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ABSTRACT

In the present paper we present two credibility regression models for the
classification of passenger cars. As regressors we use technical variables like price,
weight, etc. In both models we derive credibility estimators and find expressions
for their estimation errors. Estimators for structure parameters are proposed. A
numerical example based on real data is given. The second model is hierarchical
with a level for make of car.

1. BACKGROUND

In Norway there is no common passenger car tariff for all insurance companies,
and thus there are several different tarriffs in the market. However, most of them
seem to have about the same structure as the one used by Storebrand to be
described below, but with different parameter values.

In this paper we are going to discuss vehicle damage insurance for passenger
cars. The tariff structure is multiplicative with factors for bonus-malus,
mileage/district, deductibles, age of car, and car model. We shall concentrate on
the factor for car model. There are 65 classes numbered from 30 to 94, and the
factor for class c is equal to 1.04c~30.

Until the present research was started, the classification of individual car
models was performed rather subjectively. There was one person classifying new
car models. When a new car model appeared on the market, he looked at its
specifications and tried to find out to which cars it was comparable. Then he
looked at the factors for these cars, both by Storebrand and by the competing
companies. When the car had been in the market for some time and claims
statistics had become available, the rating factor was reassessed, taking into
account the observed claims ratio, the observed volume of exposure (premium),
the old factor, and the premiums of the competing companies. This reassessment
was also performed in a rather subjective way, but not by the same person who
had made the initial classification of the car.

The procedure described in the previous paragraph has obvious advantages
compared to an objectively based statistical procedure. It would be impossible to
build into a mathematical model all the experience, knowledge, and intuition of
a skilled person. How could the model incorporate, say, the person's opinion of
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the importance of the shape of the car (a limousine and a coupe are bought by
quite different sorts of people)? And even if one should succeed in creating a
model which to a great extent incorporated the knowledge of the skilled person,
this model would probably be too complicated for practical use. However, the
advantage of the subjective procedure is also a disadvantage. The procedure is
too dependent on the person performing it. As it is impossible to build the
knowledge of the skilled person into a statistical model, it is also impossible to
give an adequate documentation of the procedure. And what then if the person
leaves the company?

This was the background that motivated the present research. One wanted an
objective method for classification of cars, and in this paper we are going to
describe the models and methods that were considered. We are also going to com-
ment upon the difficulties that occurred during the work. As should be well
known to everyone who has worked on modelling insurance data, these data are
very seldom what you want them to be.

When the project was started, it was decided that this time we should concen-
trate only on the determination of the factor for car model. Ideally, one should
of course have developed models and methods for simultaneous determination of
all the factors in the multiplicative model, but that would have been a much more
ambitious and time-consuming project. It was discussed whether one should con-
centrate only on the classification of new car models, for which we have no claims
data, but in the present author's opinion, classification of new models is only a
special case of reclassification (i.e. the case with exposure volume equal to zero).
It would therefore be unnatural not to treat these two situations together, and
it was decided to follow this line.

As was argued above, the subjective approach has great advantages compared
to a statistically based procedure, and it would be wrong to throw this system
away completely. It is the author's intention that the methods presented in this
paper should not replace the skilled person, but rather be an aid to him. The
system proposes a class to the person, but he should himself decide whether to
follow this proposal or not. In particular, this is important for reclassification of
cars that have already been in the market for some time, and for which we know
the rating of the competitors. It would be too ambitious to build a model that
also incorporates the premiums of competing companies. For marketing reasons,
it could also be desirable to make smaller changes by the reclassification than
those proposed by the statistical procedure.

Furthermore, in the statistical investigations it became clear that some car
models behaved so strangely, relative to the model studied, that they ought to be
considered as outliers in the present context. For such cars one should not use
the factor suggested by the system, and perhaps even more important, these cars
should be left out when estimating the model parameters. The most striking
example in our investigations was Volkswagen Golf GTI, and the parameter
estimates changed considerably when this car was taken out of the estimation
procedures. It is important that the person doing the classification identifies such
cars and sees to it that they are left out of the statistical analysis. One could of
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course argue that the model assumptions should also embrace such cars, but it
is the opinion of the present author that it is preferable to have a relatively simple
model giving satisfactory results for "normal" cars, than a complicated model
that could be used for all cars. In particular, as he believes that in practice the
"outliers" would usually be easy to identify.

For the numerical computations we used the program package SAS, which in
particular was very convenient for the matrix calculus.

2. PRELIMINARIES

2.1. Optimality Criterion for Estimators

Let m be a random variable. We shall say that an estimator mw of m is better
than another estimator m(2) if

E(mm-m)2 <E(m(2)-m)2,

that is, we use the quadratic loss function.
Let m = (mi,..., ms)' be an unknown random vector and mm = (mP, ..., ms

(1))'
and m(2) = (m|2), . . . , mi2 )) ' two estimators of m. Then we shall say that mm is
a better estimator of m than m(2) if

E(mP - rrn)1 ^ E(mP - mi)1 i = 1, . . . , 5

with strict inequality for at least one /.
We implicitly assume that second-order moments exist for all random variables

to be considered.

2.2. Credibility Estimators

Let x and m be random vectors, x observable and m unknown. We shall call m
a linear estimator of m (based on JC) if m may be written in the form m = a + Ax,
where a is a non-random vector and A a non-random matrix. The credibility
estimator of m (based on x) is denned as the best linear estimator of m. We sum-
marize some results about credibility estimators in the following theorem.

THEOREM 2.1. (i) There always exists a unique credibility estimator of m.
(ii) Let m be a linear estimator of m. Then m is a credibility estimator of m

if and only if m satisfies the two conditions

(2.1) Em = Em

(2.2) Cov(m,x') = Co\(m,x').

(iii) Let m be the credibility estimator of m. Then we have

(2.3) Cov(m,m') = Co\(m,m') = Cov(m) = Cov(m) - Cov(m - m).

For proof of (i) we refer to D E VYLDER (1976), for proof of (ii) to SUNDT

(1980), and for proof of (iii) to SUNDT (1981).
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3. A NON-HIERARCHICAL APPROACH

3.1. Model

Consider a group of K different car models. These could be all passenger cars
(station wagons included) that are rated in Storebrand, or a well-defined
subgroup of these (e.g. diesel cars, cars with four-wheel drive, all Volkswagen
models, all cars produced after 1982, etc.). For the parameter estimation des-
cribed in Subsection 3.3 it could be reasonable to take a representative sample
from the group considered.

For car model k we have observed Ik risk units (policies). Let Xki be the total
claim amount in the exposure time for unit / of model k, and let pki be the earned
premium. We want to use earned premium as a measure of risk volume, but this
premium also contains the car model factor which we are going to reassess, and
this old value should not be included in the risk measure. Hence, let

(3.1) wki = Pki/fk,

where fk is the old factor, be our measure of risk volume. We assume that for
fixed k, the Xki's are independent of the corresponding data from other car
models, and that Xki,..., Xkik are conditionally independent given 0*, a
random parameter characterizing car model k. It is assumed that 0i, . . . , 9*- are
independent and identically distributed.

