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Angle Measures and Bisectors in
Minkowski Planes

Nico Düvelmeyer

Abstract. We prove that a Minkowski plane is Euclidean if and only if Busemann’s or Glogovskij’s

definitions of angular bisectors coincide with a bisector defined by an angular measure in the sense

of Brass. In addition, bisectors defined by the area measure coincide with bisectors defined by the

circumference (arc length) measure if and only if the unit circle is an equiframed curve.

1 Introduction and Results

In a Minkowski plane M
2, i.e., a two-dimensional real linear space with a metric l(· , ·)

induced by the norm ‖ · ‖, there is no natural definition of a unique angular measure

as in the Euclidean plane with the Euclidean metric le. In fact, there are several pos-

sibilities of defining such a measure. We will study the measures µa and µl which are

proportional to the area and to the arc length of the corresponding sector of the unit

circle, respectively, as well as a class of further measures satisfying certain axioms.

Different definitions of angular measures yield different possibilities of defining

angular bisectors. As long as this bisector is defined by an angular measure, there is

a one-to-one correspondence between angular measures and angular bisectors. But

generalizations of geometric properties of Euclidean angular bisectors yield defini-

tions of angular bisectors in M
2 which are independent of an angular measure. By

means of (angular) bisectors in normed linear spaces, various deep characterizations

of special Minkowski spaces can be obtained, cf. the survey [10, §4]. For the planar

case, we will give further such characterization theorems.

We denote the origin of M
2 by 0, its unit circle by C0 := {x ∈ M

2 : ‖x‖ = 1} and

its unit disc by B := {x ∈ M
2 : ‖x‖ ≤ 1}. For a vector x ∈ M

2, x 6= 0, we denote by

x̂ := 1
‖x‖x the normalization of x. The distance of c ∈ M

2 to a set M ⊂ M
2 is denoted

by ̺(c, M) := infm∈M l(cm). See also the monograph [13] for more background.

In this paper we will characterize special Minkowski planes by properties of C0.

A Radon curve is affinely equivalent to a curve whose polar is a 90◦ rotation of the

original curve, see [12] and [13, Chapter 4]. Minkowski planes with Radon curves as

unit circle are exactly those with symmetric perpendicularity. Equiframed curves are

precisely those centrally symmetric convex closed curves in the plane that are touched

at each of their points by some circumscribed parallelogram of smallest area. These

curves were introduced by Pełczyński and Szarek, see [11, 9].
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Inspired by Brass [2, Definition: p. 207], we define an angular measure for Min-

kowski planes:

Definition 1 An angular measure of the Minkowski plane M
2 (in the sense of Brass)

is a measure µ on the Borel sets of the unit circle C0 which has the following proper-

ties:

(1) µ is normed, i.e., µ(C0) = 2π,

(2) µ is centrally symmetric, i.e., for X ⊂ C0 we have µ(X) = µ(−X),

(3) for each point p ∈ C0 we have µ({p}) = 0,

(4) every arc ab on C0 with a 6= b has a positive measure µ(ab) > 0.

The fourth property was not demanded by Brass but is necessary for defining a bi-

sector (uniqueness).

Theorem 1 Let µa and µl denote the angular measures which are proportional to the

area and to the arc length of the corresponding sector of the unit disc B and the unit circle

C0, respectively, i.e.,

µa(X) =

2π

λ2(B)
λ2(cone(X) ∩ B), X ⊂ C0,

µl(X) =

2π

λ1(C0)
λ1(X), X ⊂ C0.

These measure coincide if and only if C0 is an equiframed curve.

The question for the coincidence of µa and µl was posed by Helfenstein [7] in 1959,

and two years later he himself gave a wrong answer, see [8]. In his solution Helfen-

stein erroneously assumed continuous differentiability of the radial function, yield-

ing a restriction of the characterized class of unit circles from equiframed curves to

Radon curves (which are more specific). To see that this restriction is wrong, one

might consider the l∞-norm where C0 is the square. Then we have µa = µl, but C0

is equiframed and not a Radon curve.

