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1. I n t r o d u c t i o n . In a recent paper Moster t and Shields (4) showed t ha t 
if a space homeomorphic to the non-negative real numbers is a certain type 
of topological semigroup, then the semigroup must be t ha t of the non-negative 
real numbers with the usual multiplication. Somewhat earlier Fauce t t (2) 
showed t ha t if a compact connected ordered space is a suitably restricted 
topological semigroup, then it must be both topologically and algebraically 
the same as the unit interval of real numbers with its usual multiplication. 

In s tudying certain binary relations on topological spaces there have become 
known (see, in particular, Wallace (5) and the author (3)) a number of prop­
erties analogous to those possessed by topological semigroups. Because of 
these analogous properties between relations and semigroups the author was 
motivated by the general nature of the Faucet t and Mostert-Shields results 
( tha t is, t ha t the multiplication assumed turned out to be the same as the 
usual multiplication) to feel tha t certain relations on a connected ordered 
space should turn out to be the same as the orders whose order topologies 
are the topology on the space. (Eilenberg (1) showed, among other things, 
t h a t a connected ordered space consisting of more than one point can be 
endowed with exactly two orders whose order topologies are the topology on 
the space, and these orders must be dual to each other.) The main result 
of this note is a characterization of these orders as reflexive transit ive relations 
satisfying certain topological restrictions. As an immediate consequence of 
this characterization there is Faucet t ' s result (2, Lemma 2) t ha t if a compact 
connected ordered space S is a topological semigroup with zero, if the zero 
is an endpoint, and if each element of 5 has a left unit, then the binary relation 
on 5, 

{(a, b) e SxS\a£ S b}, 

is one of the two orders on S whose order topologies are the topology on S. 

2. Pre l iminary def in i t ions a n d resu l t s . Throughout this paper it is 
assumed that X is a set consisting of more than a single element. A set L will 
be called a relation on X provided L Q X X X (the dual of L will be denoted 
by a L), and (X, L) will be called an ordered set provided L is reflexive, transi­
tive, ant isymmetr ic , and satisfies the requirement t ha t if x, y Ç X then 

Received December 17, 1957. Work on this paper, the results of which are contained in 
the author's Tulane University thesis written under Professor A. D. Wallace, was supported 
•n part by the National Science Foundation. 

107 

https://doi.org/10.4153/CJM-1959-014-5 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1959-014-5


108 I. S. KRULL 

(x, y) G L or (y, x) G L. If (X, L) is an ordered set, the usual terminology 
regarding lower bounds, upper bounds, infima, and suprema with respect to L 
of subsets of X will be used. If X is a topological space, then X will be called 
an ordered space provided there is such a relation L on X t h a t (X, L) is an 
ordered set and the order topology induced by L is the topology on X. 

If L is any relation on the topological space X, the following terminology 
and notat ion (in which, as throughout the paper, * is used to denote topo­
logical closure) will be employed: 

(1) if x G X then L(x) = {y £ X \ (y, x) G L ) ; 
(2) if A C X then L(A) = \}{L(a) \a G A) ; 
(3) L will be called continuous (monotone) provided L(A*) Ç_L(A)* for 

each A C X (L (x) is connected for each x G X) ; 
(4) If k G X then k will be called L-minimal provided whenever x G X 

and x G L(k) then k G L ( x ) ; the set of L-minimal elements will be denoted 
by KL; 

(5) L will be called closed below (closed above) provided L(x) (aL(x)) is 
closed for each x G X; 

(6) if B C X then 5 will be called an L-ideal provided B ^ </> and L(B) C B. 

L E M M A . Le/ (X, R) be a connected ordered space, and let L be a reflexive 
monotone continuous relation on X. If x G X — KL then either L(x) C R(x) 
or there exists y G R(X) — x such that x G L(y). 

