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Brazil (cleto@mat.ufpb.br)

(Received 1 June 2022)

Abstract Let k be a field of characteristic zero and let ΩA/k be the universally finite differential module
of a k -algebra A, which is the local ring of a closed point of an algebraic or algebroid curve over k.
A notorious open problem, known as Berger’s Conjecture, predicts that A must be regular if ΩA/k is
torsion-free. In this paper, assuming the hypotheses of the conjecture and observing that the module
HomA(ΩA/k,ΩA/k) is then isomorphic to an ideal of A, say h, we show that A is regular whenever
the ring A/ah is Gorenstein for some parameter a (and conversely). In addition, we provide various
characterizations for the regularity of A in the context of the conjecture.
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1. Introduction

A long-standing conjecture posed by R. W. Berger [3] states the following:
Berger’s Conjecture. Let k be a field of characteristic zero and let A be a
one-dimensional reduced local ring which is either

k[X1, . . . , Xn](X1,...,Xn)/A or k[[X1, . . . , Xn]]/A,

where the X i ’s are n ≥ 2 indeterminates over k and A stands for an ideal. If the
(universally finite) module ΩA/k of k -differentials of A is torsion-free, then A is regular.

Example 1. The standard and easiest illustration is the cuspidal plane cubic, that is,
the local domain A = C[[X,Y ]]/(Y 2−X3) = C[[x, y]]. We have ΩA/C ∼= A2/A(−3x2, 2y),
which, as expected, has non-trivial torsion. For instance, if ω ∈ ΩA/C \ {0} is the
differential corresponding to the image of the vector (−3xy, 2x2) ∈ A2, then xω = 0.
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Remark 2. In Berger’s problem, the local k -algebra A is not required to be an integral
domain (even though this constitutes a fundamental case), and moreover, in the algebroid
case, its defining ideal is not required to be generated by polynomials. Also, the original
statement assumes the field k to be perfect only, but as in Berger’s survey [5] we restrict
ourselves to the characteristic zero case. The conjecture has been confirmed in a number of
special situations; see, for instance, Bassein [2], Berger [3, 4], Buchweitz and Greuel [7],
Cortiñas et al. [11], Cortiñas and Krongold [10], Güttes [15], Herzog [17], Herzog and
Waldi [21, 22], Isogawa [26], Pohl [28], Scheja [29] and Ulrich [31]. We also refer to
Herzog’s survey [19] about this and other differential conjectures, for instance, the so-
called rigidity conjecture (cf. also Herzog [17, 18] and Ulrich [31]), which is closely related
to the problem considered here (see Remark 13).

In this note, we start from the fact that the key hypothesis of the conjecture allows us to
realize the endomorphism module HomA(ΩA/k,ΩA/k) as an ideal hA/k of A (Lemma 2).
Then, our main result (Theorem 4) characterizes when A is regular and shows that, in
order to solve Berger’s Conjecture, it suffices to prove that A/ahA/k can be taken as
Gorenstein for some parameter a of A.

Several other characterizations for the regularity of (A,m) in the context of Berger’s
Conjecture (hence, assuming ΩA/k to be torsion-free) are given. Later, we mention some
of them.

Proposition 6 makes use, in particular, of the vanishing of (co)homology modules and
shows, among other equivalences, that A is regular if and only if

ExtiA(ΩA/k,m
ν) = 0 for some i, ν ≥ 1.

In Proposition 8 and Corollary 9, we apply a similar approach but eventually exploring
the finiteness of the injective dimension of certain modules; for instance, in the latter, it
is observed that A is regular if and only if injdim HomA(ΩA/k,ΩA/k) <∞.

In Lemma 12, we use a suitable Artinian derivation module to provide a numerical
characterization of the vanishing of Ext1A(ΩA/k, A), and this turns out to be one of the
key ingredients to Corollary 14, which also characterizes when A is regular.

Another result, Corollary 16, has as a consequence the fact that if in addition A
is a Gorenstein domain, then A is regular, provided that the tensor product module
hA/k ⊗A HomA(hA/k, A) is torsion-free and

⋃
j≥1

hjA/k :A′ h
j
A/k = hA/k :A′ hA/k,

where A
′

is the integral closure of A in its fraction field.
Finally, Corollary 19 shows that A is regular if and only if the quotient ring

RA(hA/k)/(t2 + at+ b)A[t] ∩RA(hA/k)

is Gorenstein for some – equivalently, all – a, b ∈ A, where RA(hA/k) =
⊕

i≥0 h
i
A/kt

i

(hence, an A-subalgebra of A[t]) is the Rees algebra of the ideal hA/k.
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2. Preliminaries

2.1. Conventions and basics

Throughout the paper, by ring, we tacitly mean Noetherian, commutative, unital ring.
The set of zero divisors of a ring S is equal to

⋃
p∈AssS p, where as usual AssS denotes

the (finite) set of associated primes of S. We say that an S -module M is finite, simply, if
it is finitely generated over S. The S -torsion submodule of M is formed by the elements
that are killed by some non-zero-divisor of S. If such submodule is trivial, then M is said
to be torsion-free (over S ). We say that a finite S -module M has a (generic, constant)
rank, say r ≥ 0, if the Sp-module Mp = M ⊗S Sp is free of rank r for every p ∈ AssS.
For instance, an ideal containing a non-zero-divisor has rank 1, and any finite module
over a domain has a rank.

