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Abstract
UrinaryO-desmethylangolensin (ODMA) concentrations provide a functional gutmicrobiomemarker of dietary isoflavone daidzeinmetabolism
to ODMA. Individuals who do not have gut microbial environments that produce ODMA have less favourable cardiometabolic and cancer risk
profiles. Urinary metabolomics profiles were evaluated in relation to ODMAmetabotypes within and between individuals over time. Secondary
analysis of data was conducted from the BEAN2 trial, which was a cross-over study of premenopausal women consuming 6 months on a high
and a low soya diet, each separated by a 1-month washout period. In all of the 672 samples in the study, sixty-six of the eighty-four women had
the same ODMA metabotype at seven or all eight time points. Two or four urine samples per woman were selected based on temporal metab-
otypes in order to compare within and across individuals. Metabolomics assays for primary metabolism and biogenic amines were conducted in
sixty urine samples from twenty women. Partial least-squares discriminant analysis was used to compare metabolomics profiles. For the same
ODMAmetabotype across different time points, no profile differences were detected. For changes in metabotype within individuals and across
individuals with different metabotypes, distinct metabolomes emerged. Influential metabolites (variables importance in projection score> 2)
included several phenolic compounds, carnitine and derivatives, fatty acid and amino acid metabolites and some medications. Based on the
distinct metabolomes of producers v. non-producers, the ODMAmetabotypemay be amarker of gut microbiome functionality broadly involved
in nutrient and bioactive metabolism and should be evaluated for relevance to precision nutrition initiatives.
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The relationship between gut microbiota and host physiology is
complex, and it is well recognised that gut microbiota influence
overall health of the human host(1,2), but the mechanisms are not
fully elucidated. One possible pathway is through the metabo-
lism of dietary and other orally consumed compounds, such
as environmental contaminants and medications. This makes
the gut microbiome a potential target for precision nutrition initia-
tives(3). Gut microbial species utilise nutrients consumed by the
human host as a source of fuel, and the gutmicrobiome has a criti-
cal role in energy harvest(4), glucose and lipid metabolism(5), sys-
tematic inflammation(6) and circulating cardiovascular-related
proteins(7), which are physiological factors that are associated risk
of various chronic diseases, including CVD and cancer. An impor-
tant feature of the complex gut microbiome is the considerable
interindividual variation in species that are present. However,
there is notable functional redundancy that is not necessarily cap-
tured by comparing individuals’ microbiota composition or
diversity.

Functional markers based on microbially derived secondary
metabolites and metabolomics help address this challenge, and
they may serve as important targets for precision nutrition initia-
tives. There are several known compounds that can be metab-
olised by microorganisms that reside in the gut and serve as
markers of gut microbiome functionality. Metabotype is a term
is used to describe metabolic phenotyping of individuals(8), and
identifying useful metabotypes has been identified as a means
by which to tailor nutrition or pharmaceutical interventions(3,8–10).
One such metabolite with a corresponding producer/non-
producer metabotype is O-desmethylangolensin (ODMA), which
is microbially derived from the isoflavone daidzein(11–13).
Approximately 10–40% of individuals do not excrete detectable
urinary ODMA concentrations after consuming the parent com-
pound daidzein(11,14–21). Daidzein is an isoflavone, and isofla-
vones are found in high amounts in soya foods. After soya
consumption, approximately 10–40% of individuals do not
excrete detectable urinary ODMA concentrations(11,16–18,20,21).
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Observational studies suggest that ODMA non-producers have
a less favourable breast cancer risk profile(22,23), lower bone
density(24) and higher prevalence of obesity(17,19,20). While
ODMA has low physiological activity in the human host
because the majority of ODMA in circulation is glucuronidated
(bound with a sugar moiety) and has lower binding affinity to
hormone receptors than other compounds(25), blood or urine
ODMA concentrations provide a functional marker of a gut
microbial community capable of metabolising daidzein to
ODMA. The production of ODMA is an interesting metabolite
among gut microbially derived metabolites because it involves
an aromatic ring cleavage(26,27), which is a metabolically costly
biotransformation that suggests this metabolism serves an
important purpose to detoxify polyphenolic compounds.