Let

Yki = Xki/ Wki-

It is assumed that

E[Yki\Gk] =mk{Qk)

(3.2) Varw*(e*) = X

(3.3) . Var[y«|e*] =s2(e«)/i>H

with Vki = Wki (the reason for introducing vki will become clear in subsection 3.6,
where we modify the present assumptions), and

where xk is a known q x 1 design vector based on the technical data of the car
and |3 is an unknown q x 1 regression vector. We further introduce

h
Xk = S Xki Vk=

i = l

(3.4) Yk=Xk/wk.

We note that in the special case when
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independent of k, the conditions of the Buhlmann-Straub model (BUHLMANN

and STRAUB (1970)) are satisfied.
It is also interesting to relate our present model to HACHEMEISTER'S (1975)

regression model. In that model one assumes that

E[Yki\ek] =xhb(ek),

where Xkt is a known q x 1 design vector and b is a q x 1 vector function. To cor-
respond to our present set-up we assume that Xkt = Xk independent of /. We
introduce

and get

Var E[Yki\Qk] =xkAxk.

Thus this variance would typically vary between car models whereas in (3.2) we
have assumed it to be constant. Let us now assume that the first element of Xk
is equal to one, which will usually be the case. Then we obtain our present model
by assuming that only the first element of 6 ( 6 t ) is random, which makes all
elements of A except the (1,1) element equal to zero. We note that this A is not
positive definite.

3.2. Credibility Estimation of ms(Qs)

Let fhs be the credibility estimator of ws(9j) based on the observed Yki's. We also
introduce the estimation error

t, = E(m,(G,)-m,)2

of ms. From Theorem 2.1 we get

(3.5) m, = r,r, + a - r,)p,

with

fs= Vs/(VS + x).

3.3. Parameter Estimation

The structure parameters <£, X, and 0 will in practical applications be unknown
and have to be estimated.

We have that

(3.6) 4>k = (Ik — 1)~ 2 J Vki(Yki — Yk)
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satisfies £[</>* | 9*:] = s2(9*r), and thus

K

k=\

is an unbiased estimator of </> for all weights w* (2*=iM* = !)• In a n earlier
version of the paper we suggested that one should simply apply Uk = K~l, This
choice has been criticized by Ragnar Norberg, who suggests that one should apply

An optimal choice of weights is difficult, involving fourth-order moments (cf.
e.g. NORBERG (1982)), and it was not within the scope of the present research to
perform a profound analysis of this problem. Both our choice and Norberg's
choice can be criticized; our choice because it gives too much weight to cars with
low exposure; Norberg's choice because if Is is much greater than the other /*'s
for some 5, then the value of 9S will have a too dominant influence on the
estimate of 4>. The present discussion also applies to the analogously weighted
estimators in subsections 3.6 and 4.3. We note that in the special case
7i = h= . •. = IK Norberg's choice and our choice are equal, and in this case <t>*
is equal to the estimator proposed by BUHLMANN and STRAUB (1970) for the
Biihlmann-Straub model.

We introduce

Y=(Yl,...,YK)' X=(XU...,XK)'

K

v = 2 vk D = diag(t;i/ v, ..., vKl V)
, . k = \

and get
EY=X&

(3.7) Co\ Y =(<!>/v)D-1 + \IK

with IK denoting the KxK identity matrix. It is assumed that X has rank q.
We trivially have that

P = (X'DX)1X'DY

is an unbiased estimator of /3. It seems reasonable to base an estimator of X on
the statistic

and we therefore want to find the expectation of Q. In the deduction we use that
for an r x s matrix A and a n s x r matrix B we have

(3.9) tr(AB) = tr(BA),

where "tr" denotes the trace of a quadratic matrix (i.e. the sum of its diagonal
elements); this result is easily proved. We have

EQ = E(Y-XJ3)'D(Y-Xfi) = tr{D E(Y - X$){Y- X$)' }
= tr{D Co\(Y-X$)}
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as

E(Y-X$) = 0.

We further get

EQ = tr(D Co\ [{IK - X(X' DX)~lX' D] Y]) =

ti(D[IK - X(X'DX)-1X'D}(Cov Y){IK - DX(X'DX)lX}),

and insertion of (3.7) gives

(3.10) EQ=\n + (</>/ V)T2

with

(3.11) T1=tr(D{lK-X(X'DXyiX'D}iIK-DX(X'DXr1X'})

and

(3.12) T2 = tr(D[lK-X(X'DXr1X'D}D-1{lK-DX(X'DXy1X')).

From (3.11) we get

(3.13) n = tr D- tr{DX{X'DX)~lX'D] - tr [D2 X{X'DXy^'}
+ tr\DX(X'DX)- 1X' D2X(X' DX) ~XX' j .

By repeated use of (3.9) we see that the three last terms in (3.13) are all equal to
tr{(X'DX)-lX'D2X], and as in addition tr Z)= 1, we get

(3.14) Ti = l-tr[(X'DXylX'D2X}.

From (3.12) we obtain

72 = tr([IK-DX(X'DX)- lX'){IK-DX(X'DX)~lX'})
= tr IK - tr (DX(X'DX)' lX') = tr/* - tr {(X'DX) ' lX'DX} = tr / * - tr Ig,

and as the trace of an identity matrix is equal to its dimension, we get

(3.15) n = K-q.

From (3.8), (3.10), (3.14), and (3.15) we get that

X = { ( F - X0)'D(Y- Xfi) - (K- q)<j>*/v)/ [ 1 - tr[ (X'DX)lX' D2X] ]

is an unbiased estimator of X. It has, however, the disadvantage that it can take
negative values whereas X is always non-negative. Therefore we replace it by

X* = max(0,X).

However, by this adjustment we lose the unbiasedness. For simplicity, in the
following we proceed as if X* > 0; the adaption to the case X* = 0 is trivial. To
avoid having to take special care of the case X* = 0, one could instead of putting
X* equal to zero when ~X ^ 0, put X* equal to some small positive number; one
possible choice would be e/K for some small e, as we would then have asymptotic
unbiasedness when K goes to infinity.
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If Cov Y were known, the best linear unbiased estimator of j3 would be

j3= (X'(Cov Y)~xX)~lX'(co\ Y)~lY,

and as Y\, ..., YK are independent,

'$= f S **(Var y*)~W) 2 **(Var y*)"1^
\*=1 / k = \

-i *:

\ - l A:

\*=1 / *=1

and we propose to estimate /3 by

P*=(ll fix/XL) ' S

with

It should be noted that in the Buhlmann-Straub model the estimators X* and /3*
reduce to the estimators studied by BUHLMANN and STRAUB (1970).

3.4. Determination of the Tariff Class

By inserting the estimators f* and |8* in (3.5) we get the empirical credibility
estimator

with

The estimation error \j/s is estimated by

ti = X*(l - f?).
The estimator m* cannot yet be used as the proposed rating factor for car

model 5; it still needs to be adjusted by some scaling factor. The approach used
in our numerical investigations was to determine the scaling factor such that the
total premium for the portfolio used for the estimations would be the same with
the new values of the model factor as with the old ones.

Let 7* be our scaling factor. Then the new model factor will be

Ps = 7 ms,

and thus the total "new" premium will be 7*S*=i wkm* whereas the "old"
premium is S*=i Pk with

Pk = 2 J Pki-
( = 1
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As these two premiums should be equal, we get
IK \ I K

* I V \ / V - *
7 = 2 J Pk / ZJ Wktnk.

