ′
)

+u(0)
Tn

e−λ2
nτ +

∫ τ

0
Σn(τ

′) e−λ2
n(τ−τ ′) dτ ′

} √
2J0(λnα)

J1(λn)
= uL(τ, α) + uT(τ, α),

(5.12)

with V̇w ≡ dVw/dτ , and u(0)
Ln

and u(0)
Tn

the components in the Fourier–Bessel series of the
ULF and PTC, respectively, of the initial mean-velocity field u0(α), according to (5.10).
The remaining components will be defined next.

Note the analogous role played by MPG Π(τ) and gravity Γ (τ) in the solution (5.12);
many effects obtained with a MPG in the mean flow can also be attained through gravity
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and a suitable inclination. The mean-velocity field u(τ, α) has two main components, the
ULF and the PTC. The subcomponents of the ULF uL(τ, α) arise from the active forces or
agents and are the following.

(i) The term derived from initial conditions, called the ULF of IniTrans uI(τ, α),

uIL(τ, α) =
∞∑

n=1

uILn
φn(α) =

∞∑
n=1

(
u(0)

Ln
−

√
2Vw0

λn

)
e−λ2

nτ φn(α), (5.13)

which typically is also dependent upon the value of active agents for τ ≤ 0.
(ii) The term derived from MPG Π(τ), called PresGrad,

uP(τ, α) =
∞∑

n=1

uPnφn(α) =
∞∑

n=1

√
2
λn

φn(α)

∫ τ

0
Π(τ ′) e−λ2

n(τ−τ ′) dτ ′. (5.14)

(iii) The term derived from gravity Γ (τ), called Gravit,

uG(τ, α) =
∞∑

n=1

uGnφn(α) =
∞∑

n=1

√
2
λn

φn(α)

∫ τ

0
Γ (τ ′) e−λ2

n(τ−τ ′) dτ ′. (5.15)

(iv) The term derived from the wall-velocity boundary condition, called Wallit,

uW(τ, α) =
∞∑

n=1

uWnφn(α) =
∞∑

n=1

√
2
λn

(
Vw(τ ) −

∫ τ

0
V̇w(τ ′) e−λ2

n(τ−τ ′) dτ ′
)

φn(α).

(5.16)

On the other hand, the subcomponents of the PTC uT(τ, α) spring from reactive forces
or agents, namely (v) and (vi), next.

(v) The term derived from initial conditions, called the PTC of IniTrans uI(τ, α),

uIT (τ, α) =
∞∑

n=1

uITn
φn(α) =

∞∑
n=1

u(0)
Tn

e−λ2
nτ φn(α), (5.17)

which normally is also dependent upon the value of reactive agents for τ ≤ 0.
(vi) The term derived from the RSSRG Σ(τ, α), called RStress,

uR(τ, α) =
∞∑

n=1

uRnφn(α) =
∞∑

n=1

φn(α)

∫ τ

0
Σn(τ

′) e−λ2
n(τ−τ ′) dτ ′. (5.18)

From (5.13) and (5.17) follows the complete expression of the component IniTrans,
uI(τ, α) = uIL(τ, α) + uIT (τ, α). To the authors’ knowledge, this is the first time such
a comprehensive solution for general fully developed mean pipe flow has ever been
written.

From the above relationships it follows that active agents cause exclusively the ULF,
whereas reactive agents cause exclusively the PTC. As a general rule, active agents are
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those appearing in the Navier–Stokes equation from which the RANSE stems, whereas
reactive agents belong exclusively to the RANSE; no Reynolds stresses appear in the
Navier–Stokes equations.

We must repeat that (5.12) is the general solution for fully developed mean pipe flow,
with governing equations (5.3)–(5.7). Any actual fully developed mean pipe flow must
be written in this form and, conversely, any given expression of the form (5.12) would
correspond to the unique mean flow obtained if the sources (forces) Π(τ), Γ (τ) and
Σ(τ, α), and the boundary and initial conditions Vw(τ ) and u0(α), were actually actuating
upon the flow. The S-flows discussed in previous sections are all expressible in the form
(5.12). The problem is now reduced to finding the appropriate functions Π(τ), Γ (τ),
Σ(τ, α), Vw(τ ) and u0(α) for any reported flow, to the maximum degree of accuracy.
This can be done by measurements in real flows or from computational fluid dynamics
simulations. When data is scarce, or simply not available, one can always presume, ad hoc,
some functions (inputs) and check whether the resulting mean-velocity field (the output)
would be accurate enough to reproduce the actual flow. We have already performed such
a type of exercise in our previous papers (García García & Fariñas Alvariño 2019a,b,c,
2020, 2021), which we call ‘theoretical experiments’, and the results were satisfactory and
provided true explanations for the observed facts, also allowing us to issue predictions that
still await confirmation. Regardless of the procedure, the set of particular functions Π(τ),
Γ (τ), Σ(τ, α), Vw(τ ) and u0(α) chosen for any given application is called the ‘model’. We
shall select particular functions in § 7 to explain the laminarisation process observed in the
experiments of Kuehnen et al. (2018b), which would justify the title given to the present
research work. We are aware that the solution furnished by (5.12) is rather complicated,
but so is the problem that it is meant to solve. Surely, the reader would not expect any easy
solution for a century-old unsolved problem.

We would like to highlight the parallel roles of mean pressure and RSS in the mean
flow. The RSS plays for the PTC a similar role that the mean pressure plays for the ULF:
what it really counts is the gradient, not the quantity itself. In the case of the ULF it is the
streamwise gradient (of mean pressure) and in the case of the PTC is the radial gradient (of
RSS). A flow can have very high levels of mean pressure or of RSS, but if their gradients
are small, then so would be the corresponding mean fields, ULF and PTC.

The turbulence index field for this general mean flow is also defined as

ℑ(τ, α) = u(τ, α)

uL(τ, α)
= 1 + uT(τ, α)

uL(τ, α)
, (5.19)

with u, uL and uT given by the expressions above. Unlike its steady-state counterpart,
(3.14), the turbulence index of (5.19) can be greater than 1. In those space–time domains
with ℑ(τ, α) > 1 the U-flow is said to be hyperlaminar, for the mean velocity would
be greater than that corresponding to purely laminar U-flow (to the U-ULF). Otherwise
put, the turbulence would create an additional positive mean velocity that adds up to the
laminar component; instead of dissipating energy, the turbulence forces would cooperate to
locally erect some new mean velocity. Within a spatial region, and during a time interval,
the reactive forces would become active and would contribute to create fresh motion.
Outstanding experimental examples of hyperlaminarity are observed in Annus et al. (2013,
figure 3) and Mathur et al. (2018, figure 5). We consider hyperlaminarity one of the most
interesting and intriguing phenomena in the current panorama of fluid mechanics, and we
shall devote further research articles to its study.
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The bulk velocity ũ(τ ) corresponding to the mean velocity u(τ, α) of (5.12) is given by

ũ(τ ) = 2
√

2
∞∑

n=1

un(τ )

λn
= 2

√
2

∞∑
n=1

1
λn

(
uILn

+ uPn + uGn + uWn + uITn
+ uRn

)
= 4

∞∑
n=1

{(
u(0)

Ln√
2

− Vw0

λn

)
e−λ2

nτ

λn
+ 1
λ2

n

∫ τ

0
[Π(τ ′) + Γ (τ ′)] e−λ2

n(τ−τ ′) dτ ′

+ 1
λ2

n

(
Vw(τ ) −

∫ τ

0
V̇w(τ ′) e−λ2

n(τ−τ ′) dτ ′
)

+u(0)
Tn√
2

e−λ2
nτ

λn
+ 1√

2λn

∫ τ

0
Σn(τ

′) e−λ2
n(τ−τ ′) dτ ′

}
= ũL(τ ) + ũT(τ ), (5.20)

and the bulk turbulence index corresponding to (5.19) is defined by

ℑ̃(τ ) = 2
∫ 1

0
αℑ(τ, α) dα. (5.21)

6. Explanation of experiments destabilising turbulence in pipe flow

What we have exposed so far are indisputable mathematical results that explain the
ensemble-average behaviour of fully developed pipe flow. With these tools, we now
approach the task of explaining the relevant experiments on destabilising turbulence in
pipe flow of Kuehnen et al. (2018b). Since no gravity effects or pipe-wall velocity are
applicable to such experiments, we shall consider (5.12) and (5.20) with Γ = Vw = Vw0 =
V̇w = 0. In this case, PresGrad uP is the main component of the ULF, uL = uIL + uP, and
frequently we shall say the MPG Π is the source of the ULF, albeit rigorously Π(τ) for
τ > 0 determines PresGrad, while uIL normally depends on the MPG for τ ≤ 0. Likewise,
we shall say the RSSRG Σ is the source of the PTC, albeit rigorously Σ(τ, α) for τ > 0
determines RStress, while uIT most often depends upon the RSSRG for τ ≤ 0.

Let us summarise the set of facts needed for such explanations (in all that follows,
the expression ‘under its own dynamics’ should be understood as ‘the field follows the
evolution of its source (force) according to the governing equation’).

(i) A constant Re, i.e. a constant bulk velocity ũ, is enforced on each experiment, that
is, ULF and PTC cannot change independently (see figure 4).

(ii) The zero theorem is (quasi)applicable in (quasi)S-flows. The zero theorem is only
an approximation if the flow is not fully developed or slightly unsteady.

(iii) With ũ constant, the equation Π = −2σw is a mathematical necessity, regardless of
the flow being unsteady or stationary.

(iv) Changes of pressure are transmitted (almost) instantaneously all over the flow, for it
is considered incompressible; however, changes in MPG and WSS would take some
time to propagate within the flow, for inertia plays a role in U-flows.

(v) Under its own dynamics, the ULF tends to follow the behaviour of the MPG, for
Π(τ) is the source of uL(τ, α) (García García & Fariñas Alvariño 2019b,c, 2020,
2021). The uL(τ, α) reacts rather quickly to changes in Π(τ), although it does not
trail the MPG evolution instantaneously.
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(vi) Under its own dynamics, the PTC tends to follow the behaviour of the RSSRG, for
Σ(τ, α) is the source of uT(τ, α) (García García & Fariñas Alvariño 2019b,c, 2020,
2021). In general, uT(τ, α) reacts more slowly than uL(τ, α).

