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A NOTE ON BUCHSBAUM RINGS AND LOCALIZA­
TIONS OF GRADED DOMAINS 

U. DAEPP AND A. EVANS 

Let R = © ê o ^ i be a graded integral domain, and let p G Proj (R) 
be a homogeneous, relevant prime ideal. Let R(P) = {r//| r G /£,-, 
/ (E i ^ \ ^ î be the geometric local ring a t p and let Rv = {r/t\ r £ R, 
t G R\p\ be the ar i thmetic local ring a t p. Under the mild restriction tha t 
there exists an element rx £ Ri\p, W. E. Kuan [2], Theorem 2, showed 
tha t f\ is t ranscendental over R(P) and 

where S is the multiplicative system R\p. I t is also demonst ra ted in [2] 
tha t R(P) is normal (regular) if and only if Rp is normal (regular). By 
looking more closely a t the relationship between Rp and R(P), we extend 
this result to Cohen-Macaulay (abbreviated C M . ) and Gorenstein rings. 

Also, suppose (A,m) is a local (Noetherian with ident i ty) ring of 
Krull dimension d. A generalization of the Cohen-Macaulay proper ty is 
the requirement t ha t every system of parameters Xi, . . . , xd for A form 
a weak A -sequence: m[(xu . . . , x f_i) : x j Ç (xi, . . . , xz-_i) for i = 
I, . . . , d. Equivalent ly, the difference l(A/q) — e0(q, A) is independent 
of g, as q varies over the set of parameter ideals of A. Such rings are 
known as Buchsbaum rings, or B-rings for short. A locally Noetherian 
scheme X is said to be a Buchsbaum scheme if the local ring a t each point 
of X is a B-ring. See the papers of Stuckrad and Vogel, [10] and [11], for 
further information. We show tha t R(P) is a B-ring if and only if Rp is a 
B-ring. Finally a method for producing varieties with non-Buchsbaum 
singularities is given. 

First the simple 

LEMMA. Let R be an integral domain. If S Q R is a multiplicative 
system such that S~l (R) is quasi-local with maximal ideal m, then 5 -"1 (R) = 
Rp, where p G Spec (R) is the (unique) prime ideal extending to m. 

Proof. Clearly 5 - 1(2^) ÇZ Rp. Now let r/s Ç Rp and suppose s/1 G m. 
Then s G p = m Pi R, contrary to the definition of Rp. Therefore s/\ is 
a unit in S~l(R), and so r/s G 5~1( i?) . 

Let {A, m) be a quasi-local ring and let x be t ranscendental over A. 
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The extended ideal m[x] is then prime in A[x]. Define A* = A[x]m[x]. 
Notice that A -+ A* is a flat, local homomorphism. 

What then is the prime in R(p)[ri] which yields Rp upon localization? 

THEOREM 1. Let R be a graded domain and let p G Proj(jR) with 
r\ G Ri\p. Then Rp ~ R(P)* = (R(P)[ri])m[ri], where m is the maximal ideal 
of R(p). 

Proof. Let S = R\p. Rp ^ S_ 1CR(P)1/I])
 i s quasi-local, so by the 

Lemma, Rp ~ (R(P)[ri])Q for some g Ç SpecCR(P)[n]). This q is the 
(unique) prime maximal with respect to the condition q\ C\ R C p. So 
first, it must be shown that m[r{\ C\ R Ç p. Suppose x G m[n]- Then 

P r e ! n , | ^ n - 1 I w-1 , , #0 

x = I — In + I — In + . . . + — , 

where az-/s* G m. That is, at G £, s* G >̂ with a* and st homogeneous of 
the same degree. If x G i£ also, then 

where bt G R, degbt = i. Since n is transcendental, the representation 
for x as a polynomial is unique. Thus, n = m, and for all i = 0, . . . , w, 
#i/sj = bi/r^. Therefore, biSt = airx

i G p for i = 0, . . . , n, so that 
bf £ p for i = 0, . . . , n and so x itself is in p. 