An underlying hypothesisedmechanism for whyODMAnon-
producers may be at a higher risk for chronic diseases is that they
lack gut microbial functionality to break down potentially harm-
ful compounds. However, there is little know about effects to
other compounds associated with having ODMA-producing or
not having ODMA-producing bacteria. While there is evidence
to support that the ODMA producer v. non-producer metabo-
type may be a functional marker of a gut microbial consortium
capable of C-ring cleavage of compoundsmore broadly than just
daidzein (i.e. bacteria involved in ODMA production are also
involved in metabolism of other phenolic compounds), there
is little known about what compounds may be involved. In par-
ticular, one of the bacteria identified to metabolise daidzein to
ODMA, E. ramulus(28), is well studied and is also involved in
the degradation, through ring cleavage, of other phenolic com-
pounds, including quercetin(29), xanthohumol(30), 8-prenylnari-
genin(30) and other flavonoids(31,32). In order to provide some
foundational evidence for broader impacts of the ODMAmetab-
otype, metabolomics profiling was used to provide an efficient
means to evaluate the differences in small molecule exposure
across groups of individuals. As a foundation for future targeted
research, the objective of this analysis was to evaluate metabo-
lomics profiles in relation to ODMA metabotype among a group
of premenopausal women who participated in soya interven-
tion trial.

Subjects and methods

Study design

Urine biospecimens were collected during a cross-over trial con-
ducted among premenopausal women from 2007 to 2010, and
details about the study design and population are published else-
where(33–35). Briefly, the BEAN2 trial was a cross-over study with
6 months on a high and a low soya diet, each separated by a
1-month washout period. The objective of the BEAN2 study
was to evaluate soya intake and nipple aspirate fluid, a possible
indicator of breast cancer risk. Eligibility criteria for the parent
study included a normal mammogram, no oral contraceptives,
not pregnant, no previous cancer diagnosis or breast surgery,
regular menstrual periods, low soya intake and the ability to pro-
duce nipple aspirate fluid. Participants had high compliancewith
the study regimen based on subjective and objective mea-
sures(33). There were eighty-four women from the original trial

who had eight stored urine samples over the cross-over interven-
tion, from which sixty samples were selected for metabolomics
analysis. Given that the gut microbiome is a dynamic ecosys-
tem(36–38), it is expected that a metabotype can shift over time,
but the magnitude of shift is not well documented. In all of the
672 samples over the 13-month study, sixty-six of the eighty-four
women had the sameODMAmetabotype at seven or all eight time
points. Thus, the majority of individuals (79%) express a relatively
consistent metabotype over time, which supports the utility of the
metabotype as a biomarker. In order to address the objective of the
study, sixty urine samples from twenty women were selected for
metabolomics analysis to compare: (1)metabolomic profiles across
samples within unchanging ODMA-producer metabotype; (2)
metabolomic profiles across samples within changing ODMA-pro-
ducer metabotypes and (3) metabolomics profiles across ODMA-
producer and ODMA non-producer samples.

Identification of Daidzein-Metabolising Metabotypes and
Biospecimen Selection

As part of the parent study, daidzein, equol and ODMA concen-
trations were analysed by liquid chromatography tandem MS
(LC-MS/MS) as detailed elsewhere(39). These previously mea-
sured concentrations were used to classify metabotypes. Each
urine sample was identified as being ODMA producer/non-pro-
ducer and equol producer/non-producer based on a cut-off of
equol/ODMA:daidzein ratio of 0·018(40). All samples, except
two samples, which were excluded from selection, had daidzein
concentrations> 2 nmol/mg creatinine, indicating sufficient
presence of the precursor metabolite for metabolite detection.