\k=l /\k=\
In addition to our estimator for the class, we also want a confidence interval

for the "correct" factor, by which we mean yms(Qs), where y denotes the mean
of 7*. To get such a confidence interval we need some additional assumption, and
for simplicity we assume that the conditional distribution of ms(Qs) given the
observations is normal with mean ms and variance ^s. This assumption seems
highly unrealistic, in particular for cars with low exposure, but we really did not
need an exact confidence interval, only some measure of the uncertainty of the
estimator, and for this purpose the assumption seems adequate. As a 1-c con-
fidence interval (in the Bayesian sense, cf. e.g. DEGROOT (1970, subsections
11.5-6)) for the factor we obtain ms± gi-c/i-Ws, where gi-t/2 denotes the
1 - e/2 fractile in the standard normal distribution iV(0,1) and by insertion of
estimators for unknown parameters we finally get the estimated confidence inter-
val p* ± y*gi-z/ijipf.

From the estimator and the confidence interval of the model factor, we can
trivially derive an estimator and a confidence interval for the model class (cf.
Section 1).

When a new car model t, for which we have no data, is to be classified, we have
V i = it =

that is,

(3.16)

0, which gives

P*

P* =

* ••

= 7 V-i

-x!a*

* = yx,'p*,

Q
V *

= ZJ Uj Xtj

with
* i * *w *a*

a = ( a i , . . .,aq) =y p •

Thus, (3.16) is the formula to be used to find the model factor for car model /.
Let us for a moment call p*, given by (3.16), p?(0) to stress that this is the

factor estimate without exposure. When we get an observed exposure, we get the
factor

that is, a weighted mean of the initial factor estimate and the empirical factor
y*Yt. We also note that with no exposure we have & = X and \//f = X*.

3.5. Choice of Regressors

In subsection 3.1 we said that xk should be a design vector based on the technical
data of car model k without giving any further indication of which regressors one
should use. In our numerical investigations we registered for each car model in
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our test sample the four basic variables engine power, cylinder volume, weight,
and price. Diesel cars and cars with four-wheel drive were not included in our
sample; otherwise it would have been appropriate to include (0,l)-variables for
these characteristics. As interesting regressors we concentrated on the four basic
variables and ratios between them.

It should be noted that the estimator </>* of <j> does not depend on the chosen
regressors. For X* and 0* we made several computations using different
regressors. In each design we of course included a constant term, that is, the first
element of Xk being equal to 1.

As

X measures how close the prior mean is to m*(0*)> and it was therefore felt that
one should use a set of regressors making X* small. This is also consistent with
our choice of the quadratic loss function; one could think of all the possible
regressors being studied as included in a huge design, but that for most of them
we estimate the corresponding element of /3 by zero.

An important point when choosing regressors is that we know something
about monotonicity. To motivate this, let us look at an example. At an early stage
of our research we wanted to classify some new car models for which the prices
were still unknown. A design giving small X* under these circumstances was
(1 power/weight weight/power)'. For two of the cars we got the following
results:

Car
1
2

Weight
1200 kg
1227 kg

Power
63 HP
86 HP

Class
59
42

This seems of course very unreasonable. Car 2 has a slightly higher weight and
a much higher power than Car 1, but should be rated lower!

In accordance with our opinion about monotonicity, several sets of regressors
were rejected when looking at /3*. It should be noted that the more regressors we
include, the more difficult it would be to control that our opinion about
monotonicity is satisfied as the different regressors could be strongly correlated;
even if we mean that the factor should be increasing with cylinder volume, it need
not be disturbing to get a negative coefficient for this regressor if engine power
has a positive coefficient, as cylinder volume and engine power are strongly
correlated. Under these considerations we conclude that q should not be too
large, say, at most 4-5.

It should be noted that the monotonicity secured by the choice of regressors
is not necessarily satisfied for the posterior estimates m* with positive exposures.
This is reasonable as we then have more information apart from the technical
data; the monotonicity is important only when we base the factor on only the
technical data.

One should be aware that in one respect price is different from the other basic
variables considered, as the price may change whereas the car model is still the
same.
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We conclude this subsection by briefly recapitulating the criteria that should be
taken into consideration by the choice of regressors:

(i) small X*;
(ii) monotonicity;

(iii) small q.

3.6. Some Practical Modifications

In subsection 3.3 we described how we would have estimated <j> if we had had
the necessary data. Unfortunately, we did not have them. From (3.6) we see that
for each policy we had to match the exposure with the total amount of the claims
occurred during the exposure period. At present, the data of Storebrand are
organized such that for each calendar year we have one claims file and one policy
file. The claims file contains data for all claims reported during the year. As stated
above, we really wanted the claims occurred during the year, but this does
not seem to be a serious problem. The policy file contains data from the middle
of the year. The registered premium is the premium at the latest renewal prior
to the middle of the year, which means that these renewals range from the middle
of the previous year until the middle of the present year. Thus a match between
claims and policies would be awkward. We also have the problem that the total
registered premium for a fixed car model is not really the premium we wanted
it to be, but we decided to use it as an approximation. If the premium volume
of the car model is relatively stable over time, this approximation should be
acceptable. However, if the premium volume is growing, we would register too
low a value for the exposure volume. This will in particular be the case when a
new car model is introduced, most extremely for cars introduced in the second
half of the year, for which we may have claims, but no premium. Such cars
should not be included in the parameter estimation.

The following additional model assumptions and estimation method were
applied. Let Nki be the number of claims from risk unit / of car model k, and
let Zkij denote the claim amount of the y'th of these claims. Then

Xki = 2 J Zkij-
j=l

We assume that given 6*, the Zkj/s are conditionally independent and identically
distributed and conditionally independent of the Afc/'s. It is further assumed that
Nki is conditionally Poisson distributed with parameter w*,r*(8*) given 9*. It is
well known that under these conditions

| 0*] =

with

and by using (3.3) we obtain
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We now have that

2J 2J Zkij) Wk

satisfies E[<j>* \ Qk] = s2(ek), and thus

0*= f "
is an unbiased estimator of <j> for all weights M*> (We stress that the quantities 4>*
and 0* defined in the present subsection are not the same as the quantities defined
in subsection 3.3, hoping that this abuse of notation will not present any prob-
lems to the reader.)

The author is not quite happy with the introduction of the present compound
Poisson assumption in our model. From (3.17) we see that the functions r* and
tk depend on k whereas their product is independent of k. And r* really should
depend on k as an independence assumption would imply that technical data have
no influence on the number of claims, which seems very unrealistic.

The fact that in our test sample <t>* was strongly correlated with the four basic
technical variables, could be a consequence of the issue discussed in the previous
paragraph. Let aic denote the engine power of car model k. From our test sample
consisting of 62492 policies distributed on 90 different car models, we found the
correlations displayed in Table 3.1 by using a correlation procedure in SAS. As
is seen from the table, the correlations become considerably lower if we divide
4>t by Ok- Therefore we replace assumption (3.3) by

Var[ Yki | G*] = aks
2(Gk)/wki = s2(Qk)/vki

with Vkt = Wki/ak. Under this assumption (3.17) should be replaced by

We get that

4>t = ( 2 2 Zkij) (ClkWki)
V=U'=i / /

satisfies £[0* | 6*] =s2(Qk), and thus

4> = 2 J uk4>k

TABLE 3.1

CORRELATION OF <£* AND <t>*/ak WITH THE FOUR BASIC RISK VARIABLES

Weight
Power
Cylinder volume
Price

unweighted

0.249
0.337
0.346
0.286

weight Wk

0.445
0.499
0.509
0.486

4>t/ak

unweighted

-0.009
0.041
0.063
0.060

weight Vk

0.078
0.083
0.106
0.187
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is an unbiased estimator of <j> = Es2(Qk) for all weights Uk\ in the numerical
example in Section 6 we applied Uk = K~x.