(vii) Close to the wall, in the viscous sublayer, the S-PTC is negligible and can be safely
ignored (García García & Fariñas Alvariño (2019c) and (3.11)). In slightly unsteady
flow this statement is approximately valid, whereas it is not in case of strongly
accelerated/decelerated flow (García García & Fariñas Alvariño 2020).

(viii) Upon changes in Π(τ), the U-ULF uL(τ, α) would try to follow the evolution of
Π(τ) according to its own time constants (see (7.23)), and uL(τ, α) will no longer
be a laminar Hagen–Poiseuille flow. Thereby, uL(τ, α) and Π(τ) become uncoupled,
meaning that even if Π(τ) becomes constant for τ ≥ τ1, uL(τ, α) would still be
changing for τ ≥ τ1. However, uL(τ, α) has a bulk velocity ũL(τ ), i.e. a Reynolds
number ReL(τ ), which can be matched to a virtual laminar Hagen–Poiseuille flow
uS(α; τ) = ΠL(τ )(1 − α2)/4, such that ReL(τ ) = ΠL(τ )/4, or ũL(τ ) = ũS(τ ), for
any time τ . This continuous sequence of virtual Hagen–Poiseuille flows uS(α; τ),
each corresponding to uL(τ, α) for each time τ , permits us to associate naturally
an instantaneous MPG to the U-ULF (and mean velocity), so that we can compare
ΠL(τ ) with Π(τ) (the source), and evaluate how far the U-flow is from reaching
the agent causing its motion, Π(τ) (recall in U-flow it is Π(τ) /=ΠL(τ ) but
ũL(τ ) = ũS(τ )). Whenever ΠL(τ ) = Π(τ) the ULF and MPG will become coupled,
which implies Π = const. and ReL = Re, which is also constant. We shall call
the continuous sequence of virtual laminar Hagen–Poiseuille flows uS(α; τ) the
steady-bulk flow (SB-flow), associated with the U-flow uL(τ, α).

(ix) In any S-flow the MPG, the ULF, the RSSRG, the PTC and the mean velocity are
always coupled.

(x) It must be understood that the TULF cannot issue accurate predictions over the
flow’s behaviour in regions where the flow is not fully developed.

Before beginning the actual explanation, let us discuss two potential naïve explanations
that someone might suggest (after a first impression with scarce reflection) as the cause
for the observed behaviour. (a) The external disturbance affects the ULF very little but
destabilises the PTC, which is no longer able to maintain itself, and farther downstream
we arrive at the outcome uT(α) ≈ 0. Thus, the only surviving component would be the
ULF, which is laminar, and this is the result we witness in the experiments, a lone laminar
ULF. However, this scenario is not possible, because the surviving ULF would have
a much greater Reynolds number than the original flow, ReL � Re (see figure 2), and
what we witness is a flow that does not change its Reynolds number. Therefore, a true
explanation must also account for a radical reduction in ULF. (b) The external disturbance
modifies the RSS σ(α) in such a way that the resultant flow would be parabolic. For
example, if σ(α) = Kα for constant K, then (3.5) implies uT(α) = −K(1 − α2)/2, and
the mean velocity would be u(α) = uL + uT = (Π − 2K)(1 − α2)/4, which resembles a
parabolic Hagen–Poiseuille flow with effective MPG Π − 2K, supposedly in agreement
with the experiments. Neither would this outcome be possible, for two reasons: (1) the
resulting flow, however parabolic, would still be turbulent, for the PTC would not be
zero (uT /= 0); and (2) a RSS with the functional form σ(α) = Kα would not fulfil the
no-slip boundary condition at the wall, σ(1) = 0. The immediate conclusion is that a PTC
cannot be parabolic. Therefore, none of those naïve explanations would qualify as a true
explanation. The examples above are offered to illustrate that tampering with numbers,
without solid physics foundations, is a practice that frequently leads to erroneous results.
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6.1. Statement of the problem
Firstly, it must be observed that this problem has two natural parabolic variables, in the
sense of partial differential equations theory: time τ and axial streamwise coordinate β =
z/R. As the Reynolds number is constant in those experiments, we can establish a linear
mapping between them as follows:

β = τ Re/2, (6.1)

whereby the dynamic behaviour could either be described in terms of τ or β. Due to the
character of the TULF, we shall be using τ in our reasoning. Moreover, we shall consider
horizontal pipes and henceforth it will be assumed Γ = 0 everywhere.

The statement of the physico-mathematical problem is as follows (see figure 3). We
begin with a horizontal turbulent S-flow characterised by Π0 and Re = 2ũ, satisfying the
zero theorem (3.6) with ReL0 > Re (and possibly ReL0 � Re), which we wish to convert
into a laminar Hagen–Poiseuille flow defined by Πf (1 − α2)/4 = Re(1 − α2), with Πf <

Π0 (and possibly Πf � Π0) and the same Re = ReLf = 2ũ, fulfilling the zero theorem
(2.8) with Πf = 4Re; that is, we must decrease considerably the MPG while maintaining
constant the flow rate, since even for moderate Re it will generally be Πf � Π0 (see
figure 2). Otherwise put, we must decrease considerably the initial ReL0 and bring it down
to Re, so that ReLf = Re at the end of the process. Although Re is constant throughout the
process, and it would thus appear as a S-flow, there is an underlying laminar U-flow that
must evolve from ReL0 = Π0/4 to ReLf = Πf /4, and thereby we should write ReL(τ ). To
reach this goal, beginning at τ = β = 0, we disturb the S-flow using an external supply of
energy such that a lower MPG Πd ≤ Πf < Π0 is attained, and preferably Πd � Πf , if we
wish to accomplish complete laminarisation in a short time (in case Πd = Πf , the U-flow
would take infinite time to laminarise completely and, therefore, the laminar S-flow would
never be observed). The particular sort of disturbance will be different for each experiment,
but in all of them the common goal of decreasing the MPG must be achieved; this notion
is of utmost importance to understand the laminarisation mechanism and we shall repeat
it often. The only way of decreasing the ULF is to decrease its source of motion, which
is the MPG. The external supply of energy decouples the MPG and the ULF (and also
the mean-velocity field), and the U-ULF is forced to follow the changing MPG under its
own dynamics. The disturbance does not bring the MPG down immediately; an interval
Δτ is needed for the U-flow to set Πd. The MPG remains low, at approximately Πd,
during some time interval until at instant τd the effect of the disturbance is no longer
felt. The time τd defines a pipe segment of dimensionless length Ld = τd Re/2, which we
shall call the disturbed domain. The disturbed domain is defined by the dimensionless
streamwise coordinate interval 0 ≤ β ≤ Ld, outside of which the effect of the external
energy supply is negligible. The MPG difference ΔΠ = Πd − Π0, which is negative,
drives the U-ULF to lower values, because ΔΠ is the source of motion for uL, according to
the TULF.

When the disturbance is over and the MPG has already experienced its main decrease,
Πd, which causes the major deceleration in the U-ULF, the U-flow is left with a residual
MPG Πr, such that Πd ≤ Πr ≤ Πf = 4Re, and a U-ULF that is not yet coupled to the
MPG and is still decreasing. This residual MPG is all that remains to definitely bring the
U-ULF down to Re(1 − α2); the lower Πr the faster the laminarisation, which occurs at
time τ = τf , when the ULF reaches ũL(τf ) = Πf /8 = Re/2 and its bulk evolution ceases
because it recouples with the MPG: the resulting flow would be completely laminarised,
ℑ(α) = 1, α ∈ (0, 1) (see figure 3). This justifies calling τf the laminarisation time. The
limit case Πr = Πf would formally imply τf → ∞ and thus in practical applications one
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Π

�Π
Π(τ)

�ττ = 0

Ld = Re τd /2

Lf = Re τf /2

β = τ Re/2

Π0

τd

Πd

Πf = 4Re

δΠ
Πr

τf τ,β

Figure 3. General pattern for complete laminarisation.

would expect Πr < Πf . The difference, δΠ = Πf − Πr, will be called the excess MPG.
If Πr > Πf the ULF will never reach ũL = Re/2, the PTC will never be zero, and the
flow will never laminarise completely, ℑ(α) < 1 for some interval within (0,1). In this last
case, τf would represent the time at which the bulk ULF no longer changes, and the name
‘laminarisation time’ would be somewhat uncalled for. Either way, we can define a length
for laminarisation or a length for constant bulk ULF, given by Lf = τf Re/2.

The account we have just offered will be called the laminarisation pattern, and we
shall refer to it frequently. The notion that the MPG must be greatly reduced to attain
complete laminarisation is central to understanding this mechanism, and the reader is
strongly recommended to ponder over this idea prior to carry on reading. Note that
ReL(0) = ReL0 = Π0/4 � Re and ReL(τf ) = ReLf = Πf /4 = Re. In figure 3 Πd has been
depicted as roughly constant and generally would not be so; nevertheless, this fact should
not alter the conclusions nor the mechanism for complete laminarisation described herein.

The reader would have noticed that no mention has been made of the PTC in the
above explanation of the laminarisation pattern, despite the PTC being the component that
encompasses the flow’s turbulent motion. Otherwise put, we want ũT = 0 but no direct
action is made over the RSSRG, which is the source of the PTC; instead, we act directly
upon the MPG, which is the source of the ULF, a laminar flow. This apparent contradiction
is solved by the condition ũL + ũT = Re/2 = const., (i), which constrains the U-flow: one
acts upon the ULF to provoke a change in the PTC. The lower MPG can be considered
a seed for complete laminarisation. Once the seed is planted, there is no way back; the
U-flow will laminarise completely, it is just a matter of time. Figure 4 shows an imaginary
example of the evolution of ũL and ũT for the case ũ = τf = 1. Note ũL cannot decrease
below ũ = Re/2. In mathematical terms, the U-flow has non-denumerable infinite ways
of fulfilling the condition ũL + ũT = Re/2; for each ũL there is a unique ũT but ũL only
responds to the MPG; reaching Πf = 4Re yields necessarily ũL = ũ = Re/2 and to this
ULF corresponds uniquely the PTC ũT = 0, i.e. a laminar flow.