Proof. Suppose y G R(X) — x implies x G X — L(y). If y G R(x) — x and 
if L(y) ÇL R(x) — x, then there exists z £ L(y) such t h a t x G ^ ( s ) ; thus 
since L is reflexive and monotone x G &R(y) f~\ R(z) (Z L(y), & contradict ion 
of the supposition. Therefore y d R(x) — x implies L(y) C R(x) — x, and 
it follows tha t L(R(x) — x) = R(x) — x. Hence from the reflexitivity and 
cont inui ty of L one has 

L(x) C L(R(x)) = L((R(x) - x)*) C L(R(x) - x)* = (R(x) - x)* = R(x), 

which completes the proof. 

COROLLARY. Let (X, R) be a connected ordered space and let L be a reflexive 
transitive closed above monotone continuous relation on X . If x G X and if 
inf aL(x) exists but does not belong to KLj then L(x) C R(x). 

Proof. Let x G X and suppose L(x) (£_ R(x) a l though x0 = inf aL(x) exists 
and X{) G X — KL. By the lemma x0 G R(x) — x, and Xo G o-L(x) since L 
is closed above. T h u s L(XQ) Çt_ R(xQ) so t ha t again using the lemma, there 
exists z G R(xo) — Xo such t h a t x0 G L(z). Because L is t ransit ive it follows 
tha t x G L(z), t h a t is, s G crL(x); therefore x0 ^ inf aL(x), a contradict ion. 
Hence it must be t rue t ha t L(x) C R(x). 

3. M a i n re su l t . I t is well known t h a t if L is a t ransi t ive closed below 
relation on the 7 \ — space X and if A is a compact L-ideal, then A O Kh ^ <£. 
This fact will be used in the proof of the following 

https://doi.org/10.4153/CJM-1959-014-5 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1959-014-5


BINARY RELATIONS ON ORDERED SPACES 109 

T H E O R E M . Let (X, R) be a connected ordered space, and let L be a relation 
on X. If L is reflexive, transitive, closed above and below, monotone, and con­
tinuous with KL = KR or KL = KaR, then L = R or L = ali (not necessarily 
respectively). The converse is also true. 

Proof. The t ru th of the converse is obvious. The proof of the first s ta tement 
is divided into two cases. I t is assumed tha t KL = KR, for a completely dual 
proof holds in the dual case. 

Case 1: KL 9^ <£. Then KR consists of a single endpoint of X, say e. I t will 
be shown in this case t ha t L = R, and for this it suffices to show tha t 
L(x) = R(x) for each x £ X. Let x 6 X. If x — e, then e = KR = KL 

implies L(e) = e = R(e). Suppose x ^ e, and let x0 = inf aL(x). Then 
x0 6 crL(x), so t ha t if Xo = e then x Ç L(e) = e, a contradiction. Hence 
Xo ^ e and by the corollary L(x) (ZR(x). Therefore since L(x) is closed 
and R(x) is compact, L(x) is a compact Z-ideal and thus e = L(x) C\KL. 
From the monotonicity of L it follows tha t R(x) C L(x), and hence L(x) =R(x). 

Case 2 : KR = <f>. 

(i) aL is monotone. To see this let x £ X and suppose tha t aL(x) is not 
connected. Then there exists c £ X — aL(x) such tha t A = aL(x) C\ R(c) 
and B = aL(x) P\ cri^(c) are both non-void. Thus a = sup A and 6 = inf B 
exist, and it is easily seen tha t a, b Ç <JL(X) and 

£/ = (aR(a) r\ R(b)) - {a, b} C X - aL(x). 

Clearly L(U) is connected so tha t a, b £ X — U implies L(U) C U, t ha t 
is, £/ is an L-ideal. But because L is continuous, U* is a compact L-ideal 
and thus meets KL, contrary to hypothesis. Consequently, aL(x) is con­
nected and aL is monotone. 