The reason that we introduced a Vki in subsection 3.1 should now be clear: The
derivations made in the previous subsections are still valid under our revised
assumptions; we have only changed the definition of some of the quantities.

3.7. Introduction of Subjective Assessment

Classification of individual car models by credibility has also been treated by
CAMPBELL (1986). He computes a model factor by a pure Buhlmann-Straub
model, that is, he makes no regression assumption about the technical attributes
of the car. However, before performing the credibility analysis, he divides the
cars by using cluster analysis into groups of cars that are similar with respect to
technical attributes. The credibility analysis is then performed within each group
of car models. Roughly speaking, one could say that in our set-up the regression
assumption plays the role of the cluster analysis in Campbell's set-up.

After the Buhlmann-Straub analysis has been performed, Campbell lets the
final value of the model factor be a weighted mean of the value found by the
Buhlmann-Straub analysis and a subjective estimate based on a technical assess-
ment of the car.

Let us now see how one could incorporate a subjective estimator in our model.
We assume that when car model k is initially classified, a skilled person proposes
a class Ck. His proposal is based on a technical assessment of the car. From the
class Ck we find the factor

Fk = 1.04 c*-30.

This factor is not yet comparable to m*(6*) as it is differently scaled (cf. sub-
section 3.4). From (3.1) and (3.4) we get

Yk = (Xk/Pk)fk,

which motivates the scaling factor
K \ I K

Pk,
\k=l )\k=\

and we introduce the rescaled model factor

Ak = NFk.

We now assume that Ak is independent of the data from the other car models,
that it is conditionally independent of Yki, • •., Ykik given 0*, and that

E[Ak\ek] =mk(Qk) EVM[Ak\Qk] = T.

Now let ms be the credibility estimator of m(Qs) based on Ys\, . . ., Ysls, and
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As and let

From Theorem 2.1 we get

ms = (vsYs + eAs + xns)/(vs + e+ x)

\ps = <j>/(Vs + e+x)

with
e = <f>/r.

We have that

T= 2 uk{(Yk-Ak)
2-$*/vk}

k=\

is an unbiased estimator of T for all weights uk, but as r can take negative values,
we propose to estimate T by T* = max(r, 0).

We can of course still estimate X and |8 by the estimators previously found, but
if we also want to include the Ak's in the estimation, we can easily modify the
estimators presented in subsection 3.3 by using the following trick: We simply
transform the subjective estimator Ak to an artificial risk unit /* + 1 with "risk
volume"

(3.18) vk,h+i = e

and "claim amount"

(3.19) Xk,h+1 = eAk.

By adding the new risk units -Yi^ + i XK,IK+I to the statistics data, we can
estimate X and p in exactly the same way as in subsection 3.3. In (3.18) and (3.19)
we estimate e by

E =</> / T .

This author is for two reasons a bit reluctant about the introduction of the
subjective estimator As in the credibility estimator ms. Both reasons really have
as a consequence that the model assumptions made about the Ak's are not fulfill-
ed in practice.

Firstly, the person performing the assessment will probably gradually adapt
himself to the statistical model. He will get a feeling of what class the statistical
model will propose, and thus his assessment is no longer independent. This does
not seem to be an important objection, but it means that after a while the attitude
of the person is apt to change, and thus one should frequently update the estimate
of r.

The second objection is more serious. In a competitive market like the
Norwegian one, not only the risk level of the car will influence the person
performing the assessment, but also the classification of similar cars, not only by
Storebrand, but also by the competing companies.
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Thus this author is more attracted by the opinion expressed in Section 1, that
the subjective assessment should be influenced by the statistical method instead
of influencing the method itself.

4. A HIERARCHICAL APPROACH

4.1. Model

The make of the car is a characteristic that we have not mentioned yet, but it
could contain valuable information about the risk of a car; the information that
the car is a Mercedes Benz, may contain information about both the car and its
driver that is not contained in characteristics like price, power, etc. It should be
noted that make differs from the characteristics studied in subsection 3.5 in one
important respect; whereas those characteristics were quantitative, make is
qualitative, and thus we cannot directly include make in the set-up of Section 3.
One possible approach would be to extend the regression analysis of Section 3
to a covariance analysis. Instead of following that line we are going to extend the
non-hierarchical regression model of Section 3 to a hierarchical model with a new
level representing the make of the car.

Consider a group of N different makes. For make n we have observed Kn

different car models, and for model k of these we have observed /„* risk units.
Let Xnki denote the total claim amount in the exposure time for unit / of model
k of make n, and let />„*, be the earned premium. We introduce

Wnki = Pnki/fnk,

where /„* denotes the old factor for make of car.
We assume that claim amounts from cars of different makes are independent,

and that from within one make n, claim amounts from different car models are
conditionally independent given a random parameter Hn (capital Greek eta)
characterizing make n. Within car model k of make n, the claim amounts from
different risk units are assumed to be conditionally independent given (9nt, Hn),
where 0n* is a random parameter characterizing car model k of make n. It is
assumed that Qn\, • • •, ©«*:„ are conditionally independent and identically
distributed given Hn, and that their common conditional distribution depends on
the make only through the value of Hn. We further assume that H i , . . . , HAT are
independent and identically distributed.

Let

Ynki = Xnki/Wnki.

It is assumed that

E[ Ynki | Qnk, Kn] = mnk(Qnk, H«)

£Var[/Hll*(ellit,Hll)|Hll] =X

Var [ Ynki | Onk, Hn] = S2(Gnk, KnVVnti
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with vnki = wnki/ ank, where ank is a known quantity which could be equal to one,
engine power (cf. subsection 3.6), or something else. We further assume that

(4.1) E[mnk{Qnk,Kn)\Un] = xnkb{Rn),

where xnk is a known, non-random q x 1 design vector based on the technical data
of the car and b is a q x 1 vector function. We introduce

4> = Es2(Onk,U«) 0

(4.2) H = CovZ»(Hn)

Ink hk Ink

Xnk = 2 Xnki Vnk = 2 Vnki Wnk = 2 w"ki
1 = 1 i '=l 1=1

Ynk= Xnk/Wnk.

We note that for E = 0, the model reduces to the non-hierarchical model
studied in Section 3.

4.2. Credibility Estimators of mr(Qrs, Hr)

Let rhrs and br denote the credibility estimators of mrs(6rs, Hr) and b(Rr) based
on the observed Ynu's. We introduce the estimation errors

tn = Var(mrJ(0rs, H,) - mn) Ur = Cov(6(Hr) - br).

Then we have the following result.

THEOREM 4.1. We have

(4.3) mrs = f„Yrs + (1 - f«

(4.4) lArs = (1 - f „ ) ( X + (1 - frs

with

trs = Vrs/(vrs+ K).