Nevertheless, although the constraint ũL + ũT = Re/2 relieves us of studying the
behaviour of the U-PTC, it is obvious that a vanishing PTC must be caused by a vanishing
RSSRG, which is its source. From a mathematical standpoint, Σ(τ, α) → 0 could be
caused either by a decaying turbulence, σ(τ, α) → 0, or by a homogeneous turbulence,
because the latter also implies a zero radial gradient of RSS. Eventually, a turbulence
forced to be homogeneous within a pipe, surrounded by walls, has just one possible
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Figure 4. Evolution of ũL and ũT after a sufficiently low MPG (in arbitrary units, ũ = τf = 1). Each variation
in ũL must be matched by an equal and opposite variation in ũT .

outcome: the vanishing of turbulence, and this is what is observed in the experiments
of Kuehnen et al. (2018b).

The laminarisation mechanism that has just been described is only possible with a
constant Re during the U-flow evolution. Should changes in Re be allowed, to achieve
complete laminarisation it would also be necessary to act upon the PTC, i.e. to decrease its
source, the RSSRG Σ(τ, α). As was discussed in the previous paragraph, a convenient way
to do it is to make the turbulence homogeneous throughout the pipe’s cross-section, which
irons out any gradient and vanishes the RSSRG. Curiously enough, usually it is necessary
to very much increase the turbulence, so that it becomes uniformly high everywhere.
Uniformly high or low, as long as it is homogeneous, in the end it will turn Σ(τ, α) ≈ 0,
leading to a negligible PTC, ũT ≈ 0 (see § 6.2). Any turbulence that does not cause a radial
gradient is irrelevant for the configuration of the mean-velocity field.

Whether ũT = 0 or not would depend upon how effective the disturbance has been (see
figure 3); if successful, the U-flow would become laminar and would remain laminar
forever, unless the disturbance were removed. Only a further disturbance that raises the
MPG, or a relaxation of condition Re = const., would provide some margin for the PTC to
increase again. The laminarised S-flow would only undergo a transition to turbulence if its
Re is allowed to decrease (Mullin 2011). As a summary of the laminarisation pattern, we
propose the following schematic sequence: steady state → local disturbance → very low
Πd → ULF decoupled from MPG → end of disturbed domain → residual MPG Πr < Πf
→ ũL approaches Re/2 and ũT approaches zero → ULF recouples to MPG → laminar
Hagen–Poiseuille S-flow with Πf = 8ũL = 8ũ = 4ReL = 4Re. Of course, the disturbance
must be strong enough, and the disturbed domain long enough, for this sequence to
unfold, and that constitutes one of the extraordinary merits of the experimental research of
Kuehnen et al. (2018b). The account we have just exposed is the general picture the TULF
offers to explain the observed phenomena.

The physico-mathematical problem, as modelled in figure 3, is thereby characterised by
five degrees of freedom, namely, Πd (or ΔΠ ), Δτ , τd (or Ld), Πr (or δΠ ) and τf (or Lf ),
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which ought to be set in any experiment destabilising turbulence in pipe flow. Note Π0 and
Πf are determined by the initial conditions. The relationships among the energy input into
the flow, Πd, and Ld will have to be found empirically in each case, as well as the residual
MPG Πr beyond the perturbed domain. Arguably, the shorter Ld the lower Πd to reach
complete laminarisation, for a given energy-per-unit-length input. Most often, it would
be necessary that Πd < 0 within the disturbed domain to attain complete laminarisation;
otherwise put, the external energy supply would be converted into an adverse MPG. This
surprising prediction will be explained in detail in § 6.3.

6.2. Four rotors experiment
We begin with the rotors experiment, which is the only one with a quasihomogeneous
perturbation affecting the whole cross-section. The flow (Re = 3500) is vigorously stirred
with four rotors, in pairs of clockwise and anticlockwise rotation. Kuehnen et al. (2018b)
claim that the enhanced turbulence created by the rotors deforms the velocity profile,
flattening it, and the deformation causes the U-flow to completely laminarise. Although
we shall discuss later the flattening of U-profiles, what actually occurs in the experiment
is the laminarisation pattern we exposed above, see figure 5. As anyone would imagine,
both sources of mean motion, MPG Π(τ) and RSSRG Σ(τ, α), play their role in the
observed laminarisation. Thus, the moving rotors have two main effects in the U-flow,
coinciding with both sources: (1) the rotors become an obstacle for the motion of the
fluid and, as all obstacles do, they create a pressure drop in the U-flow, leading to a
MPG decrease after starting the rotors, Πd < Π0 (see figure 5). (2) The rotors increase
the turbulence around them, meaning that the fluctuating components of velocity u′

i, or
the turbulence intensity u′

i/ũ, increase noticeably about the rotors. However, the newly
created turbulence is uniform, homogeneous around the rotors and so is the associated
RSS field. But a homogeneous RSS has a very small radial gradient, that is, Σ(τ, α) ≈ 0
and, since the RSSRG is the source of the PTC, we must expect a vanishing PTC or,
otherwise put, a laminarised U-flow. An everywhere-increased turbulence is a likely route
to laminarisation, for only the RSSRG constitutes a source of mean momentum. Any
turbulence that does not cause a radial gradient is irrelevant for the configuration of the
mean-velocity U-field; this is a very important outcome from the TULF (see (5.3) and
(5.12)). Note the turbulence index field ℑ(τ, α) is not fooled by the uniform increase
of turbulence intensity: in any laminarisation process ℑ(τ, α) → 1 regardless of the
turbulence intensity.

No temporal evolution curves are offered for this experiment in Kuehnen et al. (2018b),
and thus not much can be said about its degrees of freedom, except that the U-flow
needs some 130D to laminarise completely, Lf = 260, according to Kuehnen et al. (2018b,
supplementary figure 1). The antagonistic thrusts of the rotor pairs cause a large pressure
drop in the U-flow, which can be adjusted to reach Πd < Πf = 4Re = 14 000, although
the relationship between rotor’s spin velocity and Πd would have to be found empirically.
The residual MPG Πr would be roughly the same as that created in the disturbed domain
Πd, and the situation in the U-flow could be described by Δτ = τd and Πd = Πr. With
such low Πd, since the U-flow’s Reynolds number is not allowed to decrease, all available
bulk velocity would be occupied by the ULF, and the PTC would be forced to zero (see
point (2) above). Therefore, the final S-flow we must expect is a new ULF, devoid of
PTC, with a Reynolds number ReL = Re = 3500, in accordance with the experiment (see
figure 5a). No other explanation is required, but the simple and easily checkable pressure
drop associated with any obstacle inserted in a flow. Regrettably, no results for the MPG
are reported in the rotors experiment.
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Π Π
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Π0
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�Π
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ΠL(τ)

Π(τ) Π(τ)

0 0τd = �τ τd = �τ

Πd = Πr

Πd = Πr

τf τfτ τ

Πf = 4Re Πf = 4Re

δΠ

δΠ

ULF and MPG uncouple

(a) (b)

ULF and MPG uncouple

ULF and MPG recouple

8ũL

ULF and MPG recouple

ULF constant ULF constant

Figure 5. Sketch of MPG Π(τ) evolution in the four rotors experiment (laminarisation pattern). Here ΠL(τ )

is a virtual MPG, corresponding to the laminar Hagen–Poiseuille flow that at each instant has the same ReL
as the U-ULF. (a) Successful complete laminarisation (Πd = Πr < Πf = 4Re); (b) unsuccessful complete
laminarisation (Πd = Πr > Πf = 4Re).

If the MPG decrease were not enough, then the residual ULF would have ReLr = 2ũLr >

Re = 2ũ and there would remain some residual bulk velocity available for a modest PTC,
ũTr = ũ − ũLr : the laminarisation would not be complete and the final S-flow would be
partially turbulent, with a greater turbulence index than that corresponding to the initial
S-flow, ℑ0(α) ≤ ℑr(α) ≤ 1 (see figure 5b).

Moreover, the laminarisation of a pipe flow would, in principle, be possible with any
obstacle or device that could decrease sufficiently the MPG immediately downstream, like
a honeycomb insert (Kuehnen, Scarselli & Hof 2019), an orifice plate (Kuehnen et al.
2018a) or any other, while maintaining constant the U-flow’s Re.

The remaining experiments do depend on a definite disturbed-domain length Ld, and
the decrease of MPG is obtained through indirect methods (see §§ 6.3 and 6.4). We shall
also see that the laminarisation pattern is only developed in the core flow, and an adverse
MPG is generated therein. The external perturbation does not affect directly the whole
cross-section, but rather the near-wall U-flow.

6.3. Annular streamwise jet experiment
The second experiment to be explained is the streamwise inject or annular jet (Re = 5000).
Kuehnen et al. (2018b) claim that the WSS increases in the U-flow upon injecting the
annular jet. This is literally true but not effectively true, for we must distinguish between
flow and core flow, the latter being what remains after removing from the former the
thin annular near-wall portion, see figure 6. Note this wall-adjacent annulus contains an
inordinately high portion of the whole cross-sectional area.

The initial S-flow enters the disturbed domain with MPG Π0 and WSS σw0 , and the
annular jet is input into the flow with moderately high velocity (we do not consider yet
very high injection velocities, case c4 of Kuehnen et al. (2018a, figure 10b)), comparable
to that of the core flow, and requires an external source of energy to do so. Therefore, the
jet creates a sort of barrier between the core flow and the wall; the wall is shielded by the
jet and loses contact with the core flow. The higher WSS becomes a private matter between
wall and jet, not between wall and core flow. In the disturbed domain, figure 6, we see near
the wall a strong favourable MPG that creates the jet itself, the accelerating wall flow, and
also a lower (most often adverse) MPG in the core that decelerates the core flow, so that
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α

δα

Π(τ) > 0

Wall flow = jet

Π(τ) < 00<τ<τd

Core flow
1 – δα

u

u(τ,α) 

Re = const.