An angle of M
2 is a closed convex subset T of M

2 whose boundary ∂T is the union

of two rays r1, r2 not on a line (called the legs) with common endpoint, called the apex

of the angle. The two limit cases of a single ray and of a halfplane are not called an-

gles. Thus the angle T is uniquely determined by its legs r1, r2, and we denote it by

∠ (r1 r2) = T = conv(r1 ∪ r2). The closed linear segment from x to y is denoted by[
x, y

]
, the straight line through x and y by 〈x, y〉 and the ray with origin x passing

through y by [x, y〉. Further on, we use the notation ∠bac := ∠
(
[a, b〉 [a, c〉

)
. An

angular bisector of an angle T is a ray r such that there are two angles T1, T2 with

T1 ∪ T2 = T and ∂T1 ∩ ∂T2 = r. In this case we say that r divides T into T1

and T2. A system of angular bisectors is a function A mapping each angle T to a cor-

responding bisector r = A(T). The normalized representation Â of A is the function

Â : (x, y) 7→ r ∈ C0, where r ∈ A(∠x0y) for x, y ∈ C0 with x 6= ±y. We define

a system A of angular bisectors by its normalized representation Â in the following

way: A(∠bac) := [a, a + Â(b̂ − a, ĉ − a)〉.
Following Busemann [3], we give
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Definition 2 The system AB = AB,M2 of angular bisectors of M
2 given by

ÂB (a, b) = â + b

for a, b ∈ C0, a + b 6= 0, is called the system of Busemann angular bisectors, and AB(T)

is said to be the Busemann angular bisector of T.

The following definition is due to Glogovskij [6].

Definition 3 The system AG = AG,M2 of angular bisectors of M
2 given by

AG(∠ (r1 r2)) = {c ∈ ∠ (r1 r2) : ̺(c, aff r1) = ̺(c, aff r2)},

i.e., the set of all points of the angle which are equidistant to the lines carrying the

legs, is called the system of Glogovskij angular bisectors, and AG(T) is said to be the

Glogovskij angular bisector of T.

In [5] the Minkowski planes with equivalence of Busemann’s and Glogovskij’s def-

inition of angular bisectors are characterized: In a Minkowski plane M
2 we have

AB,M2 = AG,M2 if and only if the unit circle C0 is a Radon curve.

Given an angular measure µ we can measure every angle in an obvious manner:

µ(∠bac) := µ(∠(b − a)0(c − a) ∩C0).

Definition 4 Given an angular measure µ of M
2, the system of angular bisectors

such that Aµ(T) divides T into T1 and T2 with µ(T1) = µ(T2) =
1
2
µ(T), is called the

system of µ-bisectors, and Aµ(T) is the µ-bisector of T.

There is exactly one µ-bisector for every angle of M
2. (The uniqueness follows

from Definition 1(4), the existence from 1(3).)

Now we are interested in Minkowski planes in which two of the introduced sys-

tems of angular bisectors AB, AG, Aµ and Aµ ′ (defined for another angular measure

µ ′ on the same unit circle C0) are equal. In the following we will prove Theorem 1

and the following characterizations of Minkowski planes in which some systems of

angular bisectors coincide.

Theorem 2 In a Minkowski plane M
2 we have AB = Aµ if and only if M

2 is the

Euclidean plane and µ denotes its standard angular measure.

Theorem 3 In a Minkowski plane M
2 we have AG = Aµ if and only if M

2 is the

Euclidean plane and µ denotes its standard angular measure.

For later use we still notice the following lemma which is an easy consequence of

standard arguments from analysis.

Lemma 4 For two angular measures µ1, µ2 of M
2 we have Aµ1

= Aµ2
if and only if

µ1 = µ2.
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2 Properties of Angular Bisectors

In a Minkowski plane M
2, Definition 2 yields a bisector [0, c〉 satisfying Property 1

below. This property was used by Busemann [3] to define an angular bisector in a

more general sense.

Property 1 Given an angle T with apex P and legs a, b. The angular bisector c of

T has the Busemann bisector property if and only if for every segment
[
x, y

]
joining

a point x from a \ {P} with one point y from b \ {P} the ray c divides
[
x, y

]
in the

ratio of the lengths l(Px) and l(Py), i.e., for {z} :=
[
x, y

]
∩ c one has

(1)
l(xz)

l(zy)
=

l(Px)

l(Py)
.