PROOF. AS the coefficients of credibility estimators depend on only first- and
second-order moments, it is sufficient to prove the result for a special case having
the same first- and second-order moments as the general case. It is convenient to
consider multinormal distributions as it is well-known that in that case the Bayes
estimators are linear, and hence they are equal to the credibility estimators.

Let

Wttki = Vnki/2{ Ynki ~ mnk(Qnk, H«) )

Unk - rrinkiQnk, H n ) - xnkb(H.n).

We assume that the Wnki's are independent and identically distributed 7V(0, <f>),
the Unk's are independent and identically distributed 7V(0, X), the 6(Hn)'s are
independent and identically distributed 7V(/3, S ) , and that the Wnki's, the Unk's,
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and the b(Rn)'s are independent. It is obvious that we have the same first- and
second-order moments as in the distribution-free model. Furthermore, we have

E[mrs(Qrs, H,)| *(H,), YrkiV(k, /)] = SnYn + (1 - ^s)x;sb(Hr)

as under the conditional probability measure given b(Rr) we have the same first-
and second-order moment structure for make r as in subsection 3.1 (cf. formula
(3.5)). We get

mrs = E[mrs(QrS, H,)| YnkiV(n, k, i)}

= E{E[mrs{Qrs, Ur)\b(Hr), Ynkiv(n, k, i)} \ Ynkiv(n, k, /)]

= E[E[mn(en, Hr)| b(Ur), Yrkiv(k, /)] | Ynkiv(n, k, /)]

as different makes are independent, and thus

rhn = ?rsYrs + (1 - £„)*;,£[6(H,.)| YnkiV(n,k, /)]

which proves (4.3)
For yprs we apply the same way of reasoning and get

trs = E Var[mrs(0rJ, Hr)| r««V(/i, A:, /)]

= £ Var[wrs(efS, H,)| 6(Hr), rn*/V(«, A:, /)]

+ E Vat[E[mn{Qn, H,)| *(Hr), ynJt,V(«, *, /)] | YMV{n, k, /)]

= X(l - f„) + (1 - f„)2*/,(Cov[6(Hr)| y««V(/i, A:, /)] Arrs

= (1 - f«) [ X + (1 - fra)x^IIrXr5],

which proves (4.4).
This completes the proof of Theorem 4.1. Q.E.D.

We now want an expression for br. To reduce the dimension of the problem we
first prove the following lemma.

LEMMA 4.1. The credibility estimator br depends on the Ynki's only through
Yrl, . . ., YrKr-

PROOF. Let 6r
(I) be credibility estimator of b(Hr) based on Y,\,..., YrKr.

Then by Theorem 2.1(ii)

6r
(1 ) , Yrk) = C o v ( 6 ( H r ) , Yrk). k=\,...,Kr

A s
Cov(Yrs, Yrki) = Cov(Yrs, Yrk)

Cov(b(Hr), Yrki) = Cov(6(Hr), Yrk)
for all (k, s, /), we get

6r
{1), Yrkt) = C0V(6(H,), YM).
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Furthermore, as different makes are independent, we have

Cov(6r
(1), Ynki) = Cov(6(Hr), Ynki) = 0

for all n ^ r, and thus Lemma 4.1 follows from Theorem 2.1(ii). Q.E.D.

We want to find a matrix expression for br and introduce

Zr = diag(fn, . . . , f * )

Xr = (Xrl, . . . , XrKr)' Yr= (Yrl, . . ., YrKr) ' •

We write br as

br=yr+TrYr.

From (2.1) we get

that is,

From (2.2) we obtain

(4.5) Tr Cov Yr = Cov(6(Hr), F/).

We easily get

Cov Yr = XZr1 + XrSXt Cov(6(Hr), F/) = ZXr',

and insertion in (4.5) gives

(4.6) r,(\z,-J + XrSx;) = %x'r.

We multiply (4.6) by ZrXr from the right to obtain

TrXriXI, + SXr ZrXr) = %Xr ZrXr,

which gives

(4.7) TrXr = SXf ZrXr{\Iq + %X'T ZrXr)' J.

From (4.6) we get

(4.8) rrXZr" ' = ( / , - T,

that is,

Insertion of (4.7) gives

Tr = (\Iq + ZX'r ZrXrY
XZX'r Zr.

If XI- ZrXr is non-singular, we introduce
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Then we have

TrYr = (X/, + ZXf ZrXrYX>B,X'r ZrYr = (\IQ + ZX'r ZrXrY^ZX'r ZrXrbr

= sx; zrxr(\iq + sx; zrxr) ~
 xbr = A A ,

where we have introduced the credibility matrix

A, = sx; zrXr(\iq + sx; zrxry
l,

and we get

We still have to find an expression for the estimation error matrix nr . By
Theorem 2.1(iii) we get

nr = cov b(Hr) - Cov Br = H - rr(Cov Yr)r; = H - rv( \zr '

We insert (4.6) and obtain

ur = E - sx' r; = E(/, - x'r n),
that is,

the last equality because IIr and S are symmetric.
We now have expressions for all the quantities that we need for the computa-

tion of rhrs and \pr*-

4.3. Parameter Estimation

Corresponding to (3.6) we introduce
Ink

4>nk — Unk ~ 1) Zj Vnki(Ynki — Ynk) ,
i=\

for which we have

E[<t>*k | Qnk, Un] =

if Vnki = wnki, and in that case
N Kn

4> = ZJ 2-1 Unk4>nk
n = \ k=l

is an unbiased estimator of 0 for all weights unk(SH=\ 2*=i u"k) = 1.
It should be obvious how one could generalize the assumptions and estimators

introduced in subsection 3.6 to the hierarchical model, and we shall not go any
further into details on that matter.

In the following we just assume that we have got an unbiased estimator 4>* of
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4>, and the following derivations do not depend on whether vnki = Wnkt or not.
For the estimation of X, j8, and E we shall also assume that Xn has full rank

q for all n. In practice, this will mean that we exclude data from makes for which
we have observed only a few car models, from the estimation procedures. It is
of course questionable not to utilize these data, but the estimation procedures
become much simpler.

We introduce
Kn N

Vn= 2 Vnk V= 2 vn
k=l n = l

Dn = t^Miag^m, . . . , VnKn)

Analogous to what we did in subsection 3.3, we get

E{Yn-XnbnyDn{Yn-Xnbn) = \[\ -ir{(XkDnXny
lXW$Xn\] + (Kn - q)<t>/vn,

and thus - 1 " yn{Yn - Xnbn)'Dn(Yn - Xnbn) - (Kn - q)j>

v h 1 - tr ({X'nDnXny lXkD2
nXn}

is an unbiased estimator of X. As ~\ may take negative values, we proceed as in
subsection 3.3 to construct a modified estimator X* which is non-negative or
positive. In the following, we assume for simplicity that X* is positive.