Now let (S, n) be a local ring. We denote the n-depth of a finite S -module M by
depthM . Thus, M is maximal Cohen-Macaulay over S if depthM = dimS. If S is a
Cohen–Macaulay local ring with a canonical module, say ωS (which is unique up to
isomorphism), then it is well-known that M is maximal Cohen–Macaulay if and only if
ExtiS(M,ωS) = 0 for all i ≥ 1. For further information, see [6].

2.2. Differentials

Let k be a ring and S be a k -algebra. Consider the tensor product algebra S⊗k S and
the ‘diagonal’ ideal D ⊂ S⊗k S generated by all elements of the form x⊗ 1− 1⊗x, with
x ∈ S. It is easy to see that D is the kernel of the natural multiplication map S⊗kS → S,
so that (S ⊗k S)/D ∼= S. This endows D/D2 with a natural structure of an S -module,
which is denoted

DS/k := D/D2,

the so-called module of Kähler differentials of S over k. This S -module is finite if, for
example, the k -algebra S is essentially of finite type, but it is important to recall that
DS/k may not be finite in general and such a pathology can occur even if S is a regular
local ring; for instance, if S = k[[X1, . . . , Xn]] is a formal power series ring over a field k
of characteristic zero, then DS/k is not finite (see [27, Example 5.5(a)]).

For some classes of k -algebras S, there exists, however, a suitable modification of DS/k,
typically written ΩS/k and called universally finite differential module of S over k, which
turns out to be a finite S -module. For instance, if S is either essentially of finite type
over k or a complete local ring (S, n) such that S/n is a finite extension of a field k, then
ΩS/k does exist; in the former case, we simply put ΩS/k := DS/k, and, in the latter,

ΩS/k := DS/k/
⋂
i≥0

niDS/k.

If, for example, k is a field and S = k[[X1, . . . , Xn]], then ΩS/k is free of rank n. Finally,
it should be mentioned that the formation of the universally finite differential module
does not commute with localization in general. For the theory, see [27], also [19].
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3. One-dimensional regular local rings

3.1. Main result

Before stating our main result, we introduce some notation as well as a basic lemma.

Notation 1. Let k be a field of characteristic zero and let A be a local ring which is a
quotient of either k[X1, . . . , Xn](X1,...,Xn) or k[[X1, . . . , Xn]]; in particular, ΩA/k exists.
Throughout the paper, we set

HA/k := HomA(ΩA/k,ΩA/k).

Lemma 2. Let k be a field of characteristic zero and let A be a one-dimensional
reduced local ring which is a quotient of either k[X1, . . . , Xn](X1,...,Xn) or k[[X1, . . . , Xn]].
The following assertions hold:

(i) ΩA/k has rank 1 as an A-module.
(ii) If ΩA/k is torsion-free, then HA/k can be identified with an ideal of A.

Proof. First, note that, being a reduced one-dimensional local ring, A must be
Cohen–Macaulay. The assertion (i) is well known and standard notably in the algebraic
case. In the algebroid case, it was mentioned, for example, in [28, proof of Lemma 1], and
moreover proofs can be found in the literature under the hypothesis that A is an integral
domain. Below we give a proof without assuming this condition.

Write A = B/A, where B = k[[X1, . . . , Xn]] is a formal power series ring over k and
A ⊂ B is a radical proper ideal. By [27, Corollary 11.10], the A-module ΩA/k fits into
the conormal sequence

A/A2 −→ An −→ ΩA/k −→ 0.

Explicitly, the map A/A2 → An sends the class (modulo A2) of any given f ∈ A
to (∂f/∂x1, . . . , ∂f/∂xn) ∈ An, where ∂f/∂xj stands for the image in A of the formal
partial derivative ∂f/∂Xj , for every j = 1, . . . , n. Hence, this map has kernel A〈2〉/A2,
where A〈2〉 is the so-called second differential power of A, that is, the subideal formed
by the g ∈ A such that ∂g/∂Xj ∈ A for every j = 1, . . . , n. Now, consider the second
symbolic power A(2) =

⋂
P(A2BP ∩B), where P ⊂ B ranges over the associated primes

of the B -module B/A. Since A is radical and char k = 0, we have A(2) = A〈2〉 by the
general versions of the Zariski–Nagata theorem obtained in [12, § 2.1] (which, as pointed
out therein, hold as well in the present case of power series rings). It follows a short exact
sequence

0 −→ A/A(2) −→ An −→ ΩA/k −→ 0.

Therefore, in order to prove that ΩA/k has rank 1, it suffices to show that A/A(2)

has rank n − 1. As is well-known, the torsion of the conormal module A/A2 is precisely
A(2)/A2, which then has rank zero. Thus, by the short exact sequence of A-modules
0 → A(2)/A2 → A/A2 → A/A(2) → 0, it suffices to check that A/A2 has rank n − 1.
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But this is true (see, e.g., [6, Exercise 4.7.17]) since A is reduced – hence, generically a
complete intersection – and Cohen–Macaulay, and since n− 1 = heightA.