Figure 1 illustrates the selection of biospecimens for metab-
olomics analysis and inclusion of samples for the three compar-
isons. In the eighty-four women from the parent study, forty
women (47·6 %)maintained a consistent ODMA-producer (n 39)
or ODMA non-producer (n 1) metabotype across all eight urine
samples in a 2-year period. Two samples were randomly selected
from the one ODMA non-producer and from nine of the ODMA
producers. A random number generator was used to select the
nine ODMA producers and to choose the samples from ten indi-
vidualswith consistentmetabotype from samples that also had the
same equol producermetabotype in the two samples. For individ-
uals with discrepant metabotype during the 2-year time period,
twenty-six women had the same metabotypes at seven time
points (31 %) and eighteen women had a different metabotype
for two to six of the time points (21 %). Of the eighteen women
with at least two instances of producer and non-producer metab-
otype expression, ten women were selected who had at least two
samples each with ODMA producer and ODMA non-producer
status and also a consistent equol metabotype in these samples.
In total, sixty urine samples from twenty premenopausal women
were analysed for untargeted primary metabolism and biogenic
amine metabolomic profiles.

Urinary metabolomic analysis

Urine samples were analysed by the National Institutes of Health
West Coast Metabolomics Center in the Fiehn laboratory, using
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established protocols and more detail on these protocols are
available elsewhere(41). To consider broad aspects of metabolism
relevant to diet, primarymetabolismandbiogenic amines platforms
were evaluated. In brief, primary metabolism metabolites were
assayed using automated liner exchange-cold injection system,
gas chromatography-time of flight mass spectrometry (ALEX-CIS
GCTOF). Primary metabolism platform covers carbohydrates and
sugar phosphates, amino acids, hydroxyl acids, free fatty acids,
purines, pyrimidines, aromatics and exposome-derived chemicals.
The analytical GC column is protected by a 10 m long empty guard
column which is cut by 20 cm intervals whenever the reference
mixture QC samples indicate problems caused by column contam-
inations. At this sequence of column cuts, no detrimental effects are
detected with respect to peak shapes, absolute or relative
metabolite retention times or reproducibility of quantifications.
This chromatographymethod yields excellent retention and sep-
aration of primary metabolite classes (amino acids, hydroxyl
acids, carbohydrates, sugar acids, sterols, aromatics, nucleo-
sides, amines and miscellaneous compounds) with narrow peak
widths of 2–3 s and very goodwithin-series retention time repro-
ducibility of better than 0·2 s absolute deviation of retention
times. Automatic liner exchanges were used after each set of
ten injections, which reduces sample carryover for highly lipo-
philic compounds such as free fatty acids. Mass spectrometry
parameters are used as follows: a Leco Pegasus IV mass spec-
trometer is used with unit mass resolution at 17 spectra s-1 from

80 to 500 Da at –70 eV ionisation energy and 1800 V detector
voltage with a 230°C transfer line and a 250°C ion source. For
data processing, raw data are processed in an untargetedmanner
by free mzMine 2·0 software to identify peaks up to 300 chroma-
tograms. Alternatively, selected peaks were collated and con-
strained into Agilent MassHunter quantification method on the
accurate mass precursor ion level, using the MS/MS information
and the NIST14/Metlin/MassBank libraries to identify metabo-
lites, with manual confirmation of adduct ions and spectral scor-
ing accuracy.

Biogenic amines were assayed using hydrophilic interaction
chromatography-electrospray, quadruple time of flight MS, tan-
dem MS (HILIC-ESI QTOF MS/MS). Biogenic amines platform
covers acylcarnitines, trimethylamine N-oxide (TMAO), chol-
ines, betaines, S-adenosylmethionine, S-adenosylhomocysteine,
nucleotides and nucleosides, methylated and acetylated amines
and di- and oligopeptides. The analytical UHPLC column is pro-
tected by a short guard column which is replaced after 400 injec-
tions, while the UHPLC column is replaced after 1200 extract
injections. This method was validated that at this sequence of
column replacements, and no detrimental effects are detected
with respect to peak shapes, absolute or relative polar com-
pound retention times or reproducibility of quantifications.
This chromatographymethod yields excellent retention and sep-
aration of metabolite classes (biogenic amines, cationic com-
pounds) with narrow peak widths of 5–20 s and very good

Fig. 1. Urine sample selection among participants in a 2-year soya intervention study. Two or four urine samples were selected from twenty women based on O-des-
methylangolensin (ODMA) phenotype expression in eight urine samples over time.
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within-series retention time reproducibility of better than 6 s
absolute deviation of retention times. Internal standards
included were: L-arginine, 1-cyclohyxyl-dodeanoic acid urea,
1-methyl-nicotinamide, acetic anhydride, creatine, creatinine,
alanine, aspartic acid, glutamic acid, N-methyl-histamine, L-car-
nitine, L-glutamine, betaine, butyrobetaine, choline, crotonobe-
taine, trimethylamine N-oxide and valine-tyrosine-valine.