Let

It seems

We have

N

reasonable

N

EQ= S
n = l

: wnsn=(\
1 \n

to base our
N

Wn E(bn -

= 1

estimator

t)(bn-P)

\ -1 N

) n = \

of S on

n = l
fn Cov(6n -

^n [Cov bn - Cov(6n> 3 ' ) - Cov(^, $'n) + Cov

£ ffn [Cov 6n - Cov(/3, ft)],
n = l

that is,

(4.9) £ Q = £ WB(7, - ^ B ) Cov 6n.
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For all n we have

and insertion in (4.9) gives
N

with
N N

T — V U/ (I U/ \C¥trT V \~l — V (T U/ 1
— ^ j rrn(iq~ rr n )\J*-n Lin-^n) — Z-i v-*9 ~ rr n)

AT \ / ^ X " 1 / ^ X - 1

,n=l / \ r = l / \»-=l

that is,

and

xizx\ x + (iq- s

s = (/,- S w?) [ Z ^»(A. - m(6«- y^)' - (^v-1)^2 x'rzrx\ x
is an unbiased estimator of E. However, as E is symmetric whereas S does not
in general have this property, we replace S by

When estimating X, we had the problem that X was not necessarily positive. The
analogous problem when estimating S is that S is not necessarily positive semi-
definite. As S is symmetric, it can be written as

where A is an orthonormal qxq matrix (i.e. A 'A = Iq) and

T = diag(ri, . ..,rq),

where n , . . . , rq denote the eigenvalues of S. Let

T,p = max(r,,0) i=l,...,q

T° = diag(Ti° TS).

It can be shown (cf. BUNKE and GLADITZ (1974) ,RAO (1965)) that

2*=A'T°A

satisfies
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for all q X 1 vectors v and all positive semi-definite qxq matrices P, and hence
it seems reasonable to replace S by E* to get a positive semi-definite estimator.
To avoid having to take special care of the case when S* is not strictly positive
definite, one could instead of replacing negative eigenvalues by zero, replace them
by some small positive number; one possible choice would be e/ TV for some e as
we would than have asymptotic unbiasedness when TV goes to infinity.

The computation of S* from S, involving the construction of A and T, may
seem complicated. However, in SAS we had standard procedures for the com-
putation of A and T.

The procedure for estimation of E depends on the parameters <£ and X, which
were assumed to be unknown, and we therefore insert the estimators <£* and X*
for these parameters.

We have that

( N \-l N

n=l ) n=l
is the best linear unbiased estimator of /3. As |8* depends on the unknown
parameters <j>, X, and S, we insert the estimators </>*, X*, and S* for these
parameters in (4.10).

We have now found estimators for all the unknown parameters involved in the
credibility estimators presented in subsection 4.2, and we are therefore able to
construct empirical versions of these credibility estimators.

4.4. A Disadvantage of the Hierarchical Model

For a new car model 5 of make r (i.e. wrs = 0) we have

mn = XrsBr.

In the non-hierarchical model the corresponding formula was

In subsection 3.5 on the choice of regressors, we said that we have some prior
opinion on monotonicity, and that the regressors should be chosen such that this
monotonicity was preserved. This was not too complicated in the non-
hierarchical model. In the hierarchical model it is much more difficult. Whereas
in the non-hierarchical model we could just look at the sign of the elements of
/3, in the hierarchical model we have to look at the elements of br for all r.

In a parametric empirical Bayes analysis we could solve the problem by restric-
ting the support of the distribution of b(Hr) to a set 3B for which the mono-
tonicity is preserved. Then of course also the posterior mean of 6(Hr) would be
contained in 3S. However, such a parametric model would presumably be
complicated to handle, and we would probably have to leave the linearity of the
estimators.

If our statistical models should be used as proposed in Section 1, that is, not
as giving the final answer, but as an aid for the person who finally makes the
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decision, this author would recommend that this person receives the estimates
from both the hierarchical and the non-hierarchical models, using the same
regressors in both models. In his decision he should be aware that the hierarchical
model utilizes information about the make of the car, information that is not
used in the non-hierarchical model. On the other hand, for the assessment of new
car models, the non-hierarchical model will preserve some monotonicity proper-
ties, which may be violated in the hierarchical model.

4.5. A Modified Approach

When the author gave a seminar on the present research, Ragnar Norberg
suggested a modified approach that avoids the monotonicity problem discussed
in the previous subsection. We replace the assumptions (4.1) and (4.2) by

E[mnk{Qnk, Hn)| H»] = Mnk(Hn) EMnk(Kn) = xlufi Var Mnk(Un) = £.

One could say that these assumptions are more consistent with the assumptions
made in the non-hierarchical model whereas (4.1) and (4.2) are more in line with
HACHEMEISTER'S (1975) regression model.

Under these new assumptions we obtain

(4.11) filrs = $nYn + (1 - trtHxtf + Dr)

with

It is interesting to compare (4.11) to (3.5). We see that the only formal difference
is that we have added a correction term Dr to the prior mean xUP- For the case
with no exposure for car model s this property is very attractive. We then get

mrs = Xfsfl + Dr,

that is, we compute the prior mean JCA/3 based on the technical data and add a
correction term Dr as the car is of make r.

We hope to return to the present model in a subsequent paper.

5. SOME CARS ARE MORE EQUAL THAN OTHERS

As is well known, there are often several variants of one car model. In a
Norwegian price list from 1984 (OPPLYSNINGSRADET FOR VEITRAFIKKEN (1984))
we found for instance 9 entries for Volkswagen Golf and 28 for Opel Ascona.
The technical differences between such variants may be number of doors, engine,
shape (coupe/sedan), etc. Such differences will of course in most cases also
influence the price. In our investigations we have considered each variant as a
separate model. However, variants of a car model usually have very much in
common, and it is tempting to try to utilize this informaton in the estimation of
the model factors.
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One possible solution would be to extend our two-level hierarchical model
(make, model) to three levels (make, model, variant) (for multi-level hierarchical
models, cf. e.g. SUNDT (1980),NORBERG (1985)). This would be a more compli-
cated model, and we would have to estimate more parameters.

Another possibility would be to drop the make level in the three-level hierar-
chical model to obtain a two-level model with levels for model and variant. For
this model we could make the same assumptions as in Section 4, but the grouping
of the cars would be different.

A third approach would be simply to consider different variants as one model.
Then we have the difficulty that the different variants do not have the same
technical specifications, but as design vector we could use a weighted mean of the
design vectors for the different variants with weights proportional to the observed
exposures. In this set-up, possible differences in risk characteristics of the variants
now pooled together would be incorporated in s2(9*) (to use the notation of the
non-hierarchical model). The present approach should be used with care as there
exist variants with risk characteristics so different from other variants of the same
model that they should definitely not be pooled together; a striking example is
Volkswagen Golf GTI. Usually, one would be able to identify such "outliers"
already before one obtains the risk statistics. However, this need not always be
the case, and one should therefore, even if the variants are pooled together,
always register the variant of each car in the statistics data so that one is able to
detect an "outlier" and revise the pooling if necessary.

6. NUMERICAL EXAMPLE

6.1. The Data

We have already mentioned our numerical studies a couple of times. Our first
studies were based on data from Storebrand for the year 1983, and in subsection
3.6 we presented some results based on these data. When our first studies had
been performed, data from 1984 became available, and in our investigations on
these data, we included a greater number of makes and car models than in our
1983 studies. In the present section we shall display figures found in our 1984
study; the 1983 data were analysed in the same way.

