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A NOTE ON BUCHSBAUM RINGS AND LOCALIZA-
TIONS OF GRADED DOMAINS

U. DAEPP AND A. EVANS

Let R = @ 50 R; be a graded integral domain, and let p € Proj (R)
be a homogeneous, relevant prime ideal. Let Ry = {r/t|7 ¢ R,
{ € R\p} be the geometric local ring at p and let R, = {r/t|r ¢ R,
{ ¢ R\p} be the arithmetic local ring at p. Under the mild restriction that
there exists an element r; € K;\p, W. E. Kuan (2], Theorem 2, showed
that 7y is transcendental over R, and

Ry, = ST (Rplril),

where .S is the multiplicative system R\p. It is also demonstrated in |2]
that R, is normal (regular) if and only if R, is normal (regular). By
looking more closely at the relationship between R, and R(,, we extend
this result to Cohen-Macaulay (abbreviated C.M.) and Gorenstein rings.

Also, suppose (A, m) is a local (Noetherian with identity) ring of
Krull dimension d. A generalization of the Cohen-Macaulay property is

the requirement that every system of parameters xy, . . ., x4 for A form
a weak A-sequence: ml(xy, ..., x.1):x] C (x1,...,%x:1) for 1=
1,...,d. Equivalently, the difference /(4 /q) — ei(q, 4) is independent

of ¢, as ¢ varies over the set of parameter ideals of 4. Such rings are
known as Buchsbaum rings, or B-rings for short. A locally Noetherian
scheme X is said to be a Buchsbaum scheme if the local ring at each point
of X is a B-ring. See the papers of Stiickrad and Vogel, [10] and [11], for
further information. We show that R, is a B-ring if and only if R, is a
B-ring. Finally a method for producing varieties with non-Buchsbaum
singularities is given.
First the simple

LeMMA. Let R be an integral domain. If S C R is a multiplicative
system such that ST'(R) is quasi-local with maximal ideal m, then S~ (R) =
R,, where p € Spec(R) 1is the (unique) prime ideal extending to m.

Proof. Clearly S~'(R) € R,. Now let /s € R, and suppose s/1 ¢ m.
Then s € p = m M R, contrary to the definition of R,. Therefore s/1 is
a unit in S71(R), and so /s € ST1(R).

Let (4, m) be a quasi-local ring and let x be transcendental over 4.
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The extended ideal m|x] is then prime in A[x]. Define 4* = A[x], ..
Notice that 4 — A* is a flat, local homomorphism.
What then is the prime in R,[r,] which yields R, upon localization?

THEOREM 1. Let R be a graded domain and let p € Proj(R) with
r1 € R\p. Then R, = Rpy* = (Rplr1])mirn, where m is the maximal ideal
of R(p)-

Proof. Let S = R\p. R, =S (Rylri]) is quasi-local, so by the
Lemma, R, = (Rpnlri]), for some ¢ € Spec(Ryyl71]). This ¢ is the
(unique) prime maximal with respect to the condition ¢ M\ R € p. So
first, it must be shown that m[r;] M R C p. Suppose x € m[r;]. Then

Sn Sp—1 So
where «;/s; € m. That is, a; € p, s; ¢ p with «; and s; homogeneous of
the same degree. If x € R also, then

X = (._bL;r’l')rlm + (b;?,:]!')?'lm_l + . [_)2’
71 71 1

where b; € R, deg b; = 1. Since r; is transcendental, the representation
for x as a polynomial is unique. Thus, n = m, and forallz = 0, ..., n,
a;/s; = by/ri*. Therefore, bs; = ax,* € p for 1 =0,...,n, so that
b; € pfort=0,...,nand so x itself is in p.

Nextsuppose g € Spec (R, [71]) properly contains m[r;] with g M\ R C p.
Pick f € ¢\m[r:]. It is sufficient to assume that

(o (i v
tn fn—l f’0
with a,/t, # 0, and for all ¢ = 0, ..., #n, either «;/t; = 0, or a;/t; ¢ m,
so that no «, is a non-zero element of p. Let

=17 ¢
i=0

(ifa;/t; = Oputé; = 1) and let & = deg ¢. Then

. o ¢
t}‘ = rlk(;—l,;)f € q.