Raw data files are preprocessed without smoothing, three
second peak width, baseline subtraction just above the noise
level and automatic mass spectral deconvolution and peak
detection at signal/noise levels of 5:1 throughout the chromato-
gram. Apex masses are reported for use in BinBase algorithm.
Quantification was reported as peak heights and reported
for all annotated metabolites and for database entries that are pos-
itively detected in more than 10 % of the samples for unanno-
tated metabolites. Samples were normalised based on
creatinine concentrations. Raw data files are available for
download from Metabolomics Workbench (http://dx.doi.
org/10·21228/M88H76; http://dev.metabolomicsworkbench.
org:22222/data/DRCCMetadata.php?Mode=Study&StudyID=
ST001928&Access=UjvO7329; http://dev.metabolomicswork
bench.org:22222/data/DRCCMetadata.php?Mode=Study&Study
ID= ST001929&Access=BluB5019).

Ethics

Procedures were approved by the University of Hawaii IRB for
the parent study and sample collection, and de-identified samples
were sent to theWest Coast Metabolomics Center and de-identified
data was sent to George Mason University (GMU). Due to the de-
identification, this specific sub-studywas reviewed and classified as
not human subjects research by GMU.

Statistical analyses

Stata (version 15) was used for random number generation to
identify samples from the parent study. MetaboAnalyst was
applied for metabolomics analysis of samples across the three
main comparisons (Fig. 1). No data filtering was conducted
because of the relatively small number of features (< 5000).
Prior to analysis, data were log-transformed and scaled using
Pareto scaling (mean-centering and division by the square root
of the SD for each variable). Normalisation was visually
inspected. For each of the comparisons, the following analyses
were performed: univariate t tests (false discovery rate cut off for
P< 0·1was applied) and partial least squares discriminant analy-
sis (PLS-DA). Variables importance in projection (VIP) for PLS-
DA were identified from PLS-DA. These analyses were per-
formed on data setswith unannotated and annotatedmetabolites
(complete set) and restricted to annotated only metabolites
(annotated subset).

Results

For women compared across two time points with the same
ODMA metabotype, no significant difference in the overall pri-
mary metabolism or biogenic amine profiles in PLS-DA analysis

was detected (Fig. 2(a) and (b)). The first five components of the
PLS-DA analysis explained 36·5 % of variation for primary
metabolism and 34·1 % of variation for biogenic amines. When
individuals changed metabotype and also across producers
and non-producers, there was distinct separation of the overall
profiles (Fig. 2(c)–(f)). When individuals changed metabotype,
the first five components of PLS-DA analysis explained 46·9 %
of variation for primary metabolism and 40·1 % for biogenic
amines. When comparing interindividual differences across
ODMAmetabotype, the first five components of PLS-DA analysis
explained 45·8 % of variation for primary metabolism and 44·8 %
for biogenic amines. The ODMA non-producer metabotype
exhibited tighter clustering than the ODMA producer metabo-
type (Fig. 2(e) and (f)).

Across time points when individuals kept the same metabo-
type, no primary metabolism or biogenic amine metabolites had
a greater than 1·5-fold change between the paired time points
and no statistically significant difference was seen in univariate
analysis (data not shown). Unannotated metabolites were
common among the VIP> 2 for PLS-DA. For each of the compar-
isons, the annotatedmetabolites that had a VIP> 2 are presented
in Table 1. For comparisons across individuals with different
metabotypes (Comparison 3), thirty-three annotatedmetabolites
differed in raw t tests (P< 0·01; eight primary metabolism and
twenty-five biogenic amines), but did not remain significant with
application of false discovery rate (Table 1). A complete listing of
results comparing annotated metabotypes across ODMAmetab-
otype (interindividual and intraindividual differences) is avail-
able in Supplemental Table 1. There were some metabolites
with P< 0·01 in the comparisons that did not have a VIP> 2.
For comparison 1 (intraindividual, same metabotype across time
points), this included malic acid. For comparison 3 (interindivid-
ual, different OMDA metabotypes), this included 2-hydroxy-4-
methoxybenzaldehyde and 4-aminomethylcyclohexanecarbox-
ylic acid.