For each car model included in the study, we registered the technical variables
weight, engine power, cylinder volume, and price. The price was the price given
in a list from April 1984 (OPPLYSNINGSRADET FOR VEITRAFIKKEN (1984)), and
we only included car models that were found in this list. This implies that we
excluded car models that were no longer produced or imported to Norway. If one
should also include older car models, one would have had to use older prices,
which would have had to be adjusted to the price level of 1984. At the present stage
of the development of models and methods, we decided to leave out this problem,
but it is further discussed in SUNDT (1986). As already mentioned, for simplicity
we also excluded diesel cars and cars with four-wheel drive.

In the following presentation we use the codes of Storebrand for make and
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TABLE 6.1

Code

11
14
15
16
17
18
24
25
31
33
34
37
39
45
46
47
53
54
66
93
94
96
97
98

Name

Audi
BMW
Citroen
Fiat
Ford, British
Ford, German
Lancia
Mercedes Benz
Opel
Peugeot
Renault
SAAB
Skoda
Volkswagen
Volvo
Daihatsu
Subaru
Mitsubishi
Talbot
Lada
Honda
Toyota
Nissan
Mazda

Total

Kn

7
11
10
7
7

24
1
7

33
14

1
6
2

11
19
2
6

14
6
5
9

16
14
21

253

Risk units

1112
2754
1190
782

2322
13107

58
1561
8860
1467
950

3382
248

3145
3946

105
349

1844
507

3490
3823
4034
3653
8069

70758

Vn

9050
15117
10429
9541

22326
115557

942
7444

67880
13017
13771
21261
2549

35722
29881

1555
3076

17962
4976

28800
29963
35365
33067
69041

598290

model. In Table 6.1 we give some summary policy data for our sample. For the
headings of the table we have used the notation of Section 4, and in the following
we use vnk = wnk/ (engine power). As we see from the table, we have applied data
from in all 253 different car models distributed on 24 different makes. We applied
no such pooling of car models as described in Section 5.

It would obviously be too much to present the results for all 253 car models,
and we therefore restrict ourselves to give more detailed data for a representative
sample of 25 car models found by including each tenth model from our
total sample, ordered by the codes for make and model. In Table 6.2 we display
the exposure and the technical variables engine power, weight, price, and
price/weight. Prices are given in NOK and weights in kg.

We estimated <j> by the procedure described in subsection 3.6 and found
0* = 651.1.

6.2. The Non-hierarchical Approach

For the non-hierarchical model we computed from the 1983 data for several
different sets of regressors the estimates X* and /3* as described in subsection 3.3.
According to the criteria given in subsection 3.5, it seemed reasonable to use the
two regressors cylinder volume and price/weight, giving q = 3. However, it was
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Make

14
15
16
17
18
18
25
31
31
31
33
33
39
45
46
46
53
54
93
94
96
97
97
98
98

Model

541
313
321
328
451
741
504
327
347
421
354
892
323
523
506
907
349
396
411
417
433
321
832
353
474

Name

BMW 320 I
Citroen Visa GT
Fiat Panda 45
Ford Escort 1.6 L
Ford Sierra 2.0
Ford Sierra 1.6
Mercedes Benz 190 E
Opel Corsa 1.2 ST Sedan
Opel Kadett 1.2 S Combi
Opel Rekord 2.0 S
Peugeot 305 GLS
Peugeot 505 Break
Skoda 120 GLS
Volkswagen Santana 1.9 GX
Volvo 240 GLT B23A
Volvo 240 GLE B23
Subaru 1600 GL Swing-Back
Mitsubishi Galant 1600 GL
Lada 1600 S
Honda Prelude EX
Toyota Carina Coupe
Nissan Stanza 1.6 GL
Nissan Bluebird 1.8 GL
Mazda 626 1.6 GLX Sedan
Mazda 929 2.0 DX St.Wagon

BJ0RN SUNDT

TABLE 6.2

Power

125
80
45
79

105
75

122
55
60

100
74

100
58

115
129
129
71
75
78

106
75
81
88
81
90

Weight

1105
830
670
880

1095
1100
1100
775
870

1140
930

1295
910

1100
1330
1300
885

1065
1040
985

1060
970

1150
1035
1200

Price

162540
79200
48400
87560

102100
109260
199560
67270
72620

118290
88020

146580
50627

138810
178900
178400
74800
99900
54570

181400
94000
93800

108300
93900

108400

Price/weight

147.10
95.42
72.24
99.50
93.24
99.33

181.42
86.80
83.47

103.76
94.65

113.19
55.63

126.19
134.51
137.23
84.52
93.80
52.47

184.16
88.68
96.70
94.17
90.72
90.33

Risk units

173
35

179
738

77
19

185
144
269

2879
249

50
74
17
21
10
48

206
716

36
321
49

327
153
350

fit*

928
288

3251
6437
628
206

1043
1747
2770

18532
2146

372
877
120
110
52

374
2188
5669
306

2790
408

2804
1351
2835

argued that cylinder volume and engine power were strongly correlated, and that
diesel cars and petrol cars were more comparable with respect to engine power
than with respect to cylinder volume. Therefore it was felt that if we should later
include also diesel cars in the analysis, it would be better to replace the regressor
cylinder volume by engine power. We did this and got only a slightly higher
value of X*. With the 1984 data we therefore concentrated on the design
(1 power price/weight). We obtained

X* = 0.2063

/3* = (-0.4183 0.01238 0.01007)',

and from the values of </>* and X* we found

x* = </,*/X* =

In Table 6.3 we have displayed the observed Yk, the estimated prior mean ^*,
the empirical credibility weight f *, and the estimated estimation error \p* for each
of the car models.

We see that Volkswagen Santana 1.9 GX and Volvo 240 GLE B23 have rather
extreme values of Y*. However, as these cars also have low exposure, m* does
not differ much from (i*.

We also computed estimates for tariff classes as described in subsection 3.4.
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TABLE 6.3

67

Make

14
15
16
17
18
18
25
31
31
31
33
33
39
45
46
46
53
54
93
94
96
97
97
98
98

Model

541
313
321
328
451
741
504
327
347
421
354
892
323
523
506
907
349
396
411
417
433
321
832
353
474

Yk

3.336
0.502
2.283
1.465
5.628
0.147
2.075
0.844
1.135
1.644
0.954
3.043
1.301

10.904
1.556
0.000
1.307
1.230
1.133
3.046
1.811
0.862
1.749
1.243
1.186

•it

V-k

2.610
1.533
0.866
1.561
1.820
1.510
2.919
1.136
1.165
1.864
1.451
1.959
0.860
2.276
2.533
2.560
1.312
1.455
1.076
2.748
1.403
1.558
1.619
1.498
1.605

m*

2.775
1.447
1.585
1.497
2.452
1.426
2.709
1.032
1.151
1.676
1.250
2.073
0.956
2.591
2.500
2.519
1.311
1.363
1.112
2.774
1.594
1.478
1.680
1.422
1.407

it

0.2272
0.0836
0.5075
0.6711
0.1660
0.0614
0.2485
0.3563
0.4675
0.8545
0.4048
0.1054
0.2175
0.0365
0.0337
0.0161
0.1060
0.4094
0.6424
0.0883
0.4693
0.1145
0.4705
0.2998
0.4732

*t
0.1595
0.1891
0.1016
0.0679
0.1721
0.1937
0.1551
0.1328
0.1099
0.0300
0.1228
0.1846
0.1615
0.1988
0.1994
0.2030
0.1845
0.1219
0.0738
0.1881
0.1095
0.1827
0.1092
0.1445
0.1087

After having computed 7*, we computed estimates for the classes based on both
the credibility estimates and based on the prior means. For the estimates based
on prior means, the deviations from the classes that were actually used in 1984,
were in most cases quite small; for the estimates based on the credibility
estimates, the deviations were somewhat larger. The explanation is probably that
one has been a bit reluctant to alter the class of a car model. For the actual rating,
one might feel that the procedure is too sensitive to the random variable Yk, and
one should pay attention to this in the final subjective determination of the class;
the statistical procedures do not make political considerations.

