TWO UNDECIDABILITY RESULTS USING MODIFIED BOOLEAN POWERS

STANLEY BURRIS AND JOHN LAWRENCE

In this paper we will give brief proofs of two results on the undecidability of a first-order theory using a construction which we call a modified Boolean power. Modified Boolean powers were introduced by Burris in late 1978, and the first results were announced in [2]. Subsequently we succeeded in using this construction to prove the results in this paper, namely Ershov's theorem that every variety of groups containing a finite non-abelian group has an undecidable theory, and Zamjatin's theorem that a variety of rings with unity which is not generated by finitely many finite fields has an undecidable theory. Later McKenzie further modified the construction mentioned above, and combined it with a variant of one of Zamjatin's constructions to prove the sweeping main result of [3]. The proofs given here have the advantage (over the original proofs) that they use a single construction.

A Boolean pair (B, B_0, \leq) is a Boolean algebra (B, \leq) with a distinguished subalgebra (B_0, \leq) . B_0 is dense in B if

$$\forall x \in B \forall y \in B [\forall z \in B_0 (y \le z \to x \le z) \to x \le y].$$

Our starting point is the following result on the first-order theory of Boolean pairs.

THEOREM 1. (McKenzie, [3]) The class \mathscr{BP}^D of Boolean pairs (B, B_0, \leq) such that B_0 is dense in B has an undecidable theory.

Given an algebra A, a congruence θ of the algebra A, two fields B, B_0 of subsets of a set I with $B_0 \subseteq B$, define the *modified Boolean power* $A[B, B_0, \theta]^*$ to be the subalgebra of A^I consisting of all $f \in A^I$ such that $|f(I)| < \omega, f^{-1}(a) \in B, f^{-1}(a/\theta) \in B_0$ for $a \in A$. For $f, g \in A[B, B_0, \theta]^*$ let us define

$$[f = g] = \{i \in I: f(i) = g(i)\}\$$

 $[f \neq g] = \{i \in I: f(i) \neq g(i)\}.$

In the following we will establish undecidability by showing that for suitable A, θ the class \mathscr{BP}^D can be interpreted into

$$\{A[B,B_0,\theta]^*: (B,B_0,\subseteq) \in \mathscr{BP}^D\}.$$

Received February 3, 1981. The work of the first author was supported by NSERC Grant A7256 while that of the second was supported by NSERC Grant A4540.

1. Rings with unity.

Lemma 1. Let R be a directly indecomposable non-simple ring with unity. Choose a congruence θ of R with $\Delta < \theta < \nabla$. Then \mathcal{BP}^D can be interpreted into

$$\{R[B, B_0, \theta]^*: (B, B_0, \subseteq) \in \mathscr{BP}^D\}.$$

Proof. Let us show that the formulas

$$\delta(x)$$
: $x \approx x$

 $\delta_0(x)$: "x is a central indempotent"

$$\rho(x, y) \colon \forall z [\delta_0(z) \to (y \cdot z \approx y \to x \cdot z \approx x)]$$

$$Eq(x, y)$$
: $\rho(x, y) & \rho(y, x)$

suffice to interpret (B, B_0, \subseteq) into $A[B, B_0, \theta]^*$.

For $f \in R[B, B_0, \theta]^*$ let $\alpha(f) = [f \neq 0]$. Then one can easily verify

$$B = \{\alpha(f): f \in A[B, B_0, \theta]^*\}$$

$$B_0 = {\alpha(f): f \in A[B, B_0, \theta]^* \text{ and } f \text{ is a central indempotent}}$$

and for $f, g \in R[B, B_0, \theta]^*$, with $\delta(f)$ and $\delta_0(g)$ holding,

$$\alpha(f) \subseteq \alpha(g)$$
 if and only if $f \cdot g = f$.

Thus for $f, g \in R[B, B_0, \theta]^*$, $\rho(f, g)$ holds if and only if $\alpha(f) \subseteq \alpha(g)$ as B_0 is dense in B. Consequently we can conclude

$$(B, B_0, \subseteq) \cong (\delta^S, \delta_0^S, \rho^S)/Eq^S$$

where $S = R[B, B_0, \theta]^*$.

Lemma 2. A semi-simple variety V of rings is generated by finitely many finite fields.

Proof. First note that the free algebra $F_V(\phi)$ in V is finite, for otherwise it is isomorphic to \mathbb{Z} ; but $\mathbb{Z}_4 \notin V$. Thus there are only finitely many p (all non-zero) such that there is a field of characteristic p in V. For any prime p the polynomial ring $\mathbb{Z}_p[x]$ is not in V as $\mathbb{Z}_p[x]/\langle x^2 \rangle$ is subdirectly irreducible but not simple.