For the within-individual comparison of two samples, the
compounds that had a VIP> 2 and higher magnitude (not sta-
tistically significant) at the non-producer time point included
several phenolic compounds (liquiritigenin, phlorobenzophe-
none, oxybenzone, piperine and lofexidine), ergothioneine
and sucrose (Table 1). Carnitine and some its derivatives were
lower at non-producer time point in the within-person compari-
son, but higher in ODMA non-producers for the between-indi-
vidual comparison. Other differences included fatty acid
metabolites, amino acids and metabolites, alkaloids and several
medications.

Discussion

Given the lack of information about the importance of the
ODMA metabotype on host metabolism of other compounds
but the known associations of ODMA metabotype with health
outcomes(17–20,22–24), this studywas undertaken to exploremech-
anisms by which the ODMA metabotype may serve as a marker
of microbial metabolism beyond daidzein. This type of work is
important for informing the utility of the ODMAmetabotype as a
potential target for precision nutrition. Overall, the results
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suggest that urinary metabolomics profiles are associated with
ODMAmetabotypes and suggest some avenues for future work.

No difference in metabolomics profiles for primary metabo-
lism or biogenic amineswere seen among individuals expressing
the same ODMAmetabotype at different time points, but metab-
olomics profiles differed distinctly when individuals changed
metabotype across time and between women expressing differ-
ent ODMA metabotypes. This supports a larger impact on
metabolism that is associated with gut microbial environments
capable or not capable of metabolising daidzein to ODMA.
There is one other study published to-date that has considered
metabolomics in relation to the ODMA metabotype. In Reverri
et al.(42), men and women with higher cardiometabolic risk were
divided into groups based on combined equol and ODMA
metabotypes: non-producers of equol and ODMA, producers
of equol and ODMA and producers of ODMA but not equol.
The researchers did not observe any individuals who were pro-
ducers of equol but notODMA in their study sample. In their PLS-
DA analysis, they observed some separation across the groups
for serum metabolomics, but it was not statistically significant.
In contrast to the analysis here, they did not see differences
across ODMA producers and non-producers in urine metabolo-
mics when comparing ODMA producers and non-producers in
equol non-producers. These observationsmay differ for a variety
of reasons, including differences in metabolomics assays and

study participants (men and women v. women only, and cardi-
ometabolic risk v. healthy). Our studywas not designed to evalu-
ate the combined impacts of equol andODMAmetabotypes, and
future studies could consider the metabotype combination of
equol producer/non-producer and ODMA producer/non-
producer.

The ODMA metabotype provides a functional marker of
gut microbial metabolism of daidzein to ODMA. Some bacteria
have been identified in vitro to convert daidzein to ODMA,
including Aeroto_AUH-JLC108 (derived from Clostridium sp
AUH-JLC108(43), Eubacterium ramulus(28), Clostridium sp
HGH 136(44) and Clostrium rRNA cluster XIVa)(45). While it pos-
sible that other bacteria can metabolise daidzein to ODMA, they
have not yet been identified, Eubacterium ramulus has been
well studied and is informative towards the hypothesis that
ODMA producers and non-producers may be a marker of
metabolism of other compounds beyond daidzein. Eubacterum
ramulus is also involved in the degradation or metabolism of
other polyphenolic compounds, including quercetin(29), xantho-
humol(30), 8-prenylnarigenin(30) and other flavonoids(31,32).
These observations provide evidence that at least one of the bac-
teria involved in ODMA production metabolises other polyphe-
nolic compounds. This observation that the directionality of
some phenolic compounds was higher when individuals were
ODMA non-producers than producers provides further support