6.3. The Hierarchical Approach

Also for the hierarchical model we used the design (1 power price/weight)'. The
parameters X, E, and 0 were estimated as described in subsection 4.3.

For X we found the estimate

from which we obtained

X* = 0.1913,

= 0*/\* = 3404.
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-299650
-3113

4724

-3113
75

- 1 8

4724
18

- 3 3

It is reasonable that the value of X* is lower than in the non-hierarchical model.
When estimating S, we obtained

E-105 =

This matrix is obviously not positive definite. It has one negative eigenvalue, and
by replacing this eigenvalue by 10'6/ N=4-10~8 as described in subsection 4.3,
we arrived at

E * - 1 0 5 = -

As the value of X* was only slightly lower than in the non-hierarchical model
whereas the difference between S and S* is considerable, we presume that for
practical purposes we would choose the non-hierarchical model, but we shall go
on presenting some results for the hierarchical model for illustrative purposes.
We mention that computations made on the same data with the modified model
described in subsection 4.5, gave much more reasonable results.

For |3 we found

j8* = (-0.0587 0.01228 0.00687)'.

0.0488
2.1678
1.3511

-2.1678
107.385
66.820

1.
66.
41.

351
820
709

TABLE 6.4

Make

11
14
15
16
17
18
24
25
31
33
34
37
39
45
46
47
53
54
66
93
94
96
97
98

-0.05086
-0.05181
-0.05134
-0.05132
-0.05091
-0.05102
-0.05090
-0.05058
-0.05065
-0.05059
-0.05100
-0.05078
-0.05093
-0.05106
-0.05043
-0.05086
-0.05093
-0.05071
-0.05091
-0.05082
- 0.05070
-0.05083
-0.05079
-0.05078

6V

0.01078
0.05778
0.03461
0.03384
0.01332
0.01853
0.01263

-0.00309
0.00014

-0.00233
0.01753
0.00707
0.01407
0.02029

-0.01066
0.01094
0.01400
0.00327
0.01307
0.00877
0.00284
0.00927
0.00733
0.00682

0.00762
-0.02127
- 0.00683
-0.00638

0.00631
0.00276
0.00662
0.01623
0.01424
0.01643
0.00355
0.01019
0.00577
0.00170
0.02107
0.00775
0.00575
0.01236
0.00630
0.00905
0.01290
0.00862
0.01003
0.01037
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In Table 6.4 we have displayed the empirical credibility estimate b* for the 24
makes included in the study. The table illustrates the problem discussed in
subsection 4.4; we see that for makes 25, 33, and 46 Xnkb* will be decreasing in
engine power, and for makes 14, 15, and 16 it will be decreasing in price/weight.

As examples of the values found for II* we display the value for one make with
low exposure (Skoda) and one with high exposure (Opel). We found

105 = ( 0.0211
-7.9151
, 4.9790

-7.9151
39.063
24.483

4.979
24.483
15.463

n*, • io5 =
0.0071

-0.0954
0.0678

-0.095 0.068
4.459 3.114
3.114 2.255,

Table 6.5 is the hierarchical analogue to Table 6.3. The quantities displayed in
the last three columns are the estimates of the quantities

4>nk = (1 - ink) [ X + (1 - tnk)XnkIlnXnk]

tif = X + xi

TABLE 6.5

Make

14
15
16
17
18
18
25
31
31
31
33
33
39
45
46
46
53
54
93
94
96
97
97
98
98

Model

541
313
321
328
451
741
504
327
347
421
354
892
323
523
506
907
349
396
411
417
433
321
832
353
474

Ynk

3.336
0.502
2.283
1.465
5.628
0.147
2.075
0.844
1.135
1.64A
0.954
3.043
1.301
10.904
1.556
0.000
1.307
1.230
1.133
3.046
1.811
0.862
1.749
1.243
1.186

Xnkbn

4.042
2.066
1.010
1.629
2.152
1.613
2.517
1.193
1.146
1.441
1.332
1.576
1.086
2.497
1.408
1.466
1.430
1.354
1.108
2.625
1.409
1.513
1.539
1.442
1.499

3.891
1.944
1.632
1.522
2.693
1.529
2.413
1.075
1.141
1.612
1.186
1.721
1.130
2.782
1.413
1.444
1.417
1.306
1.124
2.660
1.590
1.443
1.634
1.385
1.357

/.*
ink

0.2141
0.0779
0.4885
0.6541
0.1558
0.0572
0.2346
0.3391
0.4486
0.8448
0.3867
0.0985
0.2049
0.0339
0.0313
0.0150
0.0990
0.3912
0.6248
0.0824
0.4505
0.1071
0.4517
0.2841
0.4544

X'nkV*

2.495
1.587
0.998
1.603
1.880
1.553
2.694
1.221
1.260
1.890
1.508
1.955
1.044
2.229
2.458
2.477
1.402
1.515
1.268
2.517
1.480
1.609
1.677
1.567
1.675

*:»

0.1911
0.2366
0.0994
0.0798
0.1882
0.1871
0.1666
0.1296
0.1072
0.0307
0.1294
0.2666
0.2863
0.5712
0.2641
0.2641
0.3058
0.1290
0.0827
0.2420
0.1137
0.2003
0.1268
0.1460
0.1142

0.2573
0.2621
0.1973
0.3050
0.2288
0.1989
0.2258
0.1987
0.1969
0.2336
0.2235
0.3072
0.4036
0.6053
0.2753
0.2692
0.3557
0.2252
0.2688
0.2703
0.2199
0.2283
0.2641
0.2089
0.2244

1.4167
0.6572
0.1975
0.5152
2.5677
0.3889
0.3189
0.2013
0.2688
1.5493
0.4459
1.1428
0.7804
1.6357
2.4120
2.2515
0.5623
0.4975
2.3997
0.3121
0.6209
0.6666
1.1276
0.8462
1.4243
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The quantity \pnk has already been defined as the estimation error of the credibil-
ity estimator mnk- We have that #jj?ake) would be the estimation error of x'nubn

as estimator of mnk(Qnk',Hn) for a car model k' with the same technical
specifications as car model k, but for,which we have no exposure. (To say that
(̂make) j s t n e e s t j m a t j o n error of x'nkbn considered as estimator of mn/t(8n*,Hn)

would be wrong as bn contains claims data from car model k.) Similarly, \pfif
would be the estimation error of xkkfi considered as estimator of /wn't'(Qn'*',Hn')
for a car model k' of make ri, for which we have no exposure.

As a consequence of the fact that the value of X* was lower in the present model
than in the non-hierarchical model, we see that the values of ftk are also lower.
This is intuitively reasonable as bnk in the hierarchical model would contain more
information than 0 in the non-hierarchical model.
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