Next suppose q G Spec (i?(P) [n] ) properly contains m[n] with qC\ R^p. 
Pick/ G ?\w[fi]. It is sufficient to assume that 

with an/tn 7^ 0, and for all i — 0, . . . , n} either at/ti = 0, or at/ti G m, 
so that no at is a non-zero element of £. Let 

/ = n h 
•i=0 

(if ajti = 0 put /j = 1) and let & = deg /. Then 

But 

4?)M0--+(à)"--"-,+- - + (s)* 
is an element oi qC\ R Ç^ p, since each /z- divides /. Moreover, 

deg(( / /^)^^i0 = * + i for a,//* ^ 0, 

and since p is graded, each (t/t^a^x1 is in p. This contradicts the hypo-

https://doi.org/10.4153/CJM-1980-092-6 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1980-092-6


1246 U. DAEPP AND A. EVANS 

thesis t ha t p is prime and the fact t ha t rx and all t/tu a{ lie outside p by 
choice. 

In the case of (A, m) local, h t ( ra) equals ht(m[x]), see [6], so dim (A) = 
dim (A*). As an immediate consequence, 

COROLLARY. If R is Noetherian, R and p as in Theorem 1 then d i m ( / ^ ) = 
dim(R{p)). 

Many other properties are invariant under the passage from A to A*. 

For instance, 

T H E O R E M 2. Suppose (A, m) is a local ring. Then 
(a) A is C M . if and only if A* is C M . 
(b) A is Gorenstein if and only if A* is Gorenstein. 

Proof, (a) A C M . implies ^[x]m[a;] = A* C M . Conversely, the ex­
tension 

A-+A[x] -*A[x]m[x] = A* 

is flat and local. Hence if ^4* is C M . , then so is A. See e.g. [5]. 
(b) T h e proof is the same. Needed facts (A Gorenstein implies A[x] 

locally Gorenstein and the result on flat, local extensions) can be found 
in [13]. 

Again, we get an immediate 

COROLLARY. / / R and p are as in Theorem 1 then R(P) is C M . (Goren­
stein) if and only if Rv is C M . (Gorenstein). 

Remarks. T h e fact t ha t R(P) —>RP is local was already noted in [2]. Com­
bining this with flatness yields the Corollary wi thout having to resort 
to Theorem 1. Also, for the special case of projective varieties over an 
algebraically closed field, a s t a tement equivalent to pa r t (a) of Theorem 
2 appears as Corollaire 1.5, p. 379 of [8]. 

Notice t ha t if (A, m) is a B-ring, A[x] need not be locally a B-ring. 
T h a t is Spec (A [x]) need not be a Buchsbaum scheme. T a k e a B-ring 
(A, m) and suppose this implication were valid. As (w, x) is maximal in 
A[x], A[x](m/X) would be a B-ring. T h e subsequent localization 

(A[x](m>X))(m[X]A[X]im<x)) ~ A[x]m[x] = A * 

is C M . 111], Remark p. 439. From Theorem 2, A itself is C M . , a con­
tradiction, since of course, not all B-rings are C M . [11], p. 524. 

However, the following is t rue: 

T H E O R E M 3. Suppose (A, m) is a local ring. Then A is a B-ring if and 
only if A* is a B-ring. 

T h e proof uses the following cohomological characterization of 
Buchsbaum rings. For (A,m) local with t = dimA/m(m/m2), let 
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H*(m, A) = Ht-i{m, A) be the i-th cohomology of the Koszul complex 
of A. The main result of [9] is quoted here from [12]. 

LEMMA. Let {A, m) be a local ring of dimension d > 0. Then A is a 
Buchsbaum ring if and only if the canonical maps çA

l\ Hl(m, A) —• 
H^iA) are surjective for all i ^ d. 

Proof of Theorem 3. Let d = dim (̂ 4) = dim (A*). The case d = 0 is 
trivial, since then both A and A* are Cohen-Macaulay. 

Now suppose d > 0. Note first that A and A* have the same embedding 
dimension, say t. In fact, much more is true. See [3], Lemma 2, p. 75. 
Let {xi, . . . , xt} be a minimal generating set for m in A. Then 
XiA* + . . . + xtA* = m*, the maximal ideal of A*. Given n > 0, write 
X" for t

n. The Koszul complex K(xn
} A*) generated over A* 

by Xin, . . . , xt
n is isomorphic to K(xn, A) ®AA*. Moreover, since each 

module in the complex K(xn, A) is finite and free over the Noetherian 
ring A, 

HomA*(K(xn, A*)} A*) 9* HomA(K(xn, A), A)® A A*. 