Fig. 2. First two components from partial least squares discriminant analysis (PLS-DA) comparing primary metabolism and biogenic amines untargeted metabolomics
profiles in paired (within individual) comparisons across sameO-desmethylangolensin (ODMA) phenotype (1); paired comparisons across different phenotypes (2); and
unpaired (across individuals) comparisons of ODMA non-producer and ODMA producer phenotypes.
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Table 1. Metabolites identified from partial least squares discriminant analysis (PLS-DA) with variable importance in projection>2 for untargeted metabolomics across between and within persons and
metabolites with a raw t test P< 0·01 for between person comparison of O-desmethylangolensin (ODMA) non-producer v. producer metabotype

Comparison 1 Comparison 2 Comparison 3 Comparison 3

Metabolites
VIP > 2

Time 1 v.
Time 2

p-
value Metabolites VIP> 2

ODMA non-pro-
ducer v. producer

P-
value Metabolites VIP > 2

ODMA non-pro-
ducer v. producer P-value

Metabolites with t test
raw P< 0·01

ODMA non-pro-
ducer v. producer

Primary metabolism Galactonic acid higher 0·0231 Creatinine lower 0·0879 Tartaric acid lower 0·0557 Succinic acid lower
Gluconic acid higher 0·0729 Glycerol-3-galactoside higher 0·5422 Dehydroascorbic acid higher 0·0675 N-carbamylglutamate higher
Galactose higher 0·1460 Catechol lower 0·9219 Citric acid lower
Quinic acid lower 0·0405 N-acetyl-d-hexosamine higher 0·4316 Threonine higher
Lyxitol higher 0·0405 Hydroxyproline higher 0·4202 Xylose lower
Glucose higher 0·2801 Glycolic acid lower 0·3337 Dehydroascorbic acid higher

Phenol higher
Tartaric acid lower

Biogenic amines Scopoletin lower 0·0332 Liquiritigenin higher 0·2361 Trigonelline lower 0·0021 4-Aminobenzoic acid lower
Atomexetine higher 0·1403 Ranitidine lower 0·1775 Pirimiphos-ethyl higher 0·0085 Trigonelline lower
Dopamine lower 0·0010 Phlorobenzophenone higher 0·2807 5-Aminoimidazole-4-car-

boxamide
higher 0·0024 2-Aminophenol lower

Pirimiphos-ethyl lower 0·0312 Cetraxate lower 0·2091 Acetylcarnitine higher 0·6426 3-Carboxypropyltrimethyl-
ammonium cation

higher

Moclobemide lower 0·0290 8-Oxo-2-deoxyadeno-
sine

lower 0·9332 3-Carboxypropyltrimethyl-
ammonium cation

higher 0·4387 3-Hydroxybutyrylcarnitine higher

Muramic acid lower 0·1096 1,3,7-Trimethyluric acid lower 0·0273 Propionylcarnitine higher 0·0486 N-Carboxyethyl-gamma-
aminobutyric acid

lower

2-phosphonobuty-
ric acid

higher 0·0440 Oxybenzone higher 0·2118 Ecgonine higher 0·4627 Acetylcarnitine higher

Agmatine lower 0·1851 3-
Carboxypropyltrimet-
hyl-ammonium

lower 0·1519 Taurine higher 0·1348 3-Hydroxyanthranilic acid lower

8-oxo-2-deoxya-
denosine

higher 0·0629 Piperine higher 0·1056 4-Hydroxyhippuric acid lower 0·8669 Carnitine higher

Indolelactic acid higher 0·0443 Taurine lower 0·1602 Carnitine higher 0·3990 Methionine higher
Lofexidine higher 0·0892 N-Methyltyrosine lower 0·5603 3-Methylcrotonylglycine lower
threo-Dihydrobupropion lower 0·0736 Methionine higher 0·0802 Homogentisic acid higher
Ergothioneine higher 0·0488 Gly-val lower 0·9982 Ecgonine higher
Propionylcarnitine lower 0·1934 3-Hydroxybutyrylcarnitine higher 0·0220 1_15N2-L-Arginine iSTD lower
Anserine lower 0·4770 5-Methoxy-3-indoleacetic