If F is a field, say of characteristic p, in V then F is finite. For otherwise there is either a transcendental element $a \in F$, hence $\mathbf{Z}_p[x]$ can be embedded in F, or there are elements $a_n \in F$ for $n < \omega$ such that degree $(a_n) \geq n$, and in this case $\mathbf{Z}_p[x]$ can be embedded in F^{ω}/\mathcal{U} for a suitable \mathcal{U} . Thus V has, up to isomorphism, only finitely many fields in it, and they are all finite.

Now consider $F_V(x)$. As this is commutative and V is semi-simple it must be a subdirect product of fields. As there are only finitely many fields in V and they are finite it follows that $x^n = x$ holds for some n. But

then $V \models x^n \approx x$, so by a result in [1], V is generated by finitely many finite fields.

THEOREM 2. (Zamjatin [7]) A variety of rings with unity has a decidable theory if and only if it is generated by finitely many finite fields.

Proof. The direction (\Rightarrow) follows from Lemma 1 and Lemma 2. The converse is in [4].

- **2.** Groups. If V is a variety of groups containing a finite non-abelian group, let G be a minimal non-abelian finite group in V. Then G has the following properties:
 - (i) G is solvable [[6], p. 148] as every proper subgroup is abelian.
 - (ii) G is two-generated, say by a, b.
- (iii) We can assume $\langle b \rangle$, the normal subgroup generated by b, is proper, hence abelian, so $\langle b \rangle \subseteq C_b$, the centralizer of b.
- (iv) G is subdirectly irreducible, and the monolith M is the commutator subgroup.
 - (v) As $M \subseteq \langle b \rangle$, the centralizer C_b is a normal subgroup of G.
 - (vi) There is a finite m_0 such that for $[c, d] \neq 1$

$$M = \left\{ \prod_{i=1}^{m} h_i^{-1}[c, d] h_i: h_i \in G, m \leq m_0 \right\}.$$

LEMMA 3. Let G be as described above. Then, with θ the congruence corresponding to the normal subgroup C_b , \mathcal{BP}^D can be interpreted, using one parameter, into

$$\{G[B, B_0, \theta]^*: (B, B_0, \subseteq) \in \mathscr{BP}^D\}.$$

Proof. For $c \in G$ let **c** denote the constant function in $G[B, B_0, \theta]^*$ with value c. If $f \in G[B, B_0, \theta]^*$ let $\alpha(f) = [f \neq 1]$. Then we have

(*)
$$B = {\alpha([f,g]): f, g \in G[B, B_0, \theta]^*}$$

(**)
$$B_0 = {\alpha([f, \mathbf{b}]): f \in G[B, B_0, \theta]^*}.$$

To see (*) note that

$$\alpha(f) = \bigcup_{c \neq 1} f^{-1}(c) \in B$$

for all $f \in G[B, B_0, \theta]^*$. On the other hand given $X \in B$ let $f = \mathbf{a}$ and let g be defined by

$$g(i) = \begin{cases} b & \text{if} \quad i \in X \\ 1 & \text{if} \quad i \notin X \end{cases}$$

Then $\alpha([f, g]) = X$. For (**) we have

$$\alpha([f, \mathbf{b}]) = \llbracket [f, \mathbf{b}] \neq 1 \rrbracket$$

$$= \{ i \in I : f(i) \notin C_b \}$$

$$= \bigcup_{c \notin C_b} f^{-1}(c/\theta) \in B_0.$$

And given $Y \in B_0$ let f be defined by

$$f(i) = \begin{cases} a & \text{if } i \in Y \\ 1 & \text{if } i \notin Y. \end{cases}$$

Then $\alpha([f, \mathbf{b}]) = Y$.

Our next claim is that for $f, h \in G[B, B_0, \theta]^*$ with $h(i) \in M$ for all i, we have

(***)
$$\alpha(h) \subseteq \alpha([f, \mathbf{b}])$$

if and only if

$$h = \prod_{\substack{d,d \in G \\ d \notin C_h}} \prod_{j=1}^{m_{cd}} t_{cdj}^{-1} [f, f_{cd}] t_{cdj}$$

for suitable f_{cd} , t_{cdj} with $f_{cd} \in C_{\mathbf{b}}$, and for suitable $m_{cd} \leq m_0$, where m_0 is as defined in (vi).