Finally, to prove (ii), set H := HA/k for simplicity. Having shown that ΩA/k has rank
1 as an A-module, we get that H has rank 1 as well; indeed, we can write

Hp
∼= HomAp((ΩA/k)

p
, (ΩA/k)

p
) ∼= HomAp(Ap, Ap) ∼= Ap

for any minimal prime p of A. It is also clear that H is torsion-free since so is ΩA/k by
assumption. It follows that H affords an embedding into A and hence is isomorphic to
the image, which is a non-zero ideal of A. �

Notation 3. Consider the setting and hypotheses of Lemma 2(ii). As we have seen,
we can fix an A-module isomorphism between HA/k and an ideal of A; throughout the
paper, such an ideal will be denoted hA/k, or simply h. Theoretically, its generators
can be seen in the usual way. Consider generators HA/k =

∑µ
j=1Aξj of HA/k as an A-

module. According to the fixed embedding HA/k ⊂ A, each ξj corresponds to a uniquely
determined αj ∈ A, so that hA/k = (α1, . . . , αµ).

Our result is as follows.

Theorem 4. Assume the setting and hypotheses of Berger’s Conjecture. The following
assertions are equivalent:

(i) A is regular.
(ii) A/ahA/k is a hypersurface ring for some (any) parameter a ∈ m.
(iii) A/ahA/k is Gorenstein for some (any) parameter a ∈ m.

Proof. It is a well-known fact that ΩA/k is free if and only if A is regular (see
[27, Theorem 14.1], where the hypothesis char k = 0 is required). Consequently, if the
one-dimensional local ring A is regular, then HA/k is free, that is, the ideal h is princi-
pally generated by a non-zero-divisor, say b. Hence, if a ∈ m is a parameter, the ring
A/ah = A/(ab) is a hypersurface ring. Also recall that hypersurface rings are Gorenstein.
This proves (i)⇒(ii)⇒(iii).

It remains to show that (iii)⇒(i), which is the core of the proof. Since ΩA/k is torsion-
free of rank 1, we can fix a proper ideal o of A such that

ΩA/k
∼= o.

Since A is one-dimensional and ΩA/k is torsion-free, o is a maximal Cohen–Macaulay
A-module and then, as an ideal, it must be m-primary. Hence, as, in addition, the residue
field of A is infinite, there exists a non-zero-divisor x ∈ m such that the principal ideal
(x ) is a (minimal) reduction of o (this follows, e.g., from [24, Theorem 8.6.3]). Let T
denote the total quotient ring of A, that is, T = W−1A, where W is the multiplicative
set formed by the non-zero-divisors of A. Consider the A-submodule F ⊂ T formed by
the fractions y/x with y ∈ o. Clearly, F ∼= o as A-modules. Let F : F = {σ ∈ T |σF ⊂ F}.
Each a ∈ A satisfies ay/x ∈ F for all y ∈ o, and moreover, 1 = x/x ∈ F. Hence,
A ⊂ F : F ⊂ F. Observe that the co-kernel F of the latter inclusion is of finite length; the
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argument is standard, but for completeness, we provide it here. First, we may identify
A ∼= {a/x | a ∈ (x)} ⊂ F, which is the kernel of the natural epimorphism F → o/(x) given
by y/x 7→ ymod(x) for y ∈ o. In the present setting, the A-module o/(x) is of finite
length, and so is F/A, and the induced epimorphism

F/A −→ F/(F : F) = F

forces F to be of finite length as well. It will be also useful to notice that 1 /∈ mF.
Indeed, assuming otherwise and using the fact that the integral closure A

′
of A in T

contains F (to see this, recall (x ) is a reduction of o and apply [24, Corollary 1.2.5]), we
would get 1 ∈ mA′, hence 1 ∈ mA′ ∩A = m, a contradiction.

Now we claim that, even more, the hypothesis (iii) forces the equality F : F = F to
hold. To prove this, suppose by way of contradiction that the finite length A-module F
is non-zero. Then its socle contains a non-zero element, say u. Note there exists Fu ∈
HomA(F,F), which sends 1 to u. To obtain this map, first notice that the natural A-
module isomorphism

SocA(F) ∼= HomA(k,F)

gives the well-defined non-zero A-linear map k → F given by 1 + m 7→ u. Moreover, as
shown earlier, 1 is part of a minimal generating set of F, so that 1 +mF is part of a basis
for the k -vector space F/mF. Hence, there is a k -linear map (which is also an A-module
homomorphism) F/mF → k such that 1 + mF 7→ 1 + m. Finally, we define F u simply
by the composite F → F/mF → k → F. Now, let π ∈ HomA(F,F) denote the natural
projection. We have an exact sequence

HomA(F,F) −→ HomA(F,F) −→ Ext1A(F,F : F).

Because A is reduced and T is a direct product of finitely many fields (namely,
the residue class fields corresponding to the minimal primes of A), the natural A-
module homomorphism F : F → HomA(F,F) is surjective and has kernel 0 : F ⊂ T
(see [24, Lemma 2.4.2]). But 0: F = 0 since 1 ∈ F. Therefore, F : F ∼= HomA(F,F).
Furthermore, as F ∼= o, we obtain

Ext1A(F,F : F) ∼= Ext1A(o,HomA(o, o)) ∼= Ext1A(o, h).