Figure 6. Mean-velocity U-profile and sketch of dual MPG, strong favourable and moderate adverse, within
the disturbed domain of the streamwise inject experiment.
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ΠL(τ)

Π(τ) Π(τ)

ULF and MPG uncouple ULF and MPG uncouple
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Figure 7. Laminarisation pattern: sketch of MPG Π(τ) evolution in the core flow for the annular jet and
radial jets experiments. Here ΠL(τ ) is a virtual MPG, corresponding to the laminar Hagen–Poiseuille flow
that at each instant has the same ReL as the U-ULF. (a) Successful complete laminarisation (Πr < Πf = 4Re);
(b) unsuccessful complete laminarisation (Πr > Πf = 4Re).

the constraint of fixed Re could hold: if one portion of the U-flow accelerates then another
must decelerate. Thus, the conditions to trigger the laminarisation pattern in the core flow
are set, see figure 7. This local combination of favourable and adverse MPG in the same
cross-sectional region is quite unstable, can only be sustained through an external energy
input, cannot be maintained for long, and dissipates shortly downstream the disturbed
domain, where the precarious cohabitation shown in figure 6 merges into a single MPG,
the residual MPG Πr affecting the whole cross-section, which is the minimum found
in Kuehnen et al. (2018b, figure 2a), measured some 30D downstream of the disturbed
domain. Thereby, the actual occurrence of a dual MPG in the disturbed domain cannot
be reproduced downstream, and instead an evolution curve with a single residual MPG is
recorded. The account of facts just exposed is also substantiated in Kuehnen et al. (2018a,
figure 12), which illustrates how the mean-velocity U-profiles evolve, with the wall flow
swelling and the core flow shrinking as the energy input increases.

Moreover, the velocity gradient between core flow and wall flow changes sign, see
figure 6 and Kuehnen et al. (2018a, figure 12), and the disturbed domain can be defined
as the region where this change of sign is present. The associated degree of freedom Ld
would thus be given by the streamwise distance at which the dual MPG situation illustrated
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in figure 6 no longer holds. It is not a sharp and clear-cut definition, but it ought to suffice
for designing experiments, and the relationship between injection velocity (or injection
MPG) and Ld would have to be found empirically. In a situation like this, in which the
core flow is rather detached from the wall flow, (5.20) would also be approximately valid
for the core flow, with Π(τ) the MPG acting upon the core flow (red line in figure 7).
The core U-ULF is thus driven by a lower (most likely adverse) MPG and must decrease
under its own dynamics, trailing the new MPG Πd (figure 7a), but any change in U-ULF
must be accompanied by a matching one from U-PTC, (i). It follows that if Ld and Πd
are duly adjusted, the laminarisation pattern is initiated causing a laminarised core flow.
If the wall flow is thin enough, it will contain just a small U-PTC, (vii), insufficient to
ruin the core’s laminarisation process if the merged residual MPG Πr is still well below
Πf = 4Re. In this case, the initial core-flow laminarisation extends to the whole U-flow
farther downstream. When the whole U-flow laminarises completely, the MPG increases
again and recouples with the ULF, see figure 7(a) and Kuehnen et al. (2018b, figure 2a
about tU/D ≈ 50), but it will only increase up to Πf = 4Re = 20 000, whereby it becomes
bulk stationary. The agent causing this late MPG increase is the force set in action by
the constraint Re = const. If, on the other hand, the residual MPG Πr > Πf = 4Re then
the associated U-ULF would be ũLr > Re/2 = ũ and there would remain some residual
U-PTC, ũTr = ũ − ũLr : the laminarisation would not be complete and the final S-flow
would be partially turbulent, with a greater turbulence index than that corresponding to
the initial S-flow, ℑ0(α) ≤ ℑr(α) ≤ 1 (see figure 7b).

It remains to suggest an explanation for the case c4 of Kuehnen et al. (2018a, figure 10b).
Recall that, in figure 6, if δα = 1 − 1/

√
2 ≈ 0.2929, then the area of the annulus

containing the wall flow would be equal to that of the core flow. It is our belief that if
the injection velocity is too high, the annular jet would not be so thin a few diameters
downstream, and the core flow would not be dominant within the pipe’s cross-section, see
Kuehnen et al. (2018a, figure 12). Should this be the case, even if the core U-flow were
to laminarise completely, there would remain a considerable U-PTC in the thicker annular
jet itself that would prevent the complete laminarisation of the whole U-flow. Kuehnen
et al. (2018a) even report that “. . . meaning that the controlled flow exhibits features of
relaminarisation but finally returns to a turbulent state downstream . . .”. As long as the
annular jet remains close to the wall, it will not develop a significant PTC, for the near-wall
region is the natural domain of the ULF (García García & Fariñas Alvariño 2019c), (vii).

6.4. Radial jets experiment
The last experiment to be discussed is that with 25 radial jets (Re = 3100). Again, in this
flow we observe the same three performers on stage: jets; wall flow; and core flow. Of all
quantities involved in the zero theorem for turbulent flow, (3.6), the one directly affected
by the normal jets is the WSS σw. The jets change the WSS ‘felt’ by the core flow, see
Kuehnen et al. (2018b, supplementary figure 6), since they create a barrier between wall
and core flow: an external energy input is again detaching the core flow from the wall,
and a new effective WSS appears in the core flow, |σwd | < |σw0 |, and a new MPG is set in
the disturbed domain, Πd = −2σwd < Π0, (iii); thereby MPG and U-ULF decouple and
the U-ULF is forced to pursue the new MPG Πd under its own dynamics, see figure 7.
Again, we have the conditions that trigger the laminarisation pattern in the core flow. As
discussed in § 6.3, in this situation (5.20) is approximately applicable to the core flow, with
Π(τ) the resulting MPG after the disturbance (red line in figure 7). If τd is sufficiently
long to render the effective WSS sufficiently low, the U-PTC within the core would fade
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off and the core U-flow would laminarise completely; in turn, its laminarisation would
extend to the whole U-flow downstream, because the PTC is already negligible near
the wall, (vii). The degree of freedom Ld = τdRe/2 is clearly set in this experiment of
Kuehnen et al. (2018b), Ld = 50, as opposed to the fuzzily defined Ld of the previous
annular streamwise-jet experiment. Downstream the disturbed domain, τ > τd, a residual
MPG Πr remains in the U-flow (figure 7): if Πr ≤ Πf = 4Re the U-flow will eventually
laminarise completely, otherwise a residual PTC would remain and the final S-flow would
be partially turbulent, with a greater turbulence index than that corresponding to the initial
S-flow, ℑ0(α) ≤ ℑr(α) ≤ 1. The relationship between the injection velocity of radial jets
and Πd would have to be found empirically.

6.5. Flattening of mean-velocity profiles
Kuehnen et al. (2018b) suggest repeatedly that the flattening of mean-velocity U-profiles
might be the cause of the observed laminarisation, and even the experiments’ design
appears to have been influenced by a pursuit of the said flattening effect. Linking the
progress of laminarisation to a flattening of U-profiles is essentially correct, and is a
testimony of those authors’ perspicacity. However, it is important to understand that the
flattening is a consequence of the laminarisation process, not its cause. The flattening
means, among other things, a deformation (change) of the mean-velocity field, and since
Newton it is known that changes in momentum are caused by forces. Therefore, the
flattening is caused by a modification of the forces applied to the U-flow, and only two
forces are available: the MPG that pushes the U-flow; and the RSSRG that pulls in opposite
direction, since it encompasses the turbulent stress forces. Moreover, the constraint of
constant Re determines that both forces must be globally balanced at every instant,
because the bulk acceleration is zero. However, they can differ locally, always provided
the cross-section average of one be identical to the other, and the local differences tend to
be greater near the wall, where the flattening manifests itself.

The defining characteristic of laminarisation is always a proportionally higher increase
of the U-ULF respect to the U-PTC, hence its name. In any laminarisation process the
U-ULF is proportionally greater than the U-PTC, and this occurs especially near the wall,
where the U-PTC evolution is slower. Therefore, near the wall the subtracting term is lower
in absolute value (the PTC is generally negative), and that yields a locally higher mean
velocity, which is the observed phenomenon. The flattening of U-profiles is abundantly
reported in our previous papers (García García & Fariñas Alvariño 2019b,c, 2020, 2021),
and occurs every time the U-ULF takes precedence over the U-PTC, or otherwise put,
any time the turbulence index increases. The mathematical details can be found in those
references. All theoretical experiments we have performed in previous works show this
effect: the route to laminarisation, either partial or total, implies the growth of the ratio
|uL/uT |, that is, the flattening of mean-velocity U-profiles.

We shall perform now a simple exercise to demonstrate that the deformation of
mean-velocity U-profiles is a mathematical necessity in any U-flow evolution, as it follows
from (5.12). The reader should note that, in the present context, ‘deformation’ means that
the family of mathematical curves describing a U-flow is qualitatively different from that
of a S-flow. Because of its simplicity, the informal demonstration will only be applied to
the PresGrad component, (5.14), with an analogous reasoning for all other components.
Assume a transient flow evolution from steady-state Re1 to steady-state Re2. Since for
horizontal S-flows the ULF and PresGrad are one and the same thing, the initial and final
PresGrad components take the common form Πi(1 − α2)/4 of a Hagen–Poiseuille flow.
We begin by noting that the parabola function 1 − α2 is expressed in Fourier–Bessel series
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as (see (7.16))

1 − α2 = 8
∞∑

n=1

J0(λnα)

λ3
nJ1(λn)

= 4
√

2
∞∑

n=1

φn(α)

λ3
n

. (6.2)

Let us imagine, just for a moment, that the PresGrad component were defined by

uP(τ, α) =
√

2
(∫ τ

0
Π(τ ′) dτ ′

) ∞∑
n=1

φn(α)

λ3
n

, (6.3)

with the integral over Π(τ) outside of the sum, instead of the correct (5.14) (the extra
λ2

n in the denominator arises from a change of variables in the integral of (5.14), ξ ′ =
λ2

nτ
′, dτ ′ = dξ ′/λ2

n and eξ−ξ ′ ≈ 1). The integral would thus act as a global multiplicative
factor of the parabola (1 − α2). In this imaginary scenario, for each τ the U-profile of
uP would be a parabola and the evolution of PresGrad would be a continuous sequence
of parabolas up to the final one, Π2(1 − α2)/4. Otherwise put, the temporal evolution of
this component would be self-similar with respect to the variables (τ, α). However, the
correct mathematical result has the integral inside the sum, and the evolution U-profiles
cannot be parabolas, but other curves that would appear as deformed when compared with
a parabola. The particular form of such curves would depend on the disturbing factor
within the sum, i.e. the integral over Π . The temporal evolution of PresGrad is not, and
cannot be, self-similar with respect to (τ, α), which is a pity because it would make life
much easier. Arguably, the evolution of PresGrad could still be self-similar with respect
to other variables, but that is a story to be told elsewhere. In summary, the deformation
of mean-velocity U-profiles must occur in any temporal evolution of a U-flow; it is a
prediction of the TULF and it is what actually happens in experiments.

