Canad. Math. Bull. Vol. **57** (3), 2014 pp. 648–657 http://dx.doi.org/10.4153/CMB-2014-021-9 © Canadian Mathematical Society 2014

On the $\mathcal{F}\Phi$ -Hypercentre of Finite Groups

Juping Tang and Long Miao

Abstract. Let *G* be a finite group and let \mathcal{F} be a class of groups. Then $Z_{\mathcal{F}\Phi}(G)$ is the $\mathcal{F}\Phi$ -hypercentre of *G*, which is the product of all normal subgroups of *G* whose non-Frattini *G*-chief factors are \mathcal{F} -central in *G*. A subgroup *H* is called \mathcal{M} -supplemented in a finite group *G* if there exists a subgroup *B* of *G* such that G = HB and H_1B is a proper subgroup of *G* for any maximal subgroup H_1 of *H*. The main purpose of this paper is to prove the following: Let *E* be a normal subgroup of a group *G*. Suppose that every noncyclic Sylow subgroup *P* of $F^*(E)$ has a subgroup *D* such that 1 < |D| < |P| and every subgroup *H* of *P* with order |H| = |D| is \mathcal{M} -supplemented in *G*, then $E \leq Z_{U\Phi}(G)$.

1 Introduction

All the groups in this paper are finite. Most of the notation is standard and can be found in [3,6,7]. In what follows, \mathcal{U} denotes the formation of all supersoluble groups and \mathcal{N} denotes the formation of all nilpotent groups.

Let \mathcal{F} be a class of groups and let H/K be a chief factor of a group G. Then H/K is called *Frattini* provided $H/K \leq \Phi(G/K)$. Moreover, H/K is called \mathcal{F} -central if the semidirect product $[H/K](G/C_G(H/K)) \in \mathcal{F}$. The symbol $Z_{\mathcal{F}}(G)$ denotes the \mathcal{F} -hypercentre of a group G, that is, the product of all normal subgroups H of G whose G-chief factors are \mathcal{F} -central. A subgroup H of G is said to be \mathcal{F} -hypercentral in G if $H \leq Z_{\mathcal{F}}(G)$.

The \mathcal{F} -hypercentre essentially influences the structure of a group. Note that if *G* has a normal subgroup *E* such that $G/E \in \mathcal{F}$ and $E \leq Z_{\mathcal{F}}(G)$, then $G \in \mathcal{F}$ for any concrete classes \mathcal{F} .

Recently, L. A. Shemetkov and A. N. Skiba in [11] proposed the new concept of $\mathcal{F}\Phi$ -hypercentre of G and investigated the structure of $Z_{\mathcal{F}\Phi}(G)$ by using weakly *s*-permutable primary subgroups. Then $Z_{\mathcal{F}\Phi}(G)$ denotes the $\mathcal{F}\Phi$ -hypercentre of G, which is the product of all normal subgroups of G whose non-Frattini G-chief factors are \mathcal{F} -central in G. The subgroup $Z_{\mathcal{F}\Phi}(G)$ is characteristic in G and every non-Frattini G-chief factor of $Z_{\mathcal{F}\Phi}(G)$ is \mathcal{F} -central in G.

Recall that a subgroup H of G is said to be supplemented in G if there exists a subgroup K of G such that G = HK. The relationship between the property of primary subgroups and the supplements of some restricted conditions has been studied extensively by many scholars. For instance, in 1937 Hall [5] proved that a group G

Received by the editors February 28, 2013; revised March 17, 2014.

Published electronically April 28, 2014.

L. Miao is the corresponding author.

This research is supported by NSFC (Grant #11271016), the Postgraduate Innovation Project of Jiangsu Province (No. CXZZ13_0890), and the Natural Science Fund for Colleges and Universities in Anhui Province (Grant #KJ2013B138).

AMS subject classification: 20D10, 20D20.

Keywords: *F*Φ-hypercentre, Sylow subgroups, *M*-supplemented subgroups, formation.

⁶⁴⁸

is soluble if and only if every Sylow subgroup of *G* is complemented in *G*. In 1980, Srinivasan [14] stated that a group *G* is supersoluble if every maximal subgroup of the Sylow subgroups is normal in *G*. In 2000, A. Ballester-Bolinches, Y. Wang, and X. Guo ([2, 15]) introduced the concept of a *c*-supplemented subgroup and proved that *G* is soluble if and only if every Sylow subgroup of *G* is *c*-supplemented in *G*. In 2007, as an interesting application of these generalizations, A. N. Skiba [13] fixed in every noncyclic Sylow subgroup *P* of *G* a group *D* satisfying 1 < |D| < |P| and then investigated the structure of *G* under the assumption that all subgroups *H* with |H| = |D| are weakly *s*-permutable in *G*. Recently, Miao and Lempken [9] considered \mathcal{M} -supplemented subgroups of finite groups and obtained some new characterization of saturated formations containing all supersoluble groups.