Now, by [13, Proposition 2.2], the hypothesis (iii) gives that h is isomorphic to a canon-
ical module of A, so that Ext1A(o, h) = 0 as o is maximal Cohen–Macaulay (see 2.1). It
follows that the map HomA(F,F) → HomA(F,F) induced by π is surjective. In particu-
lar, we can pick G ∈ HomA(F,F) satisfying Fu = π ◦ G. According to the isomorphism
F : F ∼= HomA(F,F), there exists α ∈ F : F such that G is given by multiplication by
α. Hence, G(1) = α, and thus Fu(1) = π(α) = 0, which is a contradiction because
Fu(1) = u 6= 0. This proves the claim.

To finish the proof, the equality F : F = F can be expressed as an isomorphism
HomA(o, o) ∼= o, that is, h ∼= o. It follows that o is a canonical module of A because
so is h. But then HomA(o, o) ∼= A, so that o ∼= A. Therefore, ΩA/k is free, as needed. �
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Remark 5. (a) The final part of the above proof (from the use of [13, Proposition 2.2]
on) admits a more general statement, to wit, if b is an ideal of height 1 in A such that
HomA(b, b) ∼= ωA, then b ∼= A. To see this, let B = HomA(b, b) = b :T b, which we can
choose to be ωA. Consequently,

B :T B = ωA :T ωA = A.

But B ⊂ B :T B = A ⊂ B, that is, B = A, which shows that A is Gorenstein. Now,
because HomA(b, b) ∼= A, we can apply [33, Theorem 3.1] to conclude that b ∼= A, as
claimed. In the same spirit, by replacing ΩA/k with any torsion-free A-module M of
rank 1, our theorem (as well as related results given in this note, such as Proposition 6,
Proposition 8 and Corollary 9) admits an easy adaptation, which in fact yields M ∼= A
instead of A being regular.

(b) A comment on the condition of A/ahA/k being Gorenstein. It was proved in [23]
that if B is an unramified regular local ring and b is an ideal such that B/b is Gorenstein,
then b cannot be a product if height b ≥ 2 (in particular, dimB ≥ 2). Also note B is
already assumed to be regular. So, there is no conflict with our setting here.

3.2. Other characterizations

Proposition 6 describes (co)homological characterizations of the regularity of (A,m)
in the presence of the torsion-freeness of ΩA/k – see also Proposition 8 and, in the next
subsection, Corollary 9 and Corollary 14. Wherever they appear throughout the paper,
E and projdimA denote, respectively, the injective hull of A/m and projective dimension
over A.

Proposition 6. Assume the setting and hypotheses of Berger’s Conjecture. The
following assertions are equivalent:

(i) A is regular.
(ii) TorAi (ΩA/k, A/m

ν) = 0 for some i, ν ≥ 1.

(iii) ExtiA(ΩA/k,HomA(A/mν ,E)) = 0 for some i, ν ≥ 1.

(iv) ExtiA(ΩA/k,m
ν) = 0 for some i, ν ≥ 1.

(v) mν ⊗A ΩA/k is torsion-free for some ν ≥ 1.
(vi) mν ⊗A HomA(mν , A) is torsion-free for some ν ≥ 1.

Proof. If we assume that A is regular, then ΩA/k is a free A-module and hence (ii),
(iii) and (iv) hold. In addition, m is a principal generated by a non-zero-divisor; hence,
mν ∼= A as A-modules for any ν ≥ 1, so that (v) and (vi) hold as well.

The equivalence between (ii) and (iii) follows by Ext-Tor duality (see [30, 1.4.1]), which
gives for each i ≥ 0 an isomorphism

ExtiA(ΩA/k,HomA(A/mν ,E)) ∼= HomA(TorAi (ΩA/k, A/m
ν),E),

the latter being the Matlis dual of TorAi (ΩA/k, A/m
ν).
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Now we show that (ii)⇒(i). So, assume TorAi (ΩA/k, A/m
ν) = 0 for some i, ν ≥ 1, and

consider first the case i = 1. Then there is a short exact sequence

0 −→ mν ⊗A ΩA/k −→ ΩA/k −→ (A/mν) ⊗A ΩA/k −→ 0,

which yields mν ⊗A ΩA/k
∼= mνΩA/k. This gives an embedding

mν ⊗A ΩA/k ⊂ ΩA/k.

On the other hand, we know that ΩA/k possesses a rank as an A-module (see
Lemma 2(i)), and being by hypothesis torsion-free, it embeds into a free A-module of
finite rank. It follows that mν ⊗A ΩA/k is torsion-free. Thus, since A is a reduced local
ring of positive depth, we are in a position to apply [8, Corollary 2.7] in order to conclude
that ΩA/k is free as an A-module, that is, A is regular.

Next, we consider the case i ≥ 2. Then (ii) gives

TorAi−1(ΩA/k,m
ν) = 0,

and this in turn implies, by [8, Corollary 1.3], that projdimAΩA/k < ∞. Since ΩA/k

is torsion-free and dimA = 1, we have depth ΩA/k = 1 and then the well-known
Auslander–Buchsbaum formula forces ΩA/k to be free, as needed.