7. Numerical data supporting explanations

Thus far we have described the general mechanisms to attain complete laminarisation, but
no actual data has been offered. In this section we shall obtain some concrete numerical
data that can be compared with those reported in Kuehnen et al. (2018b). The TULF
requires an analytical model to perform the actual calculations that would yield the
numerical results applicable to each experiment. By model we mean assigning concrete
functions to the abstract quantities appearing in (5.12) and (5.20). We shall offer the
analytical tools we normally employ in our research (García García & Fariñas Alvariño
2019b,c, 2020, 2021), and we shall apply them to the experiments encompassed in this
study.

It is important to realise that laminarisation processes can be followed through the
evolution of the laminar component alone, as was shown in § 6. The TULF yields the ULF
component of any mean pipe flow and, therefore, the theory determines the mathematical
constraints of momentum sources for laminarisation to occur. Recall the WSS is defined
analytically by the ULF (see García García & Fariñas Alvariño 2019c), and vice versa. This
analytical relationship constitutes an additional insight into pipe flows, (García García
& Fariñas Alvariño 2019b,c, 2020, 2021), and, eventually, deserves to be explored on
laminarisation procedures.
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Superpipe Case Pai’s Solution

Id. Re ReL Π q χ

SP1 3.1577 × 104 3.6203 × 105 1.4481 × 106 28 18.4342
SP2 4.1727 × 104 5.9465 × 105 2.3786 × 106 36 23.0330
SP3 5.6677 × 104 1.0228 × 106 4.0912 × 106 45 29.3758
SP4 7.4293 × 104 1.6488 × 106 6.5951 × 106 56 36.3715
SP5 9.8811 × 104 2.7488 × 106 1.0995 × 107 70 45.9088

Table 1. Princeton Superpipe experimental data and best fitting Pai polynomials for moderate Re (from
García García & Fariñas Alvariño 2019b).

7.1. A mathematical model for steady-state pipe flow
The following dimensionless polynomials (Pai 1953), which we shall call a Pai flow, are a
solution of the RANSE (3.2) and, therefore, u(α) would correspond to the turbulent S-flow
generated by the sources Π and σ(α) in the natural normalisation,

u(α) = Π

4χ

(
1 + χ − q

q − 1
α2 − χ − 1

q − 1
α2q

)
= Π

4
(1 − α2) + Π̂

4q
[1 − q(1 − α2) − α2q],

(7.1)

σ(α) = Π

2
q(χ − 1)

χ(q − 1)
α(1 − α2q−2) = Π̂

2
α(1 − α2q−2), (7.2)

with q ≥ 2 a best-fitting integer and χ ∈ R, 1 ≤ χ < q, the so-called centreline turbulent
dissipation (CTD), which is equal to the ratio

χ = uL(0)

u(0)
= ReL

u(0)
= 1

ℑ(0)
, (7.3)

where uL is the ULF generated directly by Π , i.e. a laminar Hagen–Poiseuille flow.
According to its definition, χ = 1 for laminar flow, and in such case the value of q
is irrelevant. The functions u(α) and σ(α) thus defined belong to the mean space 𝔐
introduced in § 3. The first expression in (7.1) is called the compact form of a Pai
flow, whereas the second is the decomposed form, for it shows explicitly the ULF
(Π(1 − α2)/4) and the PTC (the remainder). Note how Π̂ = Πq(χ − 1)/χ(q − 1) plays
in the PTC an analogous role to Π in the ULF, and it is named the weighted MPG, being
Π̂ � Π . The parameters Π , q and χ , which collectively characterise any Pai flow, are
known as the spatial degrees of freedom (SDoF). These polynomials seem to have been
largely ignored in the literature, despite representing quite accurately any turbulent S-flow
of moderate Re. To assess the suitability of Pai polynomials, figure 8 compares the mean
velocity of (7.1) with the experimental results of the Princeton Superpipe (see Zagarola
1998), for the five lowest Re of the set, which we name SP1 to SP5. The best-fitting SDoF
parameters are given in table 1. We can see a small deviation in SP4, and a more noticeable
one in SP5, albeit from SP1 to SP3 the coincidence is remarkable. In figure 9 is shown a
Pai flow for Re = 5300, together with the corresponding DNS data. This figure will be
explained below.

According to (3.3a,b), u(α) and σ(α) determine each other uniquely; it follows that
if (7.1) is a good approximation for the actual mean velocity, then (7.2) is also as good
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Figure 8. Princeton Superpipe experimental velocity data and Pai polynomials for cases of table 1 (from
García García & Fariñas Alvariño 2019b).
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Figure 9. The DNS velocity data for Re = 5300 in Wu & Moin (2008) and best-fitting Pai polynomial.

an approximation to the actual RSS. The plots of figure 2 have been calculated directly
from the Pai polynomial (7.1) and the SDoF of table 1. It must be stressed, again, that
Pai polynomials are a solution of the RANSE, (3.2), belonging to the mean space 𝔐,
and not simply some functions presumed ad hoc (an example of an ad hoc mean-velocity
profile would be the famous power law u(α) = umax(1 − α)1/n, which does not fulfil the
governing equation).

If we are just given a turbulent S-flow of Reynolds number Re, and no further
data, the SDoF can be obtained from the following expressions, which are as
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accurate as the correlations they emanate from, namely the Colebrook correlation and
u(0) = (1 + 1.3

√
f ) ũ, (see White 2016, (6.43)). The demonstration is given in

Appendix B:

Π = f Re2

16
, (7.4)

χ1 = f Re
32(1 + 1.3

√
f )

, (7.5)

q1 = χ1( f Re − 64)

64χ1 − f Re
, (7.6)

((7.4) was also deduced in Marusic et al. (2007, (4.1))). Equation (7.6) will not generally
yield an integer value for q1. In that case, we round q1 to the nearest integer q ∈ N, always
provided q > χ1, and we reckon a new χ from the following equation:

χ = q f Re
64(q + 1) − f Re

. (7.7)

Moreover, we have the interesting relationship,

f Re = 64
χ(q + 1)

χ + q
, (7.8)

which is exactly f Re = 64 for laminar flow (χ = 1), regardless of the value of q.
The bulk velocity corresponding to a Pai flow, (7.1), is

ũ = ũL + ũT = Π

8
− Π̂

8
q − 1
q + 1

= Π

8
χ + q

χ(q + 1)
= Re

2
. (7.9)

Note that if q > χ � 1, then Π̂ ≈ Π , ũL ≈ |ũT | and ũ � ũL, which is the result depicted
in figure 2. The bulk velocity ũ is usually a dwarf compared with those two giants, ũL and
ũT .

Given a turbulent S-flow with bulk velocity ũ, the laminar Hagen–Poiseuille flow with
the same bulk velocity satisfies ũ = ũL = Πf /8 (see (2.8)), whereby the MPG of the
laminar flow must fulfil (see (7.9))

Πf = Π
χ + q

χ(q + 1)
, Πf < Π. (7.10)

To assess how accurate the Pai polynomial resulting from the above procedure is, we
shall apply it now to the DNS flow of Re = 5300 obtained in Wu & Moin (2008), which
has a Reynolds number within the order of magnitude of those reported in Kuehnen
et al. (2018b). Applying (7.4)–(7.7) to Re = 5300, we obtain f = 0.03677, Π = 64560.46,
χ1 = 4.87524 and q1 = 5.44901. Rounding q1 to q = 6, we get χ = 4.62029. The DNS
data of Wu & Moin (2008) is furnished in wall units, u+ = U/Uτ . To convert wall
units into the natural normalisation, suffices to apply u = u+ Reτ , being Reτ = Uτ R/ν

the friction Reynolds number, also called the von Kármán number. For the chosen DNS
flow, it is Reτ = 181.37. The resulting Pai polynomial is plotted in figure 9, together
with the DNS velocity data. The DNS data appear to have been time-averaged rather
than ensemble-averaged (see Wu & Moin 2008, § 2.3), whereas the Pai flow is always
a mathematically ensemble-averaged field. A slightly better fit would have been obtained
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if q were allowed to have non-integer values. However, in such case the solution would not
be a polynomial, and much of the analytical advantage would be lost.