As a continuation of this work, we shall investigate extensively the properties of $Z_{\mathcal{F}\Phi}(G)$ in which some primary subgroups are \mathcal{M} -supplemented.

Definition 1.1 A subgroup *H* is called \mathcal{M} -supplemented in a finite group *G*, if there exists a subgroup *B* of *G* such that G = HB and H_1B is a proper subgroup of *G* for any maximal subgroup H_1 of *H*.

Recall that a subgroup *H* is called *weakly s-permutable in G* [11], if there exists a subnormal subgroup *K* of *G* such that G = HK and $H \cap K \leq H_{sG}$. In fact, the following example indicates that the \mathcal{M} -supplementation of subgroups cannot be deduced from weakly *s*-permutable subgroups.

Example 1.2 Let $G = S_4$ and let $H = \langle (1234) \rangle$ be a cyclic subgroup of order 4. Then $G = HA_4$ where A_4 is the alternating group of degree 4. Clearly, since $A_4 \leq G$, A_4 permutes every maximal subgroup of H, and hence H is \mathcal{M} -supplemented in G. On the other hand, we have $H_{sG} = 1$. To see this, suppose first that H is *s*-permutable in G, then H is normal in G, a contradiction. If $H_{sG} = \langle (13)(24) \rangle$ is *s*-permutable in G, then $\langle (13)(24) \rangle$ is normal in G, which is also a contradiction. Therefore H is not weakly *s*-permutable in G.

2 Preliminaries

For the sake of convenience, we first list some results that will be used in the sequel.

Lemma 2.1 ([9, Lemmas 2.1 and 2.2]) *Let G be a finite group. Then the following hold:*

- (i) If $H \le M \le G$ and H is M-supplemented in G, then H is also M-supplemented in M.
- (ii) Let $N \trianglelefteq G$ and $N \le H \le G$. If H is \mathcal{M} -supplemented in G, then H/N is \mathcal{M} -supplemented in G/N.
- (iii) Let K be a normal π' -subgroup and H be a π -subgroup of G for a set π of primes. Then H is M-supplemented in G if and only if HK/K is M-supplemented in G/K.
- (iv) If P is a p-subgroup of G where $p \in \pi(G)$ and P is \mathcal{M} -supplemented in G, then there exists a subgroup B of G such that $P \cap B = P_1 \cap B = \Phi(P) \cap B$ and $|G:P_1B| = p$ for any maximal subgroup P_1 of P.

Lemma 2.2 ([4, Theorem 1.8.17]) Let N be a nontrivial soluble normal subgroup of a group G. If $N \cap \Phi(G) = 1$, then the Fitting subgroup F(N) of N is the direct product of minimal normal subgroups of G that are contained in N.

Lemma 2.3 ([11, Lemma 2.3]) Let $Z = Z_{\mathcal{F}\Phi}(G)$ and N and T be normal subgroups of G.

- (i) Every non-Frattini G-chief factor of Z is F-central in G.
- (ii) $ZN/N \leq Z_{\mathcal{F}\Phi}(G/N)$.
- (iii) If $TN/N \leq Z_{\mathcal{F}\Phi}(G/N)$ and (|T|, |N|) = 1, then $T \leq Z$.

Lemma 2.4 ([1, Lemma 3.5]) *Let P be a normal p-subgroup of G where p is a prime divisor of* |G|*. If every subgroup of P of order p is complemented in G, then* $P \leq Z_{\mathcal{U}}(G)$ *.*

Lemma 2.5 ([16, Lemma 2.8]) Let M be a maximal subgroup of G and let P be a normal p-subgroup of G such that G = PM where p is a prime of |G|.

- (i) $P \cap M$ is a normal subgroup of G.
- (ii) If p > 2 and all minimal subgroups of P are normal in G, then M has index p in G.

Lemma 2.6 ([12, Theorem 9.15]) *Let* \mathcal{F} *be one of the classes* \mathcal{N} *or* \mathcal{U} *. Then*

$$G/C_G(Z_{\mathcal{F}}(G)) \in \mathcal{F}.$$

Lemma 2.7 ([8, Lemma 2.7]) Let P be an elementary abelian p-group of order p^d , $d \ge 2$, let p be a prime, and let $\mathcal{M}_d(P) = \{M_1, \ldots, M_d\}$.

- (i) $X_i = \bigcap_{i \neq j} M_j$ is cyclic of order p.
- (ii) $P = \langle X_1, \ldots, X_d \rangle.$

Lemma 2.8 ([7]) Let G be a group and N a subgroup of G. The generalized Fitting subgroup $F^*(G)$ of G is the unique maximal normal quasinilpotent subgroup of G.