Now let us prove that (iv)⇒(i). By [8, Corollary 1.3], the module mν has for any ν ≥ 1
the so-called strongly rigid property (i.e., projdimAN < ∞ whenever N is a finite A-
module satisfying TorAs (N,mν) = 0 for some s ≥ 1). Therefore, since depthA = 1 and
assuming (iv), we are in a position to apply [34, Theorem 5.8(2)] (with r = 0) to get

projdimAΩA/k ≤ i− 1 <∞.

By the Auslander–Buchsbaum formula once again, we obtain that ΩA/k is free.
Finally, the implication (v)⇒(i) (respectively, (vi)⇒(i)) follows by [8, Corollary 2.7]

(respectively, [8, Corollary 1.5]). �

We provide some remarks about Proposition 6.

Remark 7. (a) Regarding the assertion (ii) (also (iii)), it is clear that the case
of interest is ν ≥ 2, since for ν= 1, the condition TorAi (ΩA/k, A/m) = 0 forces
projdimAΩA/k <∞ (and hence ΩA/k must be free). Indeed, the A/m-vector space dimen-

sion of TorAi (ΩA/k, A/m) is equal to the ith Betti number of ΩA/k (see [6, Proposition
1.3.1]).

(b) The implications (v)⇒(i) and (vi)⇒(i) do not use the torsion-freeness of ΩA/k. So it
seems natural to ask whether, for some ν ≥ 1, at least one of the A-modules mν ⊗A ΩA/k

and mν ⊗A HomA(mν , A) must be torsion-free if so is ΩA/k. According to Proposition 6,
an affirmative answer would imply the validity of Berger’s Conjecture.

(c) It is also worth noticing that the A-module HomA(A/mν ,E) (which appears as
an ingredient of (iii)) is finite in the complete case, that is, the situation where A is a
quotient of k[[X1, . . . , Xn]]. This follows from [6, Theorem 3.2.13(b)]. Such a Matlis dual
module will also play a role in Proposition 8.
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We close the subsection with further characterizations for the regularity of A, involving
in particular the finiteness of the injective dimension over A – which we denote injdimA

– of suitable modules (see also Corollary 9 in the next subsection). For item (v) below,
we recall for completeness the notion of integral closure of ideals. Given an ideal a of A,
an element a ∈ A is said to be integral over a if there exists an equation an + b1a

n−1 +
· · · + bn = 0, with bi ∈ ai, i = 1, . . . , n. The elements of A that are integral over a form
an ideal, denoted a. Clearly, a ⊂ a, and a is integrally closed if a = a. In part (vii), A

′

stands for the integral closure of A in its total quotient ring.

Proposition 8. Assume the setting and hypotheses of Berger’s Conjecture. Let ωA

denote the canonical module of A. The following assertions are equivalent:

(i) A is regular.
(ii) injdimAHomA(A/mν ,E) <∞ for some ν ≥ 1.

(iii) ExtiA(mν ,mν ⊗A ωA) = 0 for some i ≥ 2 and ν ≥ 1.
(iv) ExtiA(mν ,ΩA/k) = 0 for some i ≥ 2 and ν ≥ 1, and ExtjA(mµ, A) = 0 for all j � 0

and some µ ≥ 1.
(v) ExtiA(mν ,ΩA/k) = 0 for some i ≥ 2 and ν ≥ 1, and ExtjA(a, A) = 0 for some j ≥ 1

and some integrally closed m-primary ideal a of A.
(vi) ExtiA(mν ,ΩA/k) = 0 for some i ≥ 2 and ν ≥ 1, and Ext1A(ωA, A) = 0.

(vii) ExtiA(mν ,ΩA/k) = 0 for some i ≥ 2 and ν ≥ 1, and Ext1A(A′, A) = 0.

Proof. If (i) takes place, then all A-modules have finite injective dimension and the
A-modules mν and ωA are free, so that all items hold. Notice that the second part of (v)
holds by taking a = m ∼= A, and the second part of (vii) follows because a regular ring is
normal, that is, A′ = A.

Now suppose (ii) and set ρ := injdimAHomA(A/mν ,E). It follows that the module
Extρ+1

A (M,HomA(A/mν ,E)) vanishes for every A-module M. In particular,

Extρ+1
A (ΩA/k,HomA(A/mν ,E)) = 0

and thus A must be regular by Proposition 6.
Let us show that (iii)⇒(i). As we have recalled in the proof of Proposition 6, the

module mν is strongly rigid for any ν ≥ 1. By (iii) and [34, Proposition 3.6], we get

injdimAm
ν ⊗A ωA <∞,

and then the regularity of A follows by applying [34, Corollary 6.11] (with C = ωA).
Next, we verify that (iv)⇒(i). Because ExtiA(mν ,ΩA/k) = 0 for some i ≥ 2 = dimA+1,

and since mν is strongly rigid, we have injdimAΩA/k < ∞ by [34, Proposition 3.6].