The case of a turbulent Hagen–Poiseuille flow with MPG Π and moving-wall
velocity Vw is somewhat more involved. Recall we mentioned in § 4 that given a
turbulent Hagen–Poiseuille–Couette flow u(α), the field uw(α) ≡ u(α) − Vw corresponds
mathematically to a turbulent Hagen–Poiseuille flow with the same sources, Π and σ(α).
We shall now use this result to characterise a turbulent Hagen–Poiseuille–Couette flow
through polynomials. The mean-velocity field is (see (4.2a,b))

u(α) = Vw + Π

4χw

(
1 + χw − q

q − 1
α2 − χw − 1

q − 1
α2q

)
= Vw + Π

4
(1 − α2) + Π̌

4q
[1 − q(1 − α2) − α2q], (7.11)

in which q is, again, a best-fitting integer, but χw now responds to

χw = uwL(0)

uw(0)
= uL(0) − Vw

u(0) − Vw
, (7.12)

according to the definition of CTD χ offered above for turbulent Hagen–Poiseuille flow.
Likewise, the Couette-weighted MPG Π̌ is defined by

Π̌ = Π
q(χw − 1)

χw(q − 1)
. (7.13)

Thereby, if we are only given a turbulent Hagen–Poiseuille–Couette flow characterised
by Re and Vw, then we calculate Rew = Re − 2Vw (see (3.12) and (4.5)), and with Rew we
reckon fw through the Colebrook correlation, and now we can apply the set of (7.4)–(7.7) to
determine the SDoF parameters defining uw(α) and (7.11): Π , χw and q. The bulk velocity
of a turbulent Hagen–Poiseuille–Couette flow is

ũ = ũL + ũT = Vw + Π

8
− Π̌

8
q − 1
q + 1

= Vw + Π

8
χw + q

χw(q + 1)
= Re

2
. (7.14)

7.2. A mathematical model for transient pipe flow
As already explained in § 5, defining a model within the framework of the TULF
means assigning explicit mathematical functions to the abstract quantities Π(τ), Γ (τ),
Σ(τ, α), Vw(τ ) and u0(α) appearing in (5.12) and (5.20). When applied to the
experiments of Kuehnen et al. (2018b), (5.12) and (5.20) become greatly simplified,
for Γ (τ) = Vw(τ ) = 0. Moreover, we are not concerned about the particular details of
mean-velocity U-profiles, and thus we can work only with bulk velocities and (5.20).
Last, but by no means least, the constraint ũL(τ ) + ũT(τ ) = Re/2, (i), allows us to study
exclusively the evolution of the U-ULF ũL(τ ), and we are thereby spared the burden of
finding suitable functions Σ(τ, α) for these flows. Therefore, the bulk U-ULF applicable
in this research is limited to (see (5.20))

ũL(τ ) = 4
∞∑

n=1

{
u(0)

Ln√
2

e−λ2
nτ

λn
+ 1
λ2

n

∫ τ

0
Π(τ ′) e−λ2

n(τ−τ ′) dτ ′
}

. (7.15)

Since the initial flow in all experiments is a turbulent S-flow as in (3.3a,b),
its corresponding S-ULF is the Hagen–Poiseuille flow u0L(α) = Π0(1 − α2)/4.
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The components of u0L(α) in the basis {φn(α)} of the Hilbert space L2
α(0, 1) are given

by the inner product

u(0)
Ln

=
〈
Π0

4
(1 − α2), φn(α)

〉
= Π0

4

∫ 1

0
α(1 − α2)

√
2 J0(λnα)

J1(λn)
dα =

√
2 Π0

λ3
n

, (7.16)

and (7.15) is written as

ũL(τ ) = 4
∞∑

n=1

e−λ2
nτ

λ2
n

{
Π0

λ2
n

+
∫ τ

0
Π(τ ′) eλ

2
nτ

′
dτ ′
}

. (7.17)

It remains to find an expression for the MPG Π(τ). The actual MPG might be a rather
complicated function, but in figure 3 we offered a likely model and in § 6.1 it was reduced
to defining five degrees of freedom (Πd, Δτ , τd, Πr and τf ), because Π0 and Πf , the
initial and final MPG, are uniquely determined by Re. Unfortunately, the data reported in
Kuehnen et al. (2018b) for any of the experiments are not sufficient to uniquely fix those
five parameters, and there are infinitely many possibilities for them. Therefore, we shall
devise a much-simplified model for Π(τ) and assume that the MPG drops instantaneously
to Πd, and stays there until complete laminarisation is attained, i.e. Πr = Πd and Δτ =
τd = 0. The model is purposely chosen to be very simple, so that no doubt remains that
the final outcome (a laminar S-flow) is predicted even with a low-accuracy model. We are
left with only two degrees of freedom, Πd = Πr and τf . This simplifying assumption is
based upon (iv) and mathematically can be formulated as the MPG following a Heaviside
step ΔΠ at dimensionless time τ = 0,

Π(τ) = Π0 + ΔΠH(τ ) = Π0 + (Πd − Π0)H(τ ), (7.18)

with H(τ ) the Heaviside unit distribution. Under such an assumption and inserting
this Π(τ) into (7.17), the TULF provides the following continuous function for a fully
developed ũL(τ ) that attains complete laminarisation at τf (Πr < Πf = 4Re):

ũL(τ ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

4
∞∑

n=1

Π0 e−λ2
nτ + Πd(1 − e−λ2

nτ )

λ4
n

= Πd
8 − 4ΔΠ

∑∞
n=1

e−λ2nτ

λ4
n

= ΠL(τ )
8 0 ≤ τ ≤ τf ,

Re
2

= Πf

8
τ > τf .

(7.19)

If, on the other hand, complete laminarisation is not reached (Πr > Πf = 4Re), the bulk
U-ULF takes the form

ũL(τ ) = 4
∞∑

n=1

Π0 e−λ2
nτ + Πd(1 − e−λ2

nτ )

λ4
n

= Πd

8
− 4ΔΠ

∞∑
n=1

e−λ2
nτ

λ4
n

= ΠL(τ )

8
. (7.20)

Note that at τ = 0 only the terms with Π0 survive, whereas for τ → τf , (7.19) (respectively
for τ → ∞, (7.20)) only the terms with Πf /8 (respectively, Πd/8) remain. In the
meantime, ũL(τ ) would be equal to the bulk velocity of a laminar Hagen–Poiseuille
flow driven by an intermediate virtual MPG ΠL(τ ), uS(α; τ) = ΠL(τ )(1 − α2)/4, see
(viii), although Πd be already enforced downstream of the disturbed domain. The MPG
corresponding to this virtual SB-flow, ΠL(τ ), is represented in green colour in figures 5
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and 7. The excess MPG, δΠ = Πf − Πr = Πf − Πd, needed by the U-flow to reach Πf
within a finite time interval, will be recovered once the ULF has attained ũL = Re/2 (see
red lines in figures 5a and 7a). If, on the contrary, Πr > Πf , then the ULF will be limited
by ũL → Πd/8 = Πr/8 > Re/2, and the difference ũT = Re/2 − ũL would correspond to
the S-PTC, which would not be zero and the flow would not laminarise completely. This
last situation is illustrated in figures 5b and 7b. In any case, τf denotes the time at which
the ULF does not measurably change, either because it has reached Re/2 with an excess
MPG δΠ > 0, or because it is asymptotically arriving to Πr/8 = Πd/8 and there is no
significant MPG to drive the ULF any lower (δΠ < 0). This account of facts, based upon
(7.19) and (7.20), constitutes, again, the laminarisation pattern introduced above.

Let us forget for the moment the unsuccessful case. If the experiment is successful and
a complete laminarisation is attained, then from (7.19) it follows that

∞∑
n=1

e−λ2
nτf

λ4
n

= Πd − 4Re
32(Πd − Π0)

= −δΠ

32ΔΠ

⇔ Πd =
(

32Π0

∞∑
n=1

e−λ2
nτf

λ4
n

− 4Re

)(
32

∞∑
n=1

e−λ2
nτf

λ4
n

− 1

)−1

, (7.21)

which relates Πd and τf for the initial S-flow defined by Re and Π0. If τf is known, Πd can
be reckoned rather easily with the equation on the right-hand side, for the series converges
rapidly and is quite accurate with some 50 terms or fewer. If, instead, Πd is known, the
equation on the left-hand side can be solved recursively, starting with an estimated value
for τf . With the first eigenvalue λ1 ≈ 2.404826 being the most significant of the series, it
is a smart idea to begin the recursion with τf1 given by

e−λ2
1τf1

λ4
1

= Πd − 4Re
32(Πd − Π0)

⇒ τf1 = −1
λ2

1
ln

[
λ4

1(Πd − 4Re)
32(Πd − Π0)

]
= −1
λ2

1
ln

[
−λ4

1δΠ

32ΔΠ

]
,

(7.22)
knowing that, typically, τf1 yielded by (7.22) is rather similar to the actual τf , i.e. τf1 ∼
τf (δΠ ≥ 0, ΔΠ < 0, and δΠ < |ΔΠ |). On the other hand, if τf1 defined by (7.22)
were good enough to design an experiment, the researcher would not need to write the
software that calculates (7.21). Finally, should higher accuracy be needed, the reader can
always devise a more sophisticated model for Π(τ) than (7.18) (figure 3 might serve
as guide).

To end this section, and as a concomitant of the solution just found, we shall reckon
the time constant of the dynamical system constituted by a laminar pipe U-flow. To our
knowledge, the consideration of a laminar flow as a dynamical system, and thus liable
of having time constant, phase space, orbits, Lyapunov exponents and like notions, is
not frequently reported in the literature, and might be of interest to the reader. For an
energy-increasing system, such a time constant τc is defined as the time needed for the
dynamical system to yield the value ũL(τc) ≡ (1 − e−1)ũL(∞) ≈ 0.6321ũL(∞), where
ũL(∞) is the limit steady-state response obtained after applying a unit Heaviside step
at τ = 0 in the system’s source. For an energy-decreasing system, it would be ũL(τc) ≡
e−1ũL(∞) ≈ 0.3679ũL(∞). Applied to our case, we assume that the MPG (the source)
undergoes a unit Heaviside step from Π0 to Π0 + 1 at τ = 0, i.e. (7.18) would become
Π(τ) = Π0 + H(τ ), since Πd = Π0 + 1 and ΔΠ = 1. The equation defining the time
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constant τc can either be derived from (7.19) or (7.20), as follows:

ũL(τc) = Π0

8
+ (1 − e−1)

1
8

= Π0 + 1
8

− 4
∞∑

n=1

eλ
2
nτc

λ4
n

⇒
∞∑

n=1

e(1−λ2
nτc)

λ4
n

= 1
32

. (7.23)