- (i) If N is normal in G, then $F(N) = N \cap F(G)$ and $F^*(N) = N \cap F^*(G)$.
- (ii) $F^*(G) \neq 1$ if $G \neq 1$; in fact, $F^*(G)/F(G) = \text{Soc}(F(G)C_G(F(G)))/F(G)$.
- (iii) $F^*(F^*(G)) = F^*(G) \ge F(G)$; if $F^*(G)$ is soluble, then $F^*(G) = F(G)$.
- (iv) $C_G(F^*(G)) \le F(G)$.
- (v) Let $P \leq G$ and $P \leq O_p(G)$. Then $F^*(G/\Phi(P)) = F^*(G)/\Phi(P)$.
- (vi) If K is a subgroup of G contained in Z(G), then $F^*(G/K) = F^*(G)/K$.

Lemma 2.9 ([9, Lemma 2.7]) *Let* H *and* L *be normal subgroups of* G *and let* $p \in \pi(G)$ *. Then the following hold:*

- (i) $\Phi(H) \leq \Phi(G);$
- (ii) if $L \le \Phi(G)$, then F(G/L) = F(G)/L;
- (iii) if $L \leq H \cap \Phi(G)$, then F(H/L) = F(H)/L;
- (iv) if H is a p-group and $L \leq \Phi(H)$, then $F^*(H/L) = F^*(H)/L$.

650

Lemma 2.10 ([9, Lemma 2.12]) Let p be the smallest prime divisor of |G| and let $P \in Syl_p(G)$. Then G is p-nilpotent if and only if P has a nontrivial proper subgroup D such that every subgroup E of P with |E| = |D| has a p-nilpotent supplement or an \mathcal{M} -supplement in G.

Lemma 2.11 ([9, Theorem 3.2]) Let \mathcal{F} be a saturated formation containing \mathcal{U} and let G be a group with a normal subgroup H such that $G/H \in \mathcal{F}$. Suppose that every noncyclic Sylow subgroup P of H has a nontrivial proper subgroup D such that every subgroup $E \leq P$ of order |D| has a supersoluble supplement or an \mathcal{M} -supplement in G. Then $G \in \mathcal{F}$.

Lemma 2.12 ([9, Theorem 3.6]) Let \mathcal{F} be a saturated formation containing \mathcal{U} and let G be a group with a normal subgroup H such that $G/H \in \mathcal{F}$. Suppose that every noncyclic Sylow subgroup P of $F^*(H)$ has a nontrivial proper subgroup D such that every subgroup $E \leq P$ of order |D| has a supersoluble supplement or an \mathcal{M} -supplement in G. Then $G \in \mathcal{F}$.

Lemma 2.13 ([10, Corollary 2.1]) Suppose that G is a group and

 $\pi(G) = \{p_1, p_2 = p, p_3, \dots, p_n\}, \quad p_1 < p_2 = p < p_3 < \dots < p_n.$

If a Sylow p-subgroup is M-supplemented in G, then G is p-supersoluble.

3 Main Results

Theorem 3.1 Let *E* be a normal subgroup of *G* and let *P* be a Sylow *p*-subgroup of *E* where *p* is the smallest prime dividing |E|. Suppose that *P* has a subgroup *D* such that 1 < |D| < |P| and every subgroup *H* of *P* with order |D| = |H| having no *p*-nilpotent supplement in *G* is \mathcal{M} -supplemented in *G*. Then $E/O_{p'}(E) \leq Z_{U\Phi}(G/O_{p'}(E))$.

Proof Suppose that this theorem is false and consider a counterexample (G, E) for which |G||E| is minimal.

(1) $O_{p'}(E) = 1$:

Suppose that $O_{p'}(E) \neq 1$. By Lemma 2.1(iii) the hypothesis also holds for $(G/O_{p'}(E), E/O_{p'}(E))$ and hence for (G, E), a contradiction.

(2) E = P:

If E = G, by Lemma 2.10, *G* is *p*-nilpotent and hence $E \le Z_{U\Phi}(G)$, a contradiction. Suppose that $E \ne G$. By Lemma 2.1(i), the hypothesis is still true for (E, E), so *E* is *p*-nilpotent by Lemma 2.10. Since $O_{p'}(E) = 1$, we have E = P.

(3) |D| > p:

Suppose that |D| = p. Then every minimal subgroup of *P* having no *p*-nilpotent supplement is \mathcal{M} -supplemented in *G*. Indeed, every minimal subgroup of *P* is complemented in *G*, by Lemma 2.4, $E \leq Z_{\mathcal{U}}(G) \leq Z_{\mathcal{U}\Phi}(G)$, a contradiction.