Lemma 5 An angular bisector c of T has the Busemann bisector property in M
2 if and

only if it is the Busemann angular bisector of T, c = AB(T).

Proof This follows from the fact that the Euclidean angular bisector satisfies Prop-

erty 1 in the Euclidean plane by comparing the lengths with a Euclidean background

metric, see for example [5].

Definition 5 Let

u : [0,U ] → C0

be a parameterization of the unit circle by arc length in the positive orientation. For an

angular measure µ we define the angle function w = wµ : [0,U ] → [0, 2π] by

wµ(t) = µ(u([0, t])).

The angle function wµ is strictly monotone increasing, namely,

wµ(t + dt) = wµ(t) + µ(u((t, t + dt]))

= wµ(t) + µ(u([t, t + dt])) by Definition 1(3)

> wµ(t) for 0 < dt < U − t by Definition 1(4),

and, because of Definition 1(4), continuous, with

w(0) = 0, w(U ) = µ(C0) = 2π, and

w
(

t +
1

2
U

)
= w(t) + µ

(
u
([

t, t +
1

2
U

]))
= π + w(t) for 0 ≤ t ≤

1

2
U .

(Note that u([t, t + 1
2
U ]) ∪ −u([t, t + 1

2
U ]) = C0, and the intersection has empty

measure.)
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Definition 6 Let u : [0,U ] → C0 be a parameterization of the unit circle by arc

length in the positive orientation, µ be an angular measure and w = wµ be the cor-

responding angle measure. Then the parameterization by the angle is the function

m : [0, 2π] → C0, φ 7→ u(w−1(φ)),

where w−1 : [0, 2π] → [0,U ] denotes the inverse to the angle function w = wµ. The

extended parameterization by the angle is the function

m : R → C0, φ 7→ u(w−1(φ mod 2π)).

3 Extensions of Systems of Angular Bisectors

Definition 7 For a system A of angular bisectors of M
2 with normalized represen-

tation Â we define for every half-plane H and unit vector a ∈ C0 with ∂H = 〈−a, a〉

the inner limit of Â with fixed leg [0, a〉, if it exists, by

Âa(H) := lim
b→−a,

∠a0b⊂H

Â(a, b) .

Definition 8 For a system A of angular bisectors of X, we define the following bi-

nary relation in the set of nonzero vectors x, y ∈ X \ {0}: x is A-normal to y if and

only if there is a half-plane H with ∂H = 〈−x, x〉 and y ∈ [0, Âa(H)〉. For this

A-normality we write x ⊣A y.

4 The Equivalence of the Angular Measures µl and µa

(Proof of Theorem 1)

For 0 ≤ t1 ≤ t2 < U and t2 − t1 < U

2
we have that

µl(∠u(t1)u(t2)) = 2π
t2 − t1

U
=

∫ t2

t=t1

2π

U
dt.

Next we denote by u ′
+ : [0,U ) → R

2 the right tangent vector

u ′
+(t) := lim

h↓0

u(t + h) − u(t)

h

of u and write α(t) := det[u(t), u ′
+(t)]. This yields

µa(∠u(t1)u(t2)) =

2π

λ2(B)

∫ t2

t=t1

α(t) dt =

∫ t2

t=t1

2πα(t)

λ2(B)
dt.

Thus we have µl ≡ µa if and only if

2π

U
=

2πα(t)

λ2(B)
∀t ∈ [0,U )
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if and only if α(t) =
λ2(B)

U
(note that α(t) is almost everywhere continuous). Thus

we have that α(t) is constant for µl ≡ µa, and therefore [9, Proposition 1] C0 is

equiframed.

Now if C0 is equiframed, then we have α(t) = c for some constant c, and so

2π =

∫ U

t=0

2πα(t)

λ2(B)
dt = U

2πc

λ2(B)

and

α(t) = c =

λ2(B)

U
,

yielding µl ≡ µa.

Summarizing we have Theorem 1.