This is an extremely interesting result: the time constant τc does not depend upon the
Reynolds number of the laminar flow (or the MPG Π0, which is the same thing). Moreover,
the same result is obtained if, instead of a unit Heaviside step (ΔΠ = 1), a general
Heaviside step ΔΠ is applied to the flow. Here τc seems to be a universal constant, valid
for any laminar pipe flow. Since τc = tcν/R2, it should be stated that the dimensional
time constant tc depends exclusively upon the fluid’s viscosity and the pipe’s radius. The
response of a laminar flow to any step increase in MPG is the same for all initial bulk
velocities of such a flow or, otherwise put, for given pipe and fluid the time constant of a
laminar flow is the same for all Re. Moreover, the reader should be aware of the following
identity involving the zeros λn of J0(x):

∞∑
n=1

1
λ4

n
= 1

32
, (7.24)

which helps one understand the relevance of (7.23). Reckoning the series (7.23) with 500
terms, we get for the universal time constant the value

τc = tcν
R2 = 0.165381775. (7.25)

Future experimental research should take into account this universal time constant; to
get a swift laminarisation (or any other unsteady effect), one should use small-diameter
pipes and high-viscosity fluids. Be warned that it is not a matter of Reynolds number,
since the bulk velocity plays no role in how fast the flow reacts to any perturbation. This
advice also serves to minimise the necessary disturbed-domain size to attain complete
laminarisation. The dimensionless length corresponding to τc is Lc = τcRe/2 (see (6.1)).
As τc is constant, we have the result Lc ∝ Re (dimensionless) or Lc ∝ R Re (dimensional).
In both cases, we arrive at the conclusion that the “development length required to reach a
fully parabolic profile increases linearly with Re”, as expressed literally in Kuehnen et al.
(2018b, caption of figure 3b).

7.3. Four rotors experiment
We begin with the four rotors experiment, Re = 3500. With such a Re, (7.4)–(7.10) yield
f = 0.041528, Π0 = 31795, q = 4 and χ = 3.328906. The final MPG to attain complete
laminarisation is Πf = 14 000, according to (7.10). At 18 ◦C, the kinematic viscosity
of water is ν = 1.0533 × 10−6 m2 s−1, and as D = 2R = 54 mm for this experiment,
we have Ũ = 0.06827 m s−1 (ũ = 1750). Since the flow is reported to laminarise
completely at some 130D downstream (Lf ≈ 260), we can estimate τf = Lf /ũ ≈ 0.14857,
i.e. tf ≈ 102.83 s. Thereby, according to (7.21) with 50 terms in the series, we have
Πd = Πr = 1858.7652, a low favourable MPG. No adverse MPG is necessary in this
case to attain complete laminarisation. Additionally, the MPG drop in the disturbed
domain is ΔΠ = Πd − Π0 = −29937.24, and the excess MPG recovered at complete
laminarisation (ũT(τf ) = 0) is δΠ = Πf − Πr = 12141.24 (see laminarisation pattern in
figure 5). Note τf is slightly below the universal time constant τc of (7.25), τf � τc, which

951 A4-33

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

65
1 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.651


F.J. García García and P. Fariñas Alvariño

means that the final laminar Hagen–Poiseuille flow is attained later, as already reported in
Kuehnen et al. (2018b, caption in figure 3b); that is, the mean flow is laminar for τ > τf ,
but it is still a U-flow with a not-yet parabolic profile shortly after τf (see § 6.5). We shall
use the ratio |ΔΠ |/Π0 as a figure of merit to assess how significant the MPG decrement
is to achieve complete laminarisation within the requested time interval. This ratio gives
information about how effective the laminarisation method is to rapidly accomplish the
desired result. In the rotors experiment it is |ΔΠ |/Π0 = 0.9416.

7.4. Annular streamwise jet experiment
Let us now examine the annular jet experiment, whose results are reported in
Kuehnen et al. (2018b, figure 2a), which correspond to measurements made far
downstream the disturbed domain, where the U-flow is fully developed. With Re =
5000, (7.4)–(7.10) yield f = 0.037393, Π0 = 58426, q = 5, χ = 4.7444, ũ = Re/2 =
2500 and Πf = 4Re = 20 000. Note that Π0/Πf = 2.9213, which is approximately the
result reported by Kuehnen et al. (2018b), “. . . by a factor of 2.9 (see Fig. 2a) . . .”.
Inside the disturbed domain the situation is analogous to figure 6, with a dual MPG;
however, at the measurement station the dual MPG cannot be recorded, as they merge into
a single MPG. The instant at which the MPG begins to increase can be identified with the
laminarisation time, τf , see figure 7(a), and τf can be measured directly on Kuehnen et al.
(2018b, figure 2a), yielding t∗f = tf Ũ/D ≈ 35 dimensionless time units. With ũ = 2500,
D = 2R = 0.03 m and ν = 1.0533 × 10−6 m2 s−1, we have a dimensional bulk velocity
Ũ ≈ 0.17555 m s−1. Therefore, a time unit in Kuehnen et al. (2018b, figure 2a) is
equivalent to D/Ũ = 0.171 s, and the laminarisation time would be tf ≈ 6 s, which in the
natural normalisation, (2.3a–c), corresponds to dimensionless time τf = tf ν/R2 = 0.0281.
The corresponding laminarisation length would be Lf = ũτf ≈ 70, or 35D, which is quite
close to the 30D distance reported in the actual experiment (Kuehnen et al. 2018b).
With these values, (7.21) applied to the core flow yields Πd = −165825.9642 using 50
terms in the series, and Πd = −165825.9229 with only five terms; the error is negligible,
for the series converges very fast. Using, instead, (7.22) with τf1 = 0.0281, we obtain
Πd = −147367.64, with an error of 11.13 %. Either way, the effect of the annular jet
upon the core flow is an adverse MPG: the jet itself causes a brusque acceleration in the
wall flow, but since the flow’s Re is not allowed to change, the core flow must decelerate
(through an adverse MPG) to compensate for. The result is not so surprising, if we consider
how much energy the turbulence dissipates from the flow, see figure 2; it is only natural
that a powerful disturbance be needed to eliminate the turbulence. Obviously, the adverse
MPG is only active within the disturbed domain; farther downstream of the disturbed
domain, where the U-flow is fully developed, the dual MPG merges into a residual MPG
Πr that is transmitted and recorded, and this is what Kuehnen et al. (2018b, figure 2a)
shows. In this experiment τf � τc, with τc given by (7.25), which implies the final laminar
Hagen–Poiseuille flow is reached much later, as reported in Kuehnen et al. (2018b, caption
in figure 3b). Shortly after τf the flow is laminar, but it has a mean-velocity U-profile that
is far from being a parabola (see § 6.5). The figure of merit for this experiment, in the core
flow, is |ΔΠ |/Π0 = 3.8382, and complete laminarisation is accomplished much sooner
than in the rotors experiment.

7.5. The 25 radial jets experiment
Finally, we study the 25 radial jets experiment, Re = 3100. Equations (7.4)–(7.10) yield f =
0.0430845, Π0 = 25878, q = 4, χ = 2.8656, ũ = 1550 and Πf = 12 400. According to
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Π

Π0
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ΠL(τ)
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ULF and MPG uncouple

ULF and MPG recouple

Disturbance

still active

ULF constant

Πd

Πf = 4Re

0 τf�τ ττd

Figure 10. Sketch of MPG Π(τ) evolution in the core flow for the 25 radial jets experiment as reported by
Kuehnen et al. (2018b, figure 1d).

(7.1), the centreline mean velocity is u(0) = Π0/4χ = 2257.64, and the ratio between
u(0) and the bulk velocity ũ = Re/2 is 2u(0)/Re ≈ 1.46, which is coincident with
the average value shown in Kuehnen et al. (2018b, figure 1d, bottom panel). The
disturbed domain is characterised by Ld = 50 and τd = 2Ld/Re = 0.03226, whereas
Ũ = 0.10884 m s−1 as calculated from ν = 1.0533 × 10−6 m2 s−1 and D = 2R = 0.03 m.
Measuring directly over Kuehnen et al. (2018b, figure 1d, top panel), we see that the
transient flow begins at approximately t∗1 = t1Ũ/D ≈ 28.1 (corresponding to τ = 0), and
ends at t∗2 = t2Ũ/D ≈ 35.7 (corresponding to τf ), thus yielding t∗f = t∗2 − t∗1 ≈ 7.6, which
in the natural normalisation is τf ≈ 0.009807. With such data, (7.21) applied to the core
flow yields Πd = −174814.42 with 50 terms in the series. No wonder that Πd is a strong
adverse MPG, if we have into account that τf = 0.009807 is over three times lower than
τd = 0.03226 (or Ld ≈ 3.3Lf ), that is, the U-flow is completely laminarised before exiting
the disturbed domain, see figure 10. Apparently, the radial jets set-up is a very compelling
technique for laminarisation. Therefore, τf � τc for this experiment, τc defined in (7.25),
from which follows that the final parabolic laminar Hagen–Poiseuille flow is achieved
much later, in accordance with Kuehnen et al. (2018b, caption in figure 3b). The figure of
merit for this experiment is |ΔΠ |/Π0 = 7.7553, the highest of them all.

7.6. Epilogue to the experiments
If the figure of merit |ΔΠ |/Π0 were a guide to ascertain how proportionally difficult it
is to achieve complete laminarisation, because it takes longer, we might conclude that
the preferred methods would be, in order of decreasing efficiency: radial jets (7.76);
annular jet (3.84); and, finally, four rotors (0.94), which takes the longest to reach the
goal. Apparently, methods involving an adverse MPG in the core flow are more effective
than those decreasing MPG in the whole flow. However, only limited attention should be
paid to |ΔΠ |/Π0, since we have not yet proved its significance.

Regardless of the actual intermediate processes occurring during laminarisation, one
outstanding fact remains: all experiments begin with a turbulent S-flow and end with a
laminar S-flow of identical Re. The initial and final states of the evolution are given, and
the TULF matches them with mathematical certainty. In-between, the process, the stages,
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the details, the timing or other aspects might be different in our approach with respect to
the actual ones occurring in the experiments, but such differences cannot obscure the fact
that the general picture, the qualitative mechanism, is like we have described herein. The
laminarisation process must be as we say, give or take some degrees of freedom, since it is
supported upon the general solution for mean pipe flow. Regrettably, the reported data are
insufficient to devise better models that would adjust to whatever intermediate steps might
have occurred in the U-flows.