(4) Suppose that |P:D| > p. Then every subgroup *H* of *P* with |D| = |H| has a *p*-nilpotent supplement in *G*:

Otherwise, if there exists a subgroup H with |D| = |H| that is \mathcal{M} -supplemented in G, then there exists a subgroup B such that G = HB and $H_1B < G$ for every maximal subgroup H_1 of H. By Lemma 2.1(iv), $|G:H_1B| = p$ and $G = P(H_1B)$. Clearly, $P \cap H_1B \leq G$ by Lemma 2.5, so the hypothesis holds for $(G, P \cap H_1B)$. Hence $P \cap H_1B \leq Z_{\mathcal{U}\Phi}(G)$. On the other hand, it follows from $|P/P \cap H_1B| = p$ that the chief factor $P/P \cap H_1B$ is \mathcal{U} -central in G. Hence the theorem is true for (G, E), a contradiction.

(5) $|N| \leq |D|$ for any minimal normal subgroup N of G contained in P:

Assume that |D| < |N|. If some subgroup H of N with order |D| = |H| has a p-nilpotent supplement T in G, then G = HT = NT. Clearly, $N \cap T = 1$, otherwise, G = T is p-nilpotent, a contradiction. So H = N, also is a contradiction. Hence H is \mathcal{M} -supplemented in G, there exists a subgroup B of G such that G = HB and $H_1B < G$ for every maximal subgroup H_1 of H. Clearly, G = HB = NB, and $N \cap B \leq G$. If $N \cap B = N$, then G = B, a contradiction. If $N \cap B = 1$, then H = N, also is a contradiction. Thus we prove (5).

(6) If *N* is a minimal normal subgroup of *G* contained in *E*, then the hypothesis is still true for (G/N, E/N):

If |P:D| = p, by (5), $|N| \leq |D|$. If |D| = |N|, then |P/N| = p and hence $P/N \leq Z_{U\Phi}(G/N)$. If |N| < |D|, then by Lemma 2.1(ii), the theorem is true for (G/N, E/N).

So we may assume |P:D| > p. By (4), every subgroup H of P with |D| = |H| has a p-nilpotent supplement in G. If |N| < |D|, then every subgroup H/N of P/N has a p-nilpotent supplement in G/N. It follows that the hypothesis is still true for (G/N, E/N). If |D| = |N|, then we consider every subgroup M/N of P/N with |M/N| = p. Clearly, M is noncyclic. Otherwise, |N| = p; this contradicts (3). Hence there exists a subgroup H of M such that |H| = |N| = |D| and M = HN. By (4), H has a p-nilpotent supplement in G. Hence M/N also has a p-nilpotent supplement in G/N. It follows that the hypothesis is still true for (G/N, E/N).

(7) The final contradiction:

Let *N* be any minimal normal subgroup of *G* contained in *P*. Then by (6), the hypothesis holds for (G/N, E/N). Hence $E/N \leq Z_{U\Phi}(G/N)$, $N \nleq \Phi(G)$, and |N| > p. Therefore, $\Phi(G) \cap E = 1$. Then by Lemma 2.2, *P* is the direct product of some minimal normal subgroups of *G*. In view of (5), N < P. Hence for some minimal normal subgroup *R* of *G* contained in *P*, $R \neq N$. Then by [3, Lemma A.9.11], $NR/N \nleq \Phi(G/N)$. Therefore |R| = |NR/N| = p, which implies that the theorem is true for (G, E), a contradiction.

The final contradiction completes our proof.

Corollary 3.2 Let E be a normal subgroup of G and let P be a Sylow p-subgroup of E, where p is the smallest prime dividing |G|. Suppose that P has a subgroup |D| such that 1 < |D| < |P| and every subgroup H of P with order |D| = |H| having no p-nilpotent supplement in G is M-supplemented in G. Then $E/O_{p'}(E) \le Z_{\Phi}(G/O_{p'}(E))$.

652

Theorem 3.3 Let E be a p-soluble normal subgroup of G and let P be a Sylow psubgroup of E where p is a prime dividing |E|. Suppose that P has a subgroup D such that 1 < |D| < |P| and every subgroup H of P with order |D| = |H| is \mathcal{M} -supplemented in G. Then $E/O_{p'}(E) \leq Z_{\mathcal{F}\Phi}(G/O_{p'}(E))$, where \mathcal{F} is the class of all p-supersoluble groups.

Proof Suppose that this theorem is false and consider a counterexample (G, E) for which |G||E| is minimal.