acid
lower 0·4639 Propionylcarnitine higher

N-Acetylcytidine lower 0·3223 N-
Benzyloxycarbonylglyc-
ine

lower > 0·999 Pipecolic acid lower

Synephrine lower 0·2324 Oxazepam lower 0·1348 4-Quinolinecarboxylic acid lower
Acetylcarnitine lower >0·999 5-Aminoimidazole-4-car-

boxamide
higher

Triethylene glycol
monobutyl ether

lower 0·2324 2-Acetylpyrazine higher

Carnitine lower 0·1782 3-Dehydrocarnitine lower
Pirimiphos-ethyl lower 0·3853 N-2-Furoylglycine lower
Sucrose higher 0·1602 Methohexital higher

Methacholine cation higher
Lofexidine lower
N-Acetylphenylalanine lower
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for the idea that this metabotype is associated with a lower
capability for the metabolism of phenolic compounds more
broadly than just ODMA. Future in vitro work with other com-
pounds would be informative towards understanding the extent
by which ODMA-producing bacteria may be influential.

The biotransformation of daidzein to ODMA involves an aro-
matic ring cleavage(26,27), which is a metabolically costly reaction
and suggests this metabolism serves an important purpose in the
breakdown of polyphenolic compounds. Many of these poly-
phenolic compounds are also found in diet and medications
and have potential health-promoting effects through anti-inflam-
matory or other mechanisms(46–48). On possible benefit of under-
standing how the ODMA metabotype functions is better
characterisation of interindividual differences based on gut
microbiome functionality can aid in identifying foods that may
have more of health-promoting benefit in particular individuals.
Another possible benefit of understanding how the ODMA
metabotype functions is providing information about potential
mechanisms by the gut microbiome influences cancer and
cardiovascular health. The results here provide support that
the ODMA metabotype may be involved in the metabolism
of other compounds that are influential in health. For exam-
ple, metabolism of scopoletin, piperine and trigonelline
tracked with ODMA metabotype which are bioactives
observed in animal and in vitro models to have anti-cancer
or anti-inflammatory effects(49–52). More work is needed to
understand what specific aspects of composition or function-
ality of the ODMAmetabotype are involved in the metabolism
of health-related compounds in order to fully harness utility in
disease prevention or treatment.

Some limitations of this study should be considered in the
interpretation of the results and foundation for future work.
Women in the parent study were all premenopausal and con-
sumed soya; therefore, these results may not be generalisable
to other age groups or men. Other than providing the substrate
daidzein, soya consumption is not known to influence the ability
to produce ODMA(21,53), and the regular consumption of soya is
not likely to influence the overall differences in metabolomics
profiles. However, there is the possibility for unmeasured con-
founding by other dietary factors. Given that there is no evidence
for dietary differences between ODMA producers and non-pro-
ducers in other studies, dietary factors are unlikely to fully
explain the differences in metabolomics profiles observed here.
A strength and unique feature of this study is the availability of
samples collected at multiple time points to evaluate intraindi-
vidual differences in metabolomics profiles. This design pro-
vides control for confounding of numerous personal
characteristics that are consistent over time. However, future
studies might consider collecting and controlling for dietary
intake. Another limitation of the work is that there was a small
number of women and lack generalisability, but these results
provide important foundations for future work with larger and
more diverse study populations.

Nearly 80 % of women in the parent maintained a consistent
ODMAmetabotype over 13months (seven or eight of eight urine
samples being producer or non-producer). Understanding fac-
tors that drive individuals to change metabotype is another area
of future work to fully elucidate the utility of the ODMA

metabotype as a target for precision nutrition. These metabolo-
mics analyses observed differences in urinarymetabolomics pro-
files by ODMAmetabotypew and these differences tracked with
changes in metabotype within individual women. Overall, these
observations provide further support for the hypothesis that
microbial communities capable of metabolising ODMAmay also
metabolise other compounds important for health. Larger
human studies in a variety of populations are needed to confirm
these observations and, in order to identify broader impacts for
chronic disease mitigation, future in vitrowork could be used to
evaluate the role of ODMA metabotype in the metabolism of
other compounds.
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