Now for n' > n > 0, the A -linear map xn —» xnJ from A l to itself in­
duces maps of the cocomplexes Hom(K(xn, A), A) —> Hom(K(xn', A), 
A). Let <pny be the corresponding map 

H\x\A) +H\xn\A) 

Hi(HomA(K(xn, A), A) Hi(HomA(K(xn', A), A) 

Consider the diagram 

H\xn,A)®AA* ^ ® l • Ht(xn',A)®AA* 

H\HomA(K(xn
yA))®AA* > H\HomA(K(xn', A)) ®A A*) 

H\xn,A*) ^ ^ > H\xn',A*) 

The vertical maps are isomorphisms and the upper square commutes by 
Theorem 1, p. 93 of [7]. It is easy to check that the lower square also 
commutes. The maps 

H\x\ A) ® A A* ^ H\x\ A*) 

induce an isomorphism 

<p: lim [FP(xn, A) ®A A*} -+ lim H\xn, A*) 
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which renders the lower part of the following diagram commutative. 

H'(x, A) <g>.4 A* ** ' ® \ [lim H'(xn, A)} <g>.4 4 * ^ Hm\A)®A A* 

^ ^ l i m [ i r ' ( x ^ ) ® A , 4 * ] 

i7*(x, 4*) — y lim / T (x7\ A*) ^ fl"OT* '(4*) 

Since tensor products commute with direct limits, the upper triangle 
commutes as well. The isomorphisms on the right are established in [1], 
Theorem 2.3. 

Now assume A is a B-ring. Then by Stuckrad's lemma, 

n 

is surjective for i 9^ d = dim(^4). Since tensor products are right exact, 
(PA1 ® 1 is surjective for i 9e d. Chasing the above diagram yields that 
<PA*1 is also surjective for i ^ d = dim (A*). 

Conversely, if A* is a B-ring, <pA*i surjective implies <pA
l 0 1 is sur­

jective. Then by the faithful flatness of A —>A*, (pA
l is also surjective. 

Hence A is a B-ring. 

Remark. The sufficiency can be proven without homological methods. 
Using a theorem of D. Rees, [4], p. 277, (even though the theorem is 
stated there for 1-dimensional rings it is correct for arbitrary dimensions) 
it is possible to show that l(A/q) — e0(q, A) is independent of the choice 
of the parameter ideal g, since the same condition holds in A* if A* is a 
B-ring. 

Combining Theorems 1 and 3 gives: 

COROLLARY. Let R be a Noetherian graded domain with p £ Pro](R) 
such that Ri\p ^ 0. Then R(P) is a Buchsbaum ring if and only if Rp is a 
Buchsbaum ring. 

In conclusion we deduce 

THEOREM 4. Let X Ç Pk
n be an irreducible projective variety over an 

algebraically closed field. If the vertex of the associated cone C(X) C Ak
n+l is 

a Bauchsbaum singularity, then X is geometrically Cohen-Macaulay. That 
is, R(p) is C M . for all p £ Proj (R), where R is the homogeneous coordinate 
domain of X. 

Proof. If RiXQ! . . . ,Xn) is a £-ring, then 

(R(xQ , • . ,Xn))v 'R(X0 Xn) — -Kp 
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is Cohen-Macaulay for all p G Proj (R) [11], Remark p. 439. Thus by the 
Corollary to Theorem 2, R(P) is C M . for all p £ Proj (R). 

In order then to produce varieties with non-Buchsbaum points, con­
sider the associated cone, C(X), of any irreducible variety X Ç Pk

n 

which contains a (geometrically) non-Cohen-Macaulay point. By Theo­
rem 4, the vertex of C(X) cannot be a Buchsbaum singularity. 

Addendum. Theorem 2 and its Corollary hold for complete intersections : 
A (resp. R(P)) is a C I . if and only if A* (resp. Rv) is a C I . See L. L. Avra-
mov, Homology of local flat extensions and complete intersection defects, 
Math. Ann. 228 (1977), 27-37 for the necessary result on flat, local 
extensions. 

Also, the proof of Theorem 3 can be used verbatim to show that a 
local ring is a B-r'mg if and only if its completion is. This same result with 
a different proof appeared as Lemma 4.7 in P. Schenzel, N.V. Trung and 
N. T. Cuong, Verallgemeinerte Cohen-Macaulay Modnln, Math. Nachr. 85 
(1978), 57-73. 
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