(1) $O_{p'}(E) = 1$:

Suppose that $O_{p'}(E) \neq 1$. By Lemma 2.1(iii) the hypothesis also holds for $(G/O_{p'}(E), E/O_{p'}(E))$, and hence for (G, E), a contradiction.

(2) $O_p(E) \neq 1$:

Since *E* is *p*-soluble and $O_{p'}(E) = 1$, we have that the minimal normal subgroup of *G* contained in *E* is an elementary abelian *p*-group, and hence $O_p(E) \neq 1$.

(3) $O_p(E) \cap \Phi(G) = 1$:

Otherwise, if $O_p(E) \cap \Phi(G) \neq 1$, then we may choose a minimal normal subgroup L of G with $L \leq O_p(E) \cap \Phi(G)$. If $|D| \leq |L|$, then we may choose $S \leq L$ with |S| = |D|. By hypothesis, S is \mathcal{M} -supplemented in G. Thus there exists a subgroup B of G such that G = SB and $S_iB < G$ for any maximal subgroup S_i of S. Since $S \leq L \leq \Phi(G)$, we get G = SB = B, a contradiction.

Assume that |D| > |L| and fix a subgroup H of P with L < H and |H| = |D|. If H is \mathcal{M} -supplemented in G, then Lemma 2.1(ii) shows that H/L is \mathcal{M} -supplemented in G/L. Now we easily verify that (G/L, E/L) satisfies the hypothesis of the theorem and $E/L \leq Z_{\mathcal{F}\Phi}(G/L)$ by the induction. It follows from $L \leq O_p(E) \cap \Phi(G)$ that $E \leq Z_{\mathcal{F}\Phi}(G)$, a contradiction. So we may assume that $O_p(E) \cap \Phi(G) = 1$.

(4) The final contradiction:

By Lemma 2.2 and (3), $O_p(E) = R_1 \times \cdots \times R_t$ with minimal normal subgroups R_1, \ldots, R_t of *G*. Let *L* be any minimal normal subgroup of *G* contained in $O_p(E)$. Assume that |D| < |L| for some $L \in \{R_1, \ldots, R_t\}$ and let H < L with |H| = |D|. By hypothesis, *H* is \mathcal{M} -supplemented in *G*, *i.e.*, there exists a subgroup *B* of *G* such that G = HB and $H_iB < G$ for any maximal subgroup H_i of *H*. Now we have G = HB = LB and thus $1 \neq L \cap B \leq G$. Since *L* is minimal normal in *G*, we get $L \leq B$ and hence G = LB = B, a contradiction.

Now let $L \leq H \leq P$ with |H| = |D|. Assume that H is \mathcal{M} -supplemented in G; *i.e.*, there exists $B \leq G$ such that G = HB and $H_iB < G$ for any maximal subgroup H_i of H. Since $|G:H_iB| = p$ by Lemma 2.1(iv) and $O_p(E) \cap \Phi(G) = 1$, there exists maximal subgroup H_i of H with $L \nleq H_i$ and hence $H = LH_i$ as well as G = HB = LH_iB and $L \cap H_iB \leq G$. As L is minimal normal in G, we get $L \nleq H_iB$ and thus $|L| = |G:H_iB| = p$; otherwise, if $L \leq H_iB$, then $H_iB = LH_iB = HB = G$, a contradiction.

Thus $O_p(E)$ is the direct product of some minimal normal subgroup of order p of G. Since $C_E(O_p(E)) = O_p(E)$ and $O_p(E) \le Z(P)$, we have $O_p(E) = P$. Therefore, $E \le Z_{\mathcal{F}\Phi}(G)$, a final contradiction.

Corollary 3.4 Let *E* be a normal subgroup of *G* where

 $\pi(E) = \{p_1, p_2 = p, p_3, \dots, p_n, p_1 < p_2 = p < p_3 < \dots < p_n\}$

and P be a Sylow p-subgroup of E. Suppose that P has a subgroup D such that 1 < |D| < |P| and every subgroup H of P with order |H| = |D| is M-supplemented in G. Then $E/O_{p'}(E) \leq Z_{\mathcal{F}\Phi}(G/O_{p'}(E))$, where \mathcal{F} is the class of all p-supersoluble groups.