71k(;t;i)f = (i*n)anrl" + (i—l)an_m"_l + ...+ (f;)ao

is an element of ¢ M R C p, since each ¢; divides ¢. Moreover,

deg((t/t)am?) = k + ifor a,/t; # 0,

But

and since p is graded, each (t/t;)a;r1" is in p. This contradicts the hypo-
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thesis that p is prime and the fact that 7; and all ¢/¢;, a, lie outside p by
choice.

In the case of (4, m) local, ht(m) equals ht(m[x]), see [6], sodim(4) =
dim(4*). As an immediate consequence,

CoOROLLARY. If R s Noetherian, R and p as in Theorem 1 then dim(R,) =
dim (R ).

Many other properties are invariant under the passage from 4 to A*.
For instance,

THEOREM 2. Suppose (A, m) is a local ring. Then
(a) 4 1s C.M. if and only 1f A* is C. M.
(b) A is Gorenstein if and only if A* 1is Gorenstein.

Proof. (a) A C.M. implies A[x], = A* C.M. Conversely, the ex-
tension

A — ALQC] — A '.x]m[ﬂ = A4*

is flat and local. Hence if 4* is C. M., then so is 4. See e.g. [5].

(b) The proof is the same. Needed facts (4 Gorenstein implies A [x]
locally Gorenstein and the result on flat, local extensions) can be found
in [13].

Again, we get an immediate

COROLLARY. If R and p are as in Theorem 1 then Ry, s C.M. (Goren-
stein) if and only if R, 1s C.M. (Gorenstein).

Remarks. The fact that R,y — R, is local was already noted in [2]. Com-
bining this with flatness yields the Corollary without having to resort
to Theorem 1. Also, for the special case of projective varieties over an
algebraically closed field, a statement equivalent to part (a) of Theorem
2 appears as Corollaire 1.5, p. 379 of [8].

Notice that if (4, m) is a B-ring, 4[x] need not be locally a B-ring.
That is Spec(A4[x]) need not be a Buchsbaum scheme. Take a B-ring
(A4, m) and suppose this implication were valid. As (m, x) is maximal in
Alx], A[x]m..» would be a B-ring. The subsequent localization

(A% m,0)) i) At2) (e = A X ] = 4*
(mz)

is C.M. [11], Remark p. 439. From Theorem 2, 4 itself is C.M., a con-
tradiction, since of course, not all B-rings are C.M. [11], p. 524.

However, the following is true:

THEOREM 3. Suppose (4, m) is a local ring. Then A 1s a B-ring 1f and
only if A* is a B-ring.

The proof uses the following cohomological characterization of
Buchsbaum rings. For (4,m) local with ¢ = dimy,(m/m?), let
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Hi(m, A) = H,_;(m, 4) be the i-th cohomology of the Koszul complex
of 4. The main result of [9] is quoted here from [12].

LEMMA. Let (A, m) be a local ring of dimension d > 0. Then A is «
Buchsbaum ring if and only if the camonical maps ¢4 H'(m, 4) —
H,'(A4) are surjective for all © # d.

Proof of Theorem 3. Let d = dim(4) = dim(4*). The case d = 0 is
trivial, since then both 4 and A* are Cohen-Macaulay.

Now suppose d > 0. Note first that A and 4* have the same embedding
dimension, say ¢. In fact, much more is true. See [3], Lemma 2, p. 75.

Let {x;,...,x,;} be a minimal generating set for m in 4. Then
x14* + ... + x,A* = m*, the maximal ideal of 4*. Given n > 0, write
x" for x*,...,x/. The Koszul complex K (x", 4*) generated over 4*
by x1*, ..., x/ is isomorphic to K (x*, 4) @ s4*. Moreover, since each
module in the complex K (x", 4) is finite and free over the Noetherian
ring 4,

Hom, «(K (x", 4%), 4*) = Hom, (K(x", 4), 4) @, 4*.