The direction (\Leftarrow) follows from

$$\alpha(h) = \alpha \left(\prod_{\substack{c,d \in G \\ d \notin C_b}} \prod_{j=1}^{m_{cd}} t_{cdj}^{-1}[f, f_{cd}]t_{cdj} \right) \subseteq \bigcup_{\substack{c,d \in G \\ d \notin C_b}} \bigcup_{j=1}^{m_{cd}} \alpha(t_{cdj}^{-1}[f, f_{cd}]t_{cdj})$$
$$= \bigcup_{\substack{c,d \in G \\ d \notin C_b}} \alpha([f, f_{cd}]) \subseteq \alpha([f, \mathbf{b}]).$$

For the converse (\Rightarrow) we have $\alpha(h) \subseteq \alpha([f, \mathbf{b}])$. For $c, d \in G$ let

$$egin{aligned} X_{\mathit{cd}} &= \llbracket h = \mathbf{c}
bracket \cap \llbracket f = \mathbf{d}
bracket \\ f_{\mathit{cd}}(i) &= egin{cases} b & ext{for } i \in X_{\mathit{cd}} \\ 1 & ext{otherwise} \end{cases} \\ h_{\mathit{cd}}(i) &= egin{cases} c & ext{for } i \in X_{\mathit{cd}} \\ 1 & ext{otherwise}. \end{cases} \end{aligned}$$

Then

$$f_{cd} \in C_{\mathbf{b}}$$

$$\alpha([f, f_{cd}]) = X_{cd} \quad \text{if} \quad d \notin C_{b}$$

$$h = \prod_{\substack{c,d \in G \\ d \notin C_{b}}} h_{cd} \quad (\text{as } h(i) \neq 1 \Rightarrow f(i) \notin C_{b}).$$

Given $c, d \in G$ with $d \notin C_b, c \in M$ there is $m_{cd} \leq m_0$ by (vi) such that

$$c = \prod_{j=1}^{m_{cd}} e_{cdj}^{-1}[d, b]e_{cdj}$$

for suitable e_{cdj} . Letting $t_{cdj} = \mathbf{e}_{cdj}$ it follows that

$$h_{cd} = \prod_{j=1}^{m_{cd}} t_{cdj}^{-1} [f, f_{cd}] t_{cdj}$$

SO

$$h = \prod_{\substack{c,d \in G \\ d \neq CL}} \prod_{j=1}^{m_{cd}} t_{cdj}^{-1} [f, f_{cd}] t_{cdj}.$$

This establishes the converse.

Now to prove the lemma let us consider the formulas

$$\delta(x): \exists x_1 \exists x_2 (x \approx [x_1, x_2])$$

$$\delta_0(x): \exists x_3 (x \approx [x_3, \mathbf{b}])$$

$$\bar{\rho}(x, y): \delta(x) \& \exists y_3 \{y = [y_3, \mathbf{b}] \&$$

$$\bigvee_{\substack{(m_{cd}: m_{cd} \leq m_0)}} \exists \mathbf{u} \exists \mathbf{v} \left(x \approx \prod_{\substack{c,d \in G \\ d \notin C_b}} \prod_{j=1}^{m_{cd}} u_{cdj}^{-1} [y_3, v_{cd}] u_{cdj} & (\mathbf{b} v_{cd} \approx v_{cd} \mathbf{b}) \right)$$

$$\rho(x, y): \forall z (\bar{\rho}(y, z) \to \bar{\rho}(x, z))$$

$$Eq(x, y): \rho(x, y) \& \rho(y, x).$$

Now we have, with $H = G[B, B_0, \theta]^*$,

$$\alpha(\delta^H) = B \text{ (by (*))}$$

$$\alpha(\delta_0^H) = B_0 \text{ (by (**))}$$

$$\overline{\rho}(f, g) \text{ holds } \Leftrightarrow f \in \delta^H, g \in \delta_0^H \text{ and } \alpha(f) \subseteq \alpha(g) \text{ (by (***))}$$

$$\rho(f, g) \text{ holds if } f, g \in \delta^H \text{ and } \alpha(f) \subseteq \alpha(g) \text{ (as } B_0 \text{ is dense in } B)$$

$$Eq(f, g) \text{ holds } \Leftrightarrow f, g \in \delta^H \text{ and } \alpha(f) = \alpha(g).$$

Thus

$$(B, B_0, \subseteq) \cong (\delta^H, \delta_0^H, \rho^H)/Eq^H.$$

We immediately have the following.

Theorem 3 ([5]). If V is a variety of groups with a finite non-abelian member then V has an undecidable theory.

REFERENCES

 R. F. Arens and I. Kaplansky, Topological representations of algebras, Trans. Amer. Math. Soc. 63 (1948), 457-481.

- 2. S. Burris, An algebraic test for undecidability, N.A.M.S. 26 (1979).
- 3. S. Burris and R. McKenzie, *Decidability and Boolean representations*, Memoirs Amer. Math. Soc. 32, No. 246 (1981).
- 4. S. Comer, Elementary properties of structures of sections, Bol. Soc. Mat. Mexicana 19 (1974), 78-85.
- 5. Yu. L. Ersov, Theories of non-abelian varieties of groups, Proc. of Symposium in Pure Mathematics 25 (A.M.S., Providence, Rhode Island, 1974), 255-264.
- 6. W. R. Scott, Group theory (Prentice Hall, 1964).
- 7. A. P. Zamjatin, Varieties of associative rings whose elementary theory is decidable, Soviet Math. Doklady 17 (1976), 996-999.

University of Waterloo, Waterloo, Ontario