(ii) For each x £ X, either L(x) = R(x) or L(x) = aR(x). Let x Ç I . I t 
suffices to show L(x) C R(x) or L(x) C aR(x), for if L(x) C i£(#) bu t L(x) 
9^ R(x), then L(x) has a lower bound and is thus a compact L-ideal, implying 
KL T^ </>; and similarly, if L(x) C aR(x) then L(x) = crR(x). Suppose now 
tha t L(x) Çt, R{x). If <rL(x) has a lower bound, then inf aL(x) exists and by 
the corollary it follows tha t L(x) C R{%), contrary to supposition. Therefore 
the monotonicity and reflexitivity of aL give R(x) C aL{x). If crL(x) also 
has no upper bound, then X C aL(x), implying x £ KL = </>. Let x0 = sup 
aL(x). (Note tha t x0 ^ sup X, for if x0 = sup X then X C aL(x).) Then 
aL(xo) C L!(x0) and hence L(aR(xo) — x0) C <rR(xo) — x0, whence it follows 
t h a t L ( x ) C £(*o) C L((aR(x0) - x0)*) C L(aR(x0) - x0)* C (*£(*<>) - x0)* 
C o-i^(xo) C aR{x). 

(iii) If ^ G L(x) = i£(x), then L(y) = R(y). For y G L(x) implies 
L(y) C L(x), and hence L(;y) has no lower bound since L(y) is a closed 
L-ideal and KL = </>. Therefore (ii) implies L{y) = i?(y). 

(iv) If 3̂  Ç L(x) = aR(x), then L(y) = aR{y). The proof is similar to t ha t 
of (in). 
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(v) L = R or L = <JR. Let A = {a 6 X \ L(a) = R(a)} and let B = {b Ç 
X ( L(b) = (iR(b)}. Suppose L ^ <TR. Then from (ii) and (iii) it follows that 
A is connected and non-void. HA has no upper bound or if it has an upper 
bound which is also sup X, then A = X and L = R. HA has an upper 
bound which is not sup X, then let a0 = sup A. It follows from (ii) and (iv) 
that B is connected and non-void; and using the continuity of L and the 
supposition KL = <j>, it is not difficult to verify that a0 Ç A H B. But in 
order that A f^\ B ?± $, it must be true that X consists of a single point, 
contrary to hypothesis. Hence L = R, and the proof of the theorem is com­
plete. 

4. Examples. A reflexive transitive relation satisfying all but one of the 
hypotheses of the theorem need be neither R nor aR. That this is indeed a 
fact is proved by the following set of examples in which X is, or is a subset of, 
the real numbers, and R = {(x, y) Ç X X X \ x ^ y). 

Example 1. Let X be the real numbers, and let L = {(x, y) G X X X J 
\x\= \y\\- Then L is a reflexive transitive monotone continuous relation with 
closed graph (hence closed above and below), but KL = {0} ^ KR =</> = KaR 

and R^ L ^ aR. 

Example 2. Let X and L be as in Example 1, and let M = aL. Then M 
is a reflexive transitive continuous relation with closed graph, and KM = 0 = 
KR. However M is not monotone, and R 9^ M ^ a-R. 

Example 3. Let X be the real numbers, and let L = {(x, y) G X X X 
I x S y ^ 0} \J {(x, y) ÇXXX\0Sy^x}. Then L is a reflexive transi­
tive monotone relation with closed graph, and KL = <j> = KR. However 
R 9^ L 9^ aR and L is not continuous. 

Example 4. Let X be the set of real numbers x such that 0 < x ^ 1, and let 

U = \(x,y) eXXX\x^y<l} U { ( 1 , 1 ) } . 

If L2 = aLi then both L\ and L2 are reflexive transitive monotone continuous 
relations. Further, L\ is closed below and L2 is closed above, but L\ is not 
closed above and L2 is not closed below. Also 

KLl = KL2 = {1} = KaR 

although R ?± Lx 9± aR and R j* L2 9* <rR. 

5. Concerning a possible generalization. Let it be said (see Eilenberg 
(1) that a topological space X can be ordered provided there is a relation L on 
X such that (X, L) is an ordered set and the sets defined as open by the order 
topology are open in X under its original topology. It would be interesting 
to know if in the above theorem it is possible to replace "ordered space" 
by "space which can be ordered" and still have a true statement. 
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