Now for n’ > n > 0, the A-linear map x* — x*' from A* to itself in-
duces maps of the cocomplexes Hom (K (x*, 4), 4) — Hom (K (x*', 4),
A). Let ¢, ,» be the corresponding map

H'(x", 4) > Hi(x", 4)

H'(Hom, (K(x", 4), 4) H'(Hom, (K (x", 4), 4)

Consider the diagram

B, A) @ 4r — 22 @1 i’ 1)@, 4%

|-

H'(Hom, (K(x", 4)) ®, A* — H'(Hom,(K(x", 4)) Q A*)

E |

*

Hi(X",A*) @ non’ . Hi(xn’yA*)

11

The vertical maps are isomorphisms and the upper square commutes by
Theorem 1, p. 93 of [7]. It is easy to check that the lower square also
commutes. The maps

H‘(X”, A) ®A A* _—__; Hi(X,L, A*)
induce an isomorphism
e lim [HI(x", 4) @4 A*] — lim H' (X", 4%)

=y
n n
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which renders the lower part of the following diagram commutative.

H'(x, A) @, A* “ 8L i (x', )@, 4* >~ B,/ (1) ®, 4*

n

I

1%

lim [H(x", 4) @, A*]

n ~

1)

Hi(x, A%*) ——4° 5 fim HY(X", A%) = H,» '(4%)

Since tensor products commute with direct limits, the upper triangle
commutes as well. The isomorphisms on the right are established in [1],
Theorem 2.3.

Now assume A4 is a B-ring. Then by Stiickrad’s lemma,

el HY (x, 4) — lim H'(x", 4)
n

is surjective for 7 % d = dim(4). Since tensor products are right exact,
¢4’ ® 1 is surjective for 7 3% d. Chasing the above diagram yields that
pa+! is also surjective for 7 # d = dim(4%*).

Conversely, if 4* is a B-ring, ¢4+ surjective implies ¢4¢ ® 1 is sur-
jective. Then by the faithful flatness of 4 — A4*, ¢,7 is also surjective.
Hence 4 is a B-ring.

Remark. The sufficiency can be proven without homological methods.
Using a theorem of D). Rees, [4], p. 277, (even though the theorem is
stated there for 1-dimensional ringsitiscorrect for arbitrary dimensions)
it is possible to show that [(4/q) — e¢(q, 4) is independent of the choice
of the parameter ideal ¢, since the same condition holds in A* if 4* is a
B-ring.

Combining Theorems 1 and 3 gives:

COROLLARY. Let R be a Noetherian graded domain with p ¢ Proj(R)
such that R\\p # 0. Then Ry is a Buchsbaum ring if and only if R, is «
Buchsbaum ring.

In conclusion we deduce

THEOREM 4. Let X C Py* be an wrreducible projective variety over an
algebraically closed field. If the vertex of the associated cone C(X) & A+ 1s
a Bauchsbaum singularity, then X s geometrically Cohen-Macaulay. That
18, Ry 1s C.M. for all p € Proj(R), where R 1s the homogeneous coordinate
domain of X.

Proof. If Rz, ...,z is @ B-ring, then
(Rezg . vom)o Ry, .0, m =Ry
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is Cohen-Macaulay for all p € Proj(R) [11], Remark p. 439. Thus by the
Corollary to Theorem 2, R(,, is C.M. for all p € Proj(R).

In order then to produce varieties with non-Buchsbaum points, con-
sider the associated cone, C(X), of any irreducible variety X C P,*
which contains a (geometrically) non-Cohen-Macaulay point. By Theo-
rem 4, the vertex of C(X) cannot be a Buchsbaum singularity.

Addendum. Theorem 2 and its Corollary hold for complete intersections:
A (resp. Ry) 15 a C.1.if and only if A* (resp. R,) 15 « C.1. See L. L. Avra-
mov, Homology of local flat extensions and complete intersection defects,
Math. Ann. 228 (1977), 27-37 for the necessary result on flat, local
extensions.

Also, the proof of Theorem 3 can be used verbatim to show that a
local ring is a B-ring if and only if its completion is. This same result with
a different proof appeared as Lemma 4.7 in P. Schenzel, N.V. Trung and
N. T. Cuong, Verallgemeinerte Cohen- Macaulay Moduln, Math. Nachr. 85
(1978), 57-73.
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