5 The Equivalence of Busemann’s Definition With That of a µ-Bisector

We want to show that the equivalence of any Busemann bisector with the correspond-

ing µ-bisector (for some fixed measure µ) implies that the plane under consideration

is Euclidean. In a first step, we mainly consider the inner limit of ÂB with a fixed leg

to obtain that for the equivalence AB = Aµ the plane is Radon (Lemma 7 states the

relevant condition). Theorem 2 then affirms our characterization. Its proof will use

induction to show that our norm is Euclidean.

Lemma 6 Using the orientation of a parameterization u of C0 by arclength, we define

the half-plane Ha spanned by a = u(t) as the half-plane with boundary 〈−a, a〉 also

containing the arc u([t, t + 1
2
U ]) (mod U ).

Then for the inner limit of ÂB of Ha with fixed legs [0, a〉 and [0,−a〉, respectively,

we have

(ÂB)a(Ha) = u ′
−(t) and (ÂB)−a(Ha) = u ′

+(t).

Proof Let us assume that a = u(t). Then

(ÂB)−a(Ha) = lim
ǫ↓0

ÂB

(
u(t + ǫ), u(t +

1

2
U )

)

= lim
ǫ↓0

̂u(t + ǫ) − u(t) = lim
ǫ↓0

u(t + ǫ) − u(t)

ǫ
= u ′

+(t).

Here we use the fact that ‖u(t + ǫ) − u(t)‖ → |ǫ| for ǫ → 0. Analogously, we have

(ÂB)a(Ha) = lim
ǫ↓0

ÂB

(
u(t), u(t +

1

2
U − ǫ)

)
= lim

ǫ↓0
ÂB (u(t),−u(t − ǫ))

= lim
ǫ↓0

̂u(t) − u(t − ǫ) = lim
ǫ↓0

u(t − ǫ) − u(t)

−ǫ

= lim
ǫ↑0

u(t + ǫ) − u(t)

ǫ
= u ′

−(t).
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a = u(t)−a

u+(t)

0 a = u(t)−a

u−(t)

0

Figure 1: (ÂB)−a(Ha) = u′

+(t) and (ÂB)a(Ha) = u′

−(t)

Lemma 7 If AB = Aµ, then u ⊣ v if and only if u ⊣Aµ
v.

Proof Since we have AB = Aµ, Lemma 6 shows that for all t

u ′
+(t) = (ÂB)−a(Ha) = (Âµ)−a(Ha) = (Âµ)a(Ha) = (ÂB)a(Ha) = u ′

−(t).

Therefore the unit circle C0 has only regular points. Thus u(t) ⊣ v is equivalent to

v = λu ′
+(t) for some (nonzero) λ ∈ R. Furthermore, this is equivalent to [0, v〉 =

±Aµ(Ha) = Aµ(±Ha) as well as u(t) = a ⊣Aµ
v. By scaling, this result extends to all

nonzero vectors u ∈ M
2.

Proof of Theorem 2 Obviously, in the Euclidean plane E
2 the Busemann-angular

bisector of any two rays coincides with the µ-bisector where µ denotes the standard

angular measure in E
2.

So we can assume that in a given Minkowski plane M
2 we have AB = Aµ.

Since the Aµ-normality is symmetric (we have u ⊣Aµ
v if and only if µ(∠u0v) =

π
2

), by Lemma 7 also the normality ⊣ is symmetric; thus C0 is a Radon curve. There-

fore C0 is an equiframed curve, and we have that the function α(t) is constant (this

fact, taken from [9], we used already in Section 4).

Let us now define a Euclidean metric by using x := m (0) and y := m( 1
2
π) as

orthogonal unit vectors. We will show that for every k, l ∈ N we have for φ =
l

2k π
that m (φ) coincides with the Euclidean unit vector m2 (φ) := cos(φ)x + sin(φ)y

obtained by rotating (in the Euclidean sense) x by the angle φ in positive orientation.

Thus our metric is the Euclidean one (since both functions m ( · ) and m2 ( · ) are

continuous, they must coincide). Without loss of generality we can measure areas in

this Euclidean metric, giving α(t) = α(0) = 1 for all 0 ≤ t < U .