Proof By Theorem 3.3, we only need to show that *E* is *p*-soluble. Now we induct on the order of *E*. Since every subgroup *H* of *P* with order |H| = |D| is \mathcal{M} -supplemented in *G*, by Lemma 2.1(i), *H* is \mathcal{M} -supplemented in *E*. Let *T* be a subgroup of *P* with |T| = |D|. By hypothesis, there exists a subgroup *B* of *E* such that E = TB and $T_iB < E$ for every maximal subgroup T_i of *T*. According to Lemma 2.1(iv), we get that $|E:T_iB| = p$ and hence $E/(T_iB)_E$ is isomorphic to a subgroup of the symmetric group S_p of degree *p*. Obviously, $E/(T_iB)_E$ is *p*-supersoluble. If $(T_iB)_E = 1$, then *E* is *p*-soluble. So we may assume that $(T_iB)_E \neq 1$ and then $T_iB \neq 1$. Let *L* be a Sylow *p*-subgroup of T_iB . Actually, *L* is a maximal subgroup of *P*. If |L| = |D|, then T_iB is *p*-supersoluble by Lemma 2.13 and hence *E* is *p*-soluble. So we may assert that |L| > |D|. Therefore, T_iB is also *p*-soluble and then *E* is *p*-soluble.

Corollary 3.5 Let E be a normal subgroup of a group G. Suppose that every noncyclic Sylow subgroup P of E has a subgroup D such that 1 < |D| < |P| and every subgroup H of P with order |H| = |D| is \mathcal{M} -supplemented in G, then $E \leq Z_{U\Phi}(G)$.

Proof By Theorem 3.1, *E* is soluble. Assume that H/K is a non-Frattini *G*-chief factor of *E*. Then for some $p \in \pi(E)$, $HO_{p'}(E)/KO_{p'}(E) \cong H/K$ and by Theorem 3.3, $E/O_{p'}(E) \leq Z_{\mathcal{F}\Phi}(G/O_{p'}(E))$, where \mathcal{F} is the class of all *p*-supersoluble groups. Clearly, H/K is complemented in G/K. There exists a maximal subgroup *M* of *G* such that G/K = (H/K)(M/K) and $(H/K) \cap (M/K) = 1$. So |G:M| is *p*-number and $O_{p'}(E) \leq M$. $G/KO_{p'}(E) = HO_{p'}(E)/(KO_{p'}(E))(M/KO_{p'}(E))$. If $G \neq O_{p'}(E)(H)$, then $HO_{p'}(E)/KO_{p'}(E)$ is complemented in $G/KO_{p'}(E)$ and hence $HO_{p'}(E)/KO_{p'}(E)$ is \mathcal{F} -central in *G*. Therefore, $|HO_{p'}(E)/KO_{p'}(E)| = p$. On the other hand, if $G = O_{p'}(E)H$, then $M = KO_{p'}(E) \leq G$ and |G/M| = p. This completes our proof.

Theorem 3.6 Let E be a normal subgroup of a group G. Suppose that every noncyclic Sylow subgroup P of $F^*(E)$ has a subgroup D such that 1 < |D| < |P| and every subgroup H of P with order |H| = |D| is \mathcal{M} -supplemented in G. Then $E \leq Z_{\mathcal{U}\Phi}(G)$.

Proof Suppose that in this case the theorem is false and let (G, E) be a counterexample with |G||E| minimal. Let F = F(E) and $F^* = F^*(E)$. We use *p* to denote the smallest prime divisor of |F| and let *P* be a Sylow *p*-subgroup of *F*.

(1) $F^* = F \neq E$:

By hypothesis and Lemma 2.11, F^* is supersoluble, and hence $F^* = F \neq E$ by Lemma 2.8(iii) and Corollary 3.5.

(2) $P \leq Z_{\mathcal{U}\Phi}(G)$ and $E/P \nleq Z_{\mathcal{U}\Phi}(G/P)$:

654

Since $P \operatorname{char} F = F^* \operatorname{char} E \trianglelefteq G$, $P \trianglelefteq G$. Hence by hypothesis, $P \le Z_{\mathcal{U}\Phi}(G)$. Therefore, $E/P \nleq Z_{\mathcal{U}\Phi}(G/P)$. Otherwise, $E \le Z_{\mathcal{U}\Phi}(G)$, which is a contradiction.

(3) If $E \neq G$, then *E* is supersoluble by Lemma 2.12.

(4) |D| > p and *P* is noncyclic:

Suppose |D| = p. We show that every minimal subgroup *L* of *P* is normal in *G*. But we first claim that $\Phi(P) = 1$. If not, we pick a subgroup *S* of $\Phi(P)$ with order *p*. By the hypothesis *S* is \mathcal{M} -supplemented in *G*, then *S* is complemented in *G*. That is, there exits a subgroup *K* of *G* such that G = SK and $S \cap K = 1$. Since $S \leq \Phi(P)$, G = SK = K, a contradiction. Therefore $\Phi(P) = 1$, and hence *P* is an elementary abelian normal subgroup of *G*.

