## A DOUBLE-INFINITY CONFIGURATION

D. W. BARNES

(Received 8 May 1967)

The double-six configuration in classical 3-dimensional projective geometry has been discussed by a number of authors. It consists of two sets  $a_1, \dots, a_6$  and  $b_1, \dots, b_6$  of six lines such that no two lines of the same set intersect, and  $a_i$  meets  $b_j$  if and only if  $i \neq j$ . The existence of a double-six in the 3-dimensional projective geometry over a field F has been proved by Hirschfeld in [2] for all fields F except those of 2, 3 and 5 elements. For an arbitrary 3-dimensional projective geometry in which the number of points on a line is at least 5 but is not 6, the existence of a double-six follows from the fact that the geometry is a geometry over a division ring P with a subfield F satisfying the conditions of Hirschfeld's theorem.

In the classical theory, it is proved that no line  $a_7$  meeting  $b_1, \dots b_6$  can be added to the system. This proof depends on the commutativity of the coordinate system. We show that it is possible for a non-Pappusian geometry to contain a double configuration with infinitely many lines in each set.

Let D be a division ring. We denote by  $\Gamma(D)$  the 3-dimensional projective geometry over D. A system consisting of two sets  $\{a_i|i\in I\}$  and  $\{b_i\mid i\in I\}$  of lines of  $\Gamma(D)$ , each indexed by the index set I of cardinal c, is called a double-c configuration if

- (i) no two members of the same set intersect, and
- (ii)  $a_i$  meets  $b_i$  if and only if  $i \neq j$ .

THEOREM. Let c be any cardinal number. Then there exists a 3-dimensional projective geometry in which there is a double-c configuration.

PROOF. Let V be a 4-dimensional left vector space over a division ring D. Then the points, lines and planes of  $\Gamma(D)$  are the 1-, 2- and 3-dimensional subspaces of V. We denote by  $\langle v_1, \dots, v_r \rangle$  the subspace of V spanned by the elements  $v_1, \dots, v_r \in V$ . Let  $e_1, e_2, e_3, e_4$  be a basis of V. For  $\alpha \in D$ , let  $m_{\alpha}$ ,  $n_{\alpha}$  be the lines  $\langle e_1 + \alpha e_2, e_3 + \alpha e_4 \rangle$ ,  $\langle e_1 + \alpha e_3, e_2 + \alpha e_4 \rangle$  respectively. Then  $M = \{m_{\alpha} | \alpha \in D\}$  and  $N = \{n_{\alpha} | \alpha \in D\}$  are families of

<sup>&</sup>lt;sup>1</sup> For an account of the classical theory, see Baker [1] pp. 159-164.

skew lines. The line  $m_{\alpha}$  meets  $n_{\beta}$  if and only if  $\alpha\beta = \beta\alpha$ . If  $\{\alpha_i | i \in I\}$  and  $\{\beta_i | i \in I\}$  are subsets of D satisfying the condition

(\*) 
$$\alpha_i \beta_i = \beta_i \alpha_i$$
 if and only if  $i \neq j$ ,

then the sets of lines  $\{m_{\alpha_i}|i\in I\}$  and  $\{n_{\beta_i}|i\in I\}$  form a double-c configuration, where c is the cardinal of I.

It remains to show that, for given c, there exists a division ring D with two subsets  $\{\alpha_i|i\in I\}$  and  $\{\beta_i|i\in I\}$ , each indexed by a set I of cardinal c, satisfying the condition (\*). The following construction was suggested by B. H. Neumann. We take any set I of cardinal c. For each  $i\in I$ , let  $F_i$  be the free group on the two generators  $\alpha_i$ ,  $\beta_i$ . Let G be the restricted direct product of the  $F_i$ . Then the subsets  $\{\alpha_i|i\in I\}$  and  $\{\beta_i\in I\}$  of G satisfy (\*). We embed G in the multiplicative group of a division ring.

By Neumann [4] Corollary 3.3, each  $F_i$  can be ordered. By [4] Theorem 3.6, G can be ordered. By Neumann [3] Theorem 5.9, this implies that G can be embedded in the multiplicative group of a division ring D. This division ring D clearly has the required properties.

## References

- [1] H. F. Baker, Principles of Geometry, Vol. III (C.U.P., 1923).
- [2] J. W. P. Hirschfeld, Ph. D. Thesis, Edinburgh (1965).
- [3] B. H. Neumann, 'On ordered division rings', Trans. Amer. Math. Soc. 66 (1949) 202-252.
- [4] B. H. Neumann, 'On ordered groups,' Amer. J. Math. 71 (1949) 1-18.

Department of Pure Mathematics University of Sydney