We use induction over k to show that for 0 ≤ l ≤ 2k+1 the vector m( l

2K π) ∈ C0

coincides with m2( l

2k π).

For k = 0 there is nothing to show: m (0) = x = cos(0)x + sin(0)y = m2 (0),

m (π) = −x = cos(π)x + sin(π)y = m2 (π) (by properties of the function w). For

k = 1 we have m
(

1
2
π
)

= y = m2

(
1
2
π
)
, m

(
3
2
π
)

= −y = m2

(
3
2
π
)
.

Now assume that for k ≥ 2 we have m (φ) = m2 (φ) for all φ =
l

2k−1
π =

2l

2k π,

l = 0, 1, . . . , 2k. We will show that for 0 ≤ l < 2k and φ =
2l+1

2k π we have m (φ) =

m2 (φ), too.
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m
(

l+1
2k−1

π
)

= m2

(
l+1

2k−1
π
)

m2

(
2l+1

2k π
)

m
(

2l+1
2k π

)

m
(

l

2k−1
π
)

= m2

(
l

2k−1
π
)

Figure 2: Proof of Theorem 2: For φ =
2l+1

2k
π the vectors m (φ) and m2 (φ) have the same

direction(k = 3, l = 0).

By our induction hypothesis and AB = Aµ, we have for 0 ≤ l < 2k that

m

(
2l + 1

2k
π

)
∈ Aµ

(
∠m

(
l

2k−1
π

)
0m

(
l + 1

2k−1
π

))

= AB

(
∠m2

(
l

2k−1
π

)
0m2

(
l + 1

2k−1
π

))

=

[
0, m2

(
l

2k−1
π

)
+ m2

(
l + 1

2k−1
π

)〉

=

[
0, m2

(
2l + 1

2k
π

)〉
.

This means that for φ =
2l+1

2k π the vectors m (φ) and m2 (φ) have the same direction

and

m (φ) = ‖m (φ)‖2 · m2 (φ) ,

see also Figure 2.

Next we show that for 0 < l < 2k

∥∥∥∥m

(
2l − 1

2k
π

)∥∥∥∥
2

=

∥∥∥∥m

(
2l + 1

2k
π

)∥∥∥∥
2

holds, giving
∥∥m

(
l

2k π
)∥∥

2
= c for all odd l with 0 < l < 2k+1. We use the abbrevia-

tions

φ1 :=
2l − 1

2k
π, φ2 :=

2l + 1

2k
π and φ :=

l

2k−1
π.

Using Property 1 we get with {C} := [0, m (φ)〉 ∩ [m (φ1) , m (φ2)] that

1 =

l(m (φ1) 0)

l(m (φ2) 0)
=

l(m (φ1) C)

l(Cm (φ2))
=

le(m (φ1) C)

le(Cm (φ2))
=

le(m (φ1) 0)

le(m (φ2) 0)
=

‖m (φ1)‖2

‖m (φ2)‖2

.
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m (φ1)

m (φ2)

C

Figure 3: Proof of Theorem 2: For φ1 := 2l−1

2k
π and φ2 := 2l+1

2k
π the vectors m (φ1) and m (φ2)

have the same Euclidean length. The figure shows why it is not possible that ‖m (φ1)‖
2
6=

‖m (φ2)‖
2

for k = 3, l = 3: then also l(m (φ1) C) 6= l(Cm (φ2)).

Here we use the facts that [0, m (φ)〉 is the Euclidean angular bisector of the two rays

[0, m (φ1)〉, [0, m (φ2)〉, thus satisfying Property 1 using the Euclidean metric le, and

that it is also the Busemann angular bisector of the same rays, see Figure 3.

Thus we know that m (φ) = c · m2 (φ) for φ =
l

2k π with odd l, where c denotes a

constant.