Therefore, every minimal subgroup of *P* is \mathcal{M} -supplemented in *G*, and is also complemented in *G*. Let *L* be a subgroup of *P* with order *p*. By hypothesis, *L* is complemented in *G* and there exists a subgroup *K* such that G = LK and $L \cap K = 1$. By Lemma 2.5, $P \cap K \trianglelefteq G$. Since $P = L(P \cap K)$, we have every maximal subgroup of *P* is normal in *G*. Then by Lemma 2.7, every minimal subgroup of *P* is normal in *G*, and hence $P \le Z(F)$. Next we show that the hypothesis is still true for $(G/P, C_G(P) \cap E/P)$. Indeed, $F^* = F \le F^*(C_G(P) \cap E)$, and by Lemma 2.8(ii), $F^*(C_G(P) \cap E) \le F^*$. Hence $F^*(C_G(P) \cap E) = F^*$, and so by Lemma 2.8(i), $F^*(C_G(P) \cap E/P) = F^*/P$, since $P \le Z(C_E(P))$. Now by Lemma 2.1(iii) and Lemma 2.8(vi), we know that $(G/P, C_G(P) \cap E/P)$ satisfies the condition of the theorem, and hence $(C_G(P) \cap E)/P \le Z_{U\Phi}(G/P)$, by the choice of (G, E). On the other hand, by Lemma 2.6, $G/C_G(P)$ is supersoluble, and every *G*-chief factor between *E* and $E \cap C_G(P)$ has prime order. Hence $E \le Z_{U\Phi}(G)$, a contradiction.

(5) If *L* is a minimal normal subgroup of *G* contained in *P*, then |L| > p:

Assume that |L| = p. Let $C = C_E(L)$. Then the hypothesis is true for (G/L, C/L). Indeed, since $F = F^* \leq C$ and $L \leq Z(F)$, we have $F^*(C/L) = F^*/L$ by Lemma 2.8(vi). On the other hand, if H/L is a subgroup of G/L such that |H| = |D|, we have 1 < |H/L| < |P/L| by (4). Besides, H/L is \mathcal{M} -supplemented in G/L by Lemma 2.1(ii). Now by Lemmas 2.1(iii) and 2.8(vi), the hypothesis still holds for (G/L, C/L). Hence $C/L \leq Z_{U\Phi}(G/L)$, which implies that $E \leq Z_{U\Phi}(G)$, a contradiction.

(6) $\Phi(G) \cap P \neq 1$:

If $\Phi(G) \cap P = 1$, then *P* is the direct product of some minimal normal subgroups of *G* contained in *P* by Lemma 2.2. Let *S* be a subgroup of *P* with |D| = |S|. By hypothesis, *S* is \mathcal{M} -supplemented in *G*, and then there exists a subgroup *B* such that G = SB and $S_1B < G$ for every maximal subgroup S_1 of *S*. By Lemma 2.1(iv), $|G:S_1B| = p$. Clearly, there exists at least a minimal normal subgroup *L* of *G* contained in *P* such that $L \nleq S_1B$. Therefore |L| = p, contrary to (5).

(7) E = G is not soluble:

First, we show that $\Phi(P) = 1$. If not, there exists a minimal normal subgroup N of G contained in $\Phi(P)$. If $|D| \leq |N|$, then we choose a subgroup S of N with order |D|. By the hypothesis, S is \mathcal{M} -supplemented in G. So there exists a subgroup K of G such that G = SK and and $S_1K < G$ for every maximal subgroup S_1 of S. Clearly, since $S \leq \Phi(P) \leq \Phi(G)$, G = K, a contradiction. So we may assume that |D| > |N|.

Then the hypothesis still holds for (G/N, E/N). Hence $E/N \leq Z_{U\Phi}(G/N)$, which implies that $E \leq Z_{U\Phi}(G)$, a contradiction. Therefore $\Phi(P) = 1$ and hence *P* is an elementary abelian *p*-group.

Next we will prove E = G. By (3), E is soluble if E < G. Let L be a minimal normal subgroup of G contained in $\Phi(G) \cap P$. By Lemma 2.9(ii), $F/L = F(E/L) = F^*(E/L)$. Hence by (1), $F^*(E/L) = F(E/L) = F^*/L$. On the other hand, if |D| < |L|, then we may choose a subgroup S of L with |D| = |S|. By hypothesis, S is \mathcal{M} -supplemented in G, so there exists a subgroup B such that G = SB and $S_1B < G$ for every maximal subgroup S_1 of S. Clearly, since $S \leq \Phi(G)$, G = B, a contradiction. If |D| = |L|, then let L_1 be a maximal subgroup of L, and then $P = L \times \langle x_1 \rangle \times \cdots \times \langle x_t \rangle$. Let $T = L_1 \langle x_1 \rangle$, where L_1 is the maximal subgroup of L. Clearly, $L \neq T$. By hypothesis, T is \mathcal{M} -supplemented in G. There exists a subgroup B such that G = TB and $T_1B < G$. Let $T_1 = \langle x_1 \rangle L_2$ where L_2 is the maximal subgroup of L_1 . Clearly, $|G:T_1B| = p$ and $L \leq T_1B$. It follows that $T_1B = LT_1B = G$, a contradiction. So we have |D| > |L| and the hypothesis still holds for (G/L, E/L). Hence $E/L \leq Z_{U\Phi}(G/L)$, which implies that $E \leq Z_{U\Phi}(G)$, a contradiction.