Even a very simple model, with almost no features in-between the initial and final states,
yields the desired result. With more data, more sophisticated models can be forged that
would adjust to any observed minutia of the transient mean flow, including number of
stages, duration of each, limit values, degrees of freedom, ... until complete laminarisation
is attained. There are, in principle, infinite ways to arrive at complete laminarisation,
but all of them imply the reduction of MPG beyond the limit of Πf = 4Re, because the
Hagen–Poiseuille flow Re(1 − α2) is the only one compatible with the given Re. This is a
mathematical necessity and cannot be doubted.

We would like to end this epilogue with a plea to Kuehnen et al. (2018b), so that they
repeat their brilliant experiments measuring thoroughly the MPG and RSSRG (or RSS)
field. Such data are not simply important because we say so; they are important because
they appear at the right-hand side in the governing equation for mean pipe flow, (5.3). They
are important because they, and only they, constitute the sources of mean motion (forces).
We take the compromise of inserting the measured data into our equations and reproduce
the observed mean-velocity field.

8. Conclusions and summary

The TULF has been confronted with a challenging set of experimental results, of an
extraordinary nature, which to date remained unexplained. The experiments show various
methods by which turbulence vanishes from initially turbulent pipe flows, in which the
resulting unsteady mean flows (U-flows) do not change their Reynolds number Re during
the process. They constitute outstanding examples of a most important fact: Re is not the
relevant dimensionless number when applied to U-flows, since turbulent U-flows with
rigorously constant Re evolve to the point of becoming laminar, i.e. they change their
dynamics. Having equal Re no longer implies dynamic similarity when applied to U-flows.
This is just another example of why U-flows are much more interesting and revealing than
steady-state mean flows (S-flows).

Furthermore, in principle, the three U-flows examined herein could have had the same
Re, say Re = 4000. In such a case, we would have three different U-flows, departing
from the same turbulent S-flow at Re = 4000 and ending at the same laminar S-flow
at Re = 4000. Three different U-flows, with no dynamic similarity among them, are
each sandwiched between the same S-flows. It follows that Re, the king of S-flows, the
dimensionless group that dictates similarity in S-flow, is almost irrelevant in the realm of
U-flows, and cannot determine by itself a dynamical similarity within U-flows. This single
conclusion alone would be sufficient to justify the present work.

We have first attempted a brief introduction to the TULF, narrowed to S-flows, which has
naturally led to the notions of ULF and PTC that constitute any mean pipe flow, and to the
zero theorem in three different versions. This simple theorem will influence our view of
turbulent pipe S-flows, including the interpretation of the ubiquitous Moody chart. It raises
the MPG to the paramount role of the source of the flow’s underlying laminar motion, and
asserts that a measurement of flow’s MPG suffices to determine the complete laminar
profile of the S-ULF, as well as other properties of the mean S-flow. We have proved,
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mathematically, that the viscous sublayer is the manifestation of the S-ULF in the actual
physical flow.

We have then broadened the scope of studied flows and applied the TULF to solve a
more complicated instance of mean pipe flow, to our knowledge the most comprehensive
U-flow ever solved analytically. The solution is completely general and covers the cases
of variable MPG, variable inclination (gravity), variable wall velocity and variable RSS.
The fully developed mean-velocity field is expressed as a Fourier–Bessel series, which
can be grouped into two main components: the ULF and the PTC. Each component has
its own sources, whose evolution must be followed by the component according to its own
time constants: modify one source and its corresponding component will have to change
accordingly. The general solution permits an enhanced definition of the turbulence index,
ℑ(τ, α), which opens the way to explore extraordinary phenomena like hyperlaminarity
(ℑ(τ, α) > 1).

We have proposed a general mechanism that explains the vanishing of turbulence, called
the laminarisation pattern, which takes a particular form and features for each experiment.
The explication is based upon the TULF and thus is of a mathematical character. The
TULF shows that the story of any U-flow evolution is that of a fluid in pursuit of its
sources: when they become time dependent, the mean U-fields uncouple from their sources
and begin to follow them, each U-field with its own time constants. Only in S-flow do they
recouple and remain coupled while it is stationary. The dynamics of a fluid flow is always
explained through this endless pursuit of its sources. The laminarisation pattern illustrates
that an external energy input into the flow, with the power to reduce drastically the MPG,
will elicit its ULF, thus removing its PTC, and bringing forth a completely laminarised
flow. The laminarisation pattern would affect the whole cross-section or just the pipe’s
core, depending upon the mechanism disturbing the flow.

It has also been shown that customary forms of assessing the turbulence level, such
as root-mean-square value of u′

i or turbulence intensity, might not be sufficiently suitable
for U-flows, since they fail to predict that a U-flow could already be en route to complete
laminarisation, despite the turbulence intensity being very high. This occurs when the high
u′

i is associated with a uniform turbulence, which possesses a negligible radial gradient,
thus leading to a vanishing PTC. Such a confusion would not happen with the turbulence
index field ℑ(τ, α), which always furnishes the correct value for the turbulence level of a
U-flow.

We have offered an informal demonstration that any U-flow must have a deformed
mean-velocity U-profile, when compared with that of equal-Re S-flow. Thus, the flattening
of mean-velocity U-profiles, or any other deformation they might have, is a necessary
consequence of the very fact of being unsteady.

A simple mathematical model, derived from the TULF, has been developed, which
yields to mathematical equations whose results can be contrasted with those reported
in Kuehnen et al. (2018b). Having taken into account the very complex nature of the
experiments and the simplicity of our model, the agreement is noteworthy. Moreover, we
have shown that a dual MPG occurs within the same cross-section of the pipe, especially
for experiments in which the fluid is reinjected into the U-flow. This is a most unstable
situation that can only be sustained through an external energy input. Once the external
input disappears or declines, the two MPGs must merge into a single residual MPG Πr
driving the U-flow, and Πr is what gets measured farther downstream.

The equations derived from said model permit us to calculate the universal time constant
for a laminar U-flow, τc, considered as a dynamical system. The importance of this result
is yet to be pondered since, to the best of our knowledge, it has never been raised before.
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With all due caution, it appears that a new constant of nature should be added to the current
list. Finally, a figure of merit has also been proposed to assess how effective each method
of laminarisation is, the particular instance of 25 radial jets (Re = 3100) being the most
effective.

In summary, we have issued the prediction that any device that could significantly
reduce the MPG in the flow, while maintaining invariable its Reynolds number, will cause
complete laminarisation. This prediction is based upon solid mathematical foundations:
the general solution for the governing equation of fully developed mean pipe flow.
Researchers are invited to imagine new ways of creating a local adverse MPG within a
running turbulent flow, and report their results in profusely detailed papers, so that more
accurate models accounting for complete laminarisation could be devised.

This is the fifth in a series of articles that will explain a number of uncommon
phenomena already reported in the literature, for which an analytical explanation within
the framework of the standard theory (i.e. the theory that does not split the mean-velocity
field) does not seem to be available.
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Appendix A. List of Acronyms

CTD: centreline turbulent dissipation, χ

MPG: mean pressure gradient, Π

PTC: purely turbulent component (of mean flow), uT
RANSE: Reynolds-averaged Navier–Stokes equation
RSS: Reynolds shear stress, σ

RSSRG: Reynolds shear-stress radial gradient, Σ

S-: steady-state fully-developed mean (normally turbulent)
SB-flow: steady-bulk flow, uS(α;τ )
SDoF: spatial degrees of freedom, Π , χ , q
TULF: theory of underlying laminar flow
U-: unsteady fully-developed mean (normally turbulent)
ULF: underlying laminar flow, uL
WMPG: weighted mean pressure gradient, Π̂

WSS: wall-shear stress, σw

Appendix B. Calculation of SDoF after given Re

In this appendix we shall demonstrate (7.4)–(7.7). We suppose that a S-flow of known
Re is given and we want to determine the Pai polynomial u(α), (7.1), which best fits the
mean-velocity S-profile, that is, we must find a suitable set of SDoF Π , χ and q. We also
need the Colebrook–White correlation (White 2016, (6.48)), to calculate f for given Re,
and the correlation u(0) = (1 + 1.3

√
f )ũ, (see White 2016, (6.43)).
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Explanation of experiments with vanishing turbulence

From the definition of f (White 2016, (6.10)), using dimensional quantities,

dP
dz

= −f
ρŨ2

2D
= −f

ρŨ2

4R
, (A1)

and from the zero theorem, (3.6), we get the dimensionless expression in the natural
normalisation, (2.3a–c) and (2.4a–e),

Π = f
ũ2

4
= f

Re2

16
, (A2)

which is (7.4). From the definition of CTD χ and the zero theorem, we get

χ = uL(0)

u(0)
= ReL

(1 + 1.3
√

f )ũ
= Π/4

(1 + 1.3
√

f )Re/2
= f Re

32(1 + 1.3
√

f )
, (A3)

which is (7.5). To determine q we use (7.9), which yields

Re
2

= Π

8
χ + q

χ(q + 1)
= f Re2

128
χ + q

χ(q + 1)
⇒ 1 = f Re

64
χ + q

χ(q + 1)
⇒ f Re = 64

χ(q + 1)

χ + q
,

(A4)
equal to (7.8). This equation is converted into

(χ + q)f Re = 64χ(q + 1) ⇒ q( f Re − 64χ) = 64χ − χ f Re ⇒ q = χ( f Re − 64)

64χ − f Re
,

(A5)
which is (7.6). Since this expression would not result in an integer value for q, we round
it to a near integer (above or below, whichever fits best), and the new value for χ is also
given from (7.8),

f Re(χ + q) = 64χ(q + 1) ⇒ χ( f Re − 64(q + 1)) = −fqRe ⇒ χ = fqRe
64(q + 1) − f Re

,

(A6)
which is (7.7). This ends the demonstration.
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