Now, since A is not Artinian, the asymptotic vanishing of ExtjA(mµ, A) is equivalent
to A being Gorenstein, according to [8, Proposition 1.6]. By a well-known fact (see [6,
Exercise 3.1.25]), we get projdimAΩA/k < ∞, which in the present setting, as we have
seen, implies (i).
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In order to prove (v)⇒(i), note we must have, as above, injdimAΩA/k <∞. By virtue of

[34, Corollary 3.9], the vanishing of ExtjA(a, A) for some j ≥ 1 = dimA forces injdimAA <
∞, that is, A is Gorenstein. It follows, as above, that A is regular.

Finally, assume that (vi) or (vii) takes place. In either case, we once again have
injdimAΩA/k < ∞. If (vi) holds, then since A is reduced (hence generically Gorenstein)

and dimA = 1, the condition Ext1A(ωA, A) = 0 is equivalent to A being Gorenstein (see
[16, Corollary 2.2]). Now if (vii) holds, then as A is a reduced excellent local ring (hence
analytically unramified) and dimA = 1, the vanishing of Ext1A(A′, A) is equivalent to A
having the Gorenstein property, by [32, Corollary 2.3]. Thus, (i) follows. �

3.3. On the Gorenstein case and more characterizations

In order to tackle Berger’s Conjecture in the case where A is Gorenstein, one option
is to show that the torsion-freeness of ΩA/k yields an A-module isomorphism HA/k

∼= A.
This follows from a more general fact: if S is a one-dimensional Gorenstein local ring and
M is a finite S -module such that HomS(M,M) is free, then M is free (see [33, Theorem
3.1]). A different proof, in the context of Berger’s Conjecture, is contained in the following
byproduct of Theorem 4.

Corollary 9. Assume the setting and hypotheses of Berger’s Conjecture. The following
assertions are equivalent:

(i) A is regular.
(ii) A is Gorenstein and HA/k is free.

(iii) injdimAHA/k <∞.

Proof. The implications (i)⇒(ii) and (i)⇒(iii) are clear. Now set H := HA/k and
note this A-module has rank 1, which follows by Lemma 2. Assume first that A is
Gorenstein and H is free. In particular, because of the identification H = h as an ideal
(see Notation 3), we have h = (b) for some parameter b ∈ m. Now, for any parameter
a ∈ m, the local ring A/ah = A/(ab) is Gorenstein since so is A. By Theorem 4, A must
be regular.

Finally, suppose (iii) holds, and recall that H is torsion-free because so is ΩA/k by
assumption. Hence, in the present setting, we must have depth H = 1 = depthA. Thus,
by [14, Proposition 3.2], the condition injdimAH < ∞ forces A to be Gorenstein. Using
[6, Exercise 3.1.25], we get projdimAH < ∞ and hence H is necessarily free. It follows
that (ii) holds, and so (i) holds by the preceding part. �

Remark 10. Recall that, for an A-module N, a k-derivation of A with values in N
is a k -linear map δ : A → N satisfying δ(ab) = aδ(b) + bδ(a) for all a, b ∈ A. Such
derivations are collected in an A-module denoted Derk(A,N). Now we recall that ΩA/k

comes equipped with a universal derivation δA/k : A→ ΩA/k, that is, a k -derivation with
the property that the A-linear map HomA(ΩA/k, N) → Derk(A,N) given by composition
with δA/k is an isomorphism. In particular, taking N = ΩA/k,

HA/k
∼= Derk(A,ΩA/k).
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It follows that the assertions of Corollary 9 are also equivalent to the following one:

(iv) A is Gorenstein and Derk(A,ΩA/k) = AδA/k.

The proof of Corollary 14 – where A is not required to be Gorenstein a priori –
will crucially rely on Corollary 9 together with suitable Gorensteiness criteria from the
literature. First, we provide a lemma which characterizes (e.g., by means of the length of
a certain Artinian module) the vanishing

Ext1A(ΩA/k, A) = 0

in the context of Berger’s Conjecture; see also Remark 13. The characterizations will
automatically provide some of the equivalences to be presented in Corollary 14.

Before stating the lemma, we introduce for convenience a piece of notation.

Notation 11. For a non-zero-divisor a ∈ m, we consider the relative derivation module
Derk(A,A/(a)), which has finite length since A/(a) is Artinian. We put

d(A, a) := length Derk(A,A/(a)).

Notice for completeness that, since dimA = 1, the Hilbert–Samuel multiplicity e(A) of
A is simply the leading coefficient of the Hilbert–Samuel polynomial of A. Also we recall
that the property of a parameter a ∈ m \ m2 being superficial in the one-dimensional
local ring A – note such an element does exist as A has infinite residue field – forces
(and is in fact equivalent to) the principal ideal (a) being a minimal reduction of m. For
more information, see [20, Remark 1.5], also [24, 8.6].

Lemma 12. Assume the setting and hypotheses of Berger’s Conjecture. The following
assertions are equivalent:

(i) Ext1A(ΩA/k, A) = 0.
(ii) ΩA/k ⊗A ωA is torsion-free.
(iii) d(A, a) = e(A) for some (any) superficial element a.