(8) The final contradiction:

By (7), $F^* = F = F^*(G)$, G is supersoluble by Lemma 2.12. This contradiction completes our proof.

Corollary 3.7 Let *E* be a soluble normal subgroup of a group *G*. Suppose that every noncyclic Sylow subgroup *P* of *F*(*E*) has a subgroup *D* such that 1 < |D| < |P| and every subgroup *H* of *P* with order |H| = |D| is \mathcal{M} -supplemented in *G*. Then $E \leq Z_{U\Phi}(G)$.

Acknowledgment The authors are grateful for the valuable discussion with Prof. Adolfo Ballester-Bolinches and Prof. Ramon Esteban-Romero.

References

- M. Asaad, Finite groups with certain subgroups of Sylow subgroups complemented. J. Algebra 323(2010), no. 7, 1958–1965. http://dx.doi.org/10.1016/j.jalgebra.2010.02.006
- [2] A. Ballester-Bolinches, Y. Wang, and X. Guo, C-supplemented subgroups of finite groups. Glasg. Math. J. 42(2000), no. 3, 383–389. http://dx.doi.org/10.1017/S001708950003007X
- [3] K. Doerk and T. Hawkes, *Finite soluble groups*. de Gruyter Expositions in Mathematics, 4, Walter de Gruyter, Berlin, 1992.
- [4] W. Guo, *The theory of classes of groups*. Mathematics and its Applications, 505, Kluwer Academic Publishers Group, Dordrecht; Science Press, Beijing, 2000.
- P. Hall, A characteristic property of soluble groups. J. London Math. Soc. 12(1937), 189–200. http://dx.doi.org/10.1112/jlms/s1-12.2.198
- [6] B. Huppert, *Endliche Gruppen. I* Die Grundlehren der Mathematischen Wissenschaften, 134, Springer-Verlag, Berlin-New York, 1967.
- [7] B. Huppert and N. Blackburn, *Finite groups. III.* Grundlehren der Mathematischen Wissenschaften, 243, Springer-Verlag, Berlin-New York, 1982.
- [8] S. Li and X. He, On normally embedded subgroups of prime power order in finite groups. Comm. Algebra 36(2008), no. 6, 2333–2340. http://dx.doi.org/10.1080/00927870701509370
- [9] L. Miao and W. Lempken, On M-supplemented subgroups of finite groups. J. Group Theory 12(2009), no. 2, 271–289.
- [10] V. S. Monakhov and A. V. Shnyparkov, *On the p-supersolubility of a finite group with a* μ -complemented Sylow p-subgroup. Sib. Math. J. **50**(2009), no. 4, 681–686.
- [11] L. A. Shemetkov and A. N. Skiba, On the XΦ-hypercentre of finite groups. J. Algebra 322(2009), no. 6, 2106–2117. http://dx.doi.org/10.1016/j.jalgebra.2009.03.029

- [12] L. A. Shemetkov, Formations of finite groups. (Russian) Nauka, Moscow, 1978.
- [13] A. N. Skiba, On weakly s-permutable subgroups of finite groups. J. Algebra 315(2007), no. 1, 192–209. http://dx.doi.org/10.1016/j.jalgebra.2007.04.025
- [14] S. Srinivasan, Two sufficient conditions for supersolvability of finite groups. Israel J. Math. 35(1980), [11] of offinite subjective control of supercontainty of finite groups. Inder J. Math. Dc (1960), no. 3, 210–214. http://dx.doi.org/10.1007/BF02761191
 [15] Y. Wang, Finite groups with some subgroups of Sylow subgroups c-supplemented. J. Algebra 224(2000),
- no. 2, 467–478. http://dx.doi.org/10.1006/jabr.1999.8079 [16] Y. Wang, H. Wei, and Y. Li, *A generalization of Kramer's theorem and its applications*. Bull. Aust.
- Math. Soc. 65(2002), no. 3, 467–475. http://dx.doi.org/10.1017/S0004972700020517

School of Mathematical Sciences, Yangzhou University, Yangzhou 225002, People's Republic of China e-mail: Imiao@yzu.edu.cn tangjuping_205@126.com