Then we have that for u := m
(

1
2k π

)
and v := m

(
1+2k−1

2k π
)

, the relation u ⊣Aµ
v

holds. For u = u(t) we have that u ′
+(t) = v. Namely, by Lemma 6, u ⊣ v follows;

thus we have by ‖v‖ = 1 that u ′
+(t) = ±v. That u ′

+(t) = −v is impossible one can

see a few lines below. As shown above, u and v are also orthogonal in the Euclidean

sense. Thus 1 = α(t) = det[u(t), u ′
+(t)] = det[u, v] = c · c. Finally we conclude that

c = 1. Hence our induction argument is completed, showing that m (φ) = m2 (φ)
for all 0 ≤ φ ≤ 2π, since m and m2 are both continuous.

Thus the Minkowskian metric coincides with the introduced Euclidean metric,

and µ coincides with the standard angular measure in the Euclidean plane.

6 The Equivalence of Glogovskij’s Definition with That of a µ-Bisector

The following lemma says that the Glogovskij angular bisector coincides with the

Busemann angular bisector in the plane M
2
I with the isoperimetrix I of the plane

M
2
= M

2
B as unit ball. Now the isoperimetrix of the introduced Minkowski plane M

2
I

is homothetic to the unit ball B of M
2. Thus this lemma also holds if we interchange

the roles of I and B, i.e., if we interchange the roles of AB and AG: AG,M2

I
= AB,M2 .

Lemma 8 If the (original) Minkowski plane M
2 has the isoperimetrix I and the Min-

kowski plane M
2
I has the unit ball I, then we have

AB,M2

I
= AG,M2 .

https://doi.org/10.4153/CMB-2005-048-0 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-2005-048-0


532 N. Düvelmeyer

a

b

0

a + b

Ta

Tb ha

hb

g̃a

g̃b

Figure 4: Sketch to Proof of Lemma 8

Proof Let us consider two vectors a and b which are non-collinear with 0 and which

have unit length in M
2
I , i.e.,

‖a‖
I
= ‖b‖

I
= 1 .

We must show that the two angular bisectors of the angle T = ∠a0b, namely

AG,M2 (T) = {c ∈ T : ̺(c, 〈0, a〉) = ̺(c, 〈0, b〉)}

and

AB,M2

I
(T) = [0, a + b〉,

coincide since for fixed a, b there are unique bisectors. Since both these bisectors are

rays, it is sufficient to show that

(2) ̺(a + b, 〈0, a〉) = ̺(a + b, 〈0, b〉).

The parallelogram with vertices 0, a, b and a + b contains two triangles Ta and Tb

with vertices 0, a, a + b and 0, b, a + b, respectively, which both have the same area

(see also Figure 4). As in the Euclidean case, there is a nice formula for the area of a

triangle in a Minkowski plane, see [1, Theorem 7]:

v =

1

2
hg̃,

where v is the area measured in a fixed Euclidean background metric, h is the Min-

kowskian height of the triangle with respect to a side of it (i.e., the distance of the

opposite vertex to the line containing this side) and g̃ is the length of this side mea-

sured in the corresponding plane with I as unit ball. (I is obtained from the polar

reciprocal of B at the Euclidean unit disc after a rotation by π/2.)

Applied to the triangles Ta and Tb and sides 0a and 0b, respectively, this yields

va = hag̃a = vb = hbg̃b,

where g̃a = ‖a‖
I

= 1 = ‖b‖
I

= g̃b. Thus the Minkowskian heights ha and hb are

equal which, in fact, is equation (2).

https://doi.org/10.4153/CMB-2005-048-0 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-2005-048-0


Angle Measures and Bisectors in Minkowski Planes 533

Proof of Theorem 3 We have that AG,M2 = Aµ,M2 in the Minkowski plane M
2 with

the unit ball B if and only if AB,M2

I
= AG,M2 = Aµ,M2 = Aµ ′,M2

I
, where M

2
I is meant

as above and the angular measure µ ′ defined on I is derived from µ (such that for

any angle T we have with our extended notion that µ(T) = µ ′(T), see Lemma 8).

This holds if and only if M
2
I is a Euclidean plane and µ ′ its standard angular measure

due to Theorem 2. The last condition is equivalent to the case that M
2 is a Euclidean

plane with µ = µ ′ as its standard angular measure (we can assume that B = I).

7 