Proof. Under the present hypotheses, ΩA/k is a maximal Cohen–Macaulay A-module
possessing a rank, and the one-dimensional local ring A, being reduced, is Gorenstein
locally at the prime ideals of height zero (hence, Gorenstein locally on its punctured
spectrum). Now, the equivalence (i)⇔(ii) follows directly by [16, Lemma 2.1].

In order to prove that (i) and (iii) are equivalent, we apply once again [16, Lemma
2.1], which gives that (i) holds if and only if there is a length equality

length HomA/(a)(ΩA/k/aΩA/k, A/(a)) = length ΩA/k/aΩA/k,

where a is any given parameter of A. Now, by standard homological algebra, there are
A/(a)-module isomorphisms

HomA/(a)(ΩA/k/aΩA/k, A/(a)) ∼= HomA(ΩA/k,HomA/(a)(A/(a), A/(a))),
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∼= HomA(ΩA/k, A/(a)) ∼= Derk(A,A/(a)),

where the last isomorphism is due to Remark 10 with N = A/(a). Thus, we have shown
that (i) holds if and only if d(A, a) = length ΩA/k/aΩA/k. On the other hand, because
ΩA/k is Cohen–Macaulay and, by Lemma 2(i), has a well-defined rank equal to 1, we can
write (see [17])

length ΩA/k/aΩA/k = lengthA/(a).

But lengthA/(a) = e(A) whenever (a) is a minimal reduction of m (see [24, Proposition
11.2.2]), that is, if a is superficial. It follows that (i) is equivalent to d(A, a) = e(A). �

Remark 13. Consider the setting and hypotheses of Berger’s Conjecture, and in addi-
tion, suppose A is complete and k is algebraically closed. The local ring A is said to be
rigid if it admits no infinitesimal deformations, which is known to be equivalent to the
condition Ext1A(ΩA/k, A) = 0 characterized in Lemma 12. The rigidity conjecture predicts
that A is rigid if and only if A is regular. Now, by Lemma 12, the algebra A is rigid if
and only if ΩA/k ⊗A ωA is torsion-free, which can alternatively be seen by means of an
isomorphism

Ext1A(ΩA/k, A) ∼= HomA(τA(ΩA/k ⊗A ωA),E),

where the latter is the Matlis dual of the A-torsion of ΩA/k ⊗A ωA. It follows that,
in the Gorenstein case, Berger’s Conjecture is equivalent to the rigidity conjecture. We
refer to [19, p. 11, first paragraph].

Recall that the embedding dimension edimA of a local ring (A,m) is the minimal
number of generators of m. The corollary is as follows.

Corollary 14. Assume the setting and hypotheses of Berger’s Conjecture. Let ωA

denote the canonical module of A. The following assertions are equivalent:

(i) A is regular.
(ii) HA/k is free, d(A, a) = e(A) for a superficial element a and e(A) ≤ 2 edimA− 1.
(iii) HA/k is free, ΩA/k ⊗A ωA is torsion-free and e(A) ≤ 2 edimA− 1.

(iv) HA/k is free, Ext1A(ΩA/k, A) = 0 and e(A) ≤ 2 edimA− 1.

(v) HA/k is free, and ExtiA(mν , A) = 0 for some ν ≥ 1 and all i� 0.

(vi) HA/k is free, and ExtiA(a, A) = 0 for some i ≥ 1 and some integrally closed
m-primary ideal a of A.

(vii) HA/k is free, and Ext1A(ωA, A) = 0.

(viii) HA/k is free, and Ext1A(A′, A) = 0.

Proof. First, suppose (i). Then e(A) = 1 and edimA = dimA = 1, so that e(A) =
2 edimA − 1. Moreover, ΩA/k

∼= A; hence, HA/k
∼= A and, for any a ∈ m, we have

Derk(A,A/(a)) ∼= HomA(ΩA/k, A/(a)) ∼= A/(a), so that d(A, a) = lengthA/(a), which
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by [24, Proposition 11.2.2] is equal to e(A) if for instance a ∈ m \m2 is any uniformizing
parameter of A. In addition, the A-modules ωA and mν (for any ν ≥ 1) are free as
well, and in particular, we can take a = m ∼= A in (vi). Finally, A′ = A if A is regular.
Therefore, all items follow.

Lemma 12 immediately gives (ii)⇔(iii)⇔(iv).
Now we prove (iv)⇒(i). Recall that ΩA/k is a rank 1 A-module (see Lemma 2(i)), which

is, in addition, minimally generated by edimA elements; for the latter fact in the alge-
braic (respectively, algebroid) case, see [27, Corollary 6.5(b)] (respectively, [27, Corollary
13.15]). Thus, condition 2 edimA > e(A) along with the vanishing of Ext1A(ΩA/k, A) put
us in a position to apply [32, Theorem 3.1], which gives that A is Gorenstein. Now the
regularity of A follows by Corollary 9.

Finally, in each of the assertions (v), (vi), (vii) and (viii), we observe that, apart
from the condition of HA/k being free, the remaining hypotheses guarantee that A is
Gorenstein, as explained in the proof of Proposition 8. Once again, we apply Corollary 9
to conclude that (i) holds. �

Remark 15. If in addition A is a domain, we can add some equivalent statements to
the list of Corollary 14 without supposing the freeness of HA/k. Indeed, from the proof
above and [15, Satz 6] (see also [5, Theorem 10]), we have for instance the following
assertions:

(ix) d(A, a) = e(A) for a superficial element a, and e(A) ≤ min{13, 2 edimA− 1}.
(x) e(A) ≤ 13 and ExtiA(a, A) = 0 for some i ≥ 1 and some integrally closed m-primary

ideal a of A.

A natural question is whether, in item (vi) of Proposition 6, the ideal mν can be
replaced with hA/k. The answer is affirmative if we require suitable extra conditions. To
see this, let (A,m) be as above and assume in addition that it is a domain. Recall that,
for a non-zero ideal a of A, we can consider

Aa :=
⋃
s≥1

as : as

as a subring of the integral closure of A in its fraction field (note that taking a = m, we
get the quadratic transform Am of A). The ideal a is said to be stable if Aa = a : a.

Corollary 16. Assume the setting and hypotheses of Berger’s Conjecture, and in
addition that A is a domain. Suppose the following conditions hold:

(i) Ext1A(F, A) = 0 for some non-zero fractional ideal F in Am.
(ii) hA/k is stable.
(iii) hA/k ⊗A HomA(hA/k, A) is torsion-free.

Then, A is regular.

Proof. By [32, Corollary 3.2], condition (i) is equivalent to A being Gorenstein. Now,
under the hypotheses (ii) and (iii), the ideal h must be principal by [9, Proposition 3.1].
This means precisely that HA/k is free as an A-module. Thus, Corollary 9 applies. �
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Remark 17. The above corollaries deal – directly or indirectly – with the module
HA/k = Ext0A(ΩA/k,ΩA/k). Thus, it is natural to ask whether Ext1A(ΩA/k,ΩA/k) also
plays a role in the problem. First, it has been predicted in [25, Conjecture 1.2] that if S is
a one-dimensional Gorenstein local domain and M is a torsion-free finite S -module such
that Ext1S(M,M) = 0, then M must be a free S -module. Now, assuming the validity
of this conjecture, then in order to settle Berger’s Conjecture in case A is a Gorenstein
domain, it suffices to prove that the torsion-freeness of ΩA/k forces

Ext1A(ΩA/k,ΩA/k) = 0.

This vanishing condition is, in turn, equivalent to the surjectivity of a certain map
involving the torsion-free module ΩA/k and the conormal module of the ideal A defining
A as a quotient of either k[X1, . . . , Xn](X1,...,Xn) or k[[X1, . . . , Xn]]. More precisely, as
recalled in the proof of Lemma 2(i), we have first a short exact sequence

0 −→ A/A(2) −→ An −→ ΩA/k −→ 0,

to which we can apply the functor HomA(−,ΩA/k). Identifying HomA(An,ΩA/k) ∼=
Ω⊕n

A/k and noticing that HomA(A/A(2),ΩA/k) ∼= HomA(A/A2,ΩA/k) (since ΩA/k is

torsion-free and A(2)/A2 is the torsion of A/A2), we get an exact sequence

Ω⊕n
A/k

Φ−→ HomA(A/A2,ΩA/k) −→ Ext1A(ΩA/k,ΩA/k) −→ 0.

It follows that the module Ext1A(ΩA/k,ΩA/k) vanishes if and only if Φ is an
epimorphism. Also notice that kernel Φ ∼= HA/k.

3.4. A connection to Rees algebras

We close the paper by pointing out a quite surprising link to the theory of blowup
rings. First, as a preparation for Corollary 19 below, recall that the Rees algebra of an
ideal a in a ring A is the graded algebra

RA(a) =
⊕
i≥0

aiti ⊂ A[t],

where t is an indeterminate over A. In terms of generators, if a = (a1, . . . , ar) then
RA(a) = A[a1t, . . . , art].

Notation 18. Given a, b ∈ A, we consider the monic polynomial t2 + at + b ∈ A[t].
Now, following [1], we set

R(a)a,b := RA(a)/(t2 + at+ b)A[t] ∩RA(a).

It follows from [1, p. 138] that if A is a one-dimensional reduced local ring and the ideal
a contains a non-zero-divisor, then R(a)a,b is Cohen–Macaulay. The next result reveals
that the Gorensteiness of this algebra plays a role in regard to Berger’s Conjecture.
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Corollary 19. Assume the setting and hypotheses of Berger’s Conjecture. The
following assertions are equivalent:

(i) A is regular.
(ii) R(hA/k)a,b is Gorenstein for all a, b ∈ A.
(iii) R(hA/k)a,b is Gorenstein for some a, b ∈ A.

Proof. If A is regular, then ΩA/k is free and consequently h ∼= A as A-modules. In this
case, the ring RA(h) can be identified with the regular domain A[t]. Thus, for any pair
a, b ∈ A, we have R(h)a,b = A[t]/(t2 + at + b), which clearly is Gorenstein. This shows
(i)⇒(ii)⇒(iii).

Finally, by [1, Corollary 3.3], the ring R(h)a,b is Gorenstein for some a, b ∈ A if and
only if h is isomorphic to a canonical module of A. In this case, the proof of Theorem 4
applies and we thus conclude that A is regular if (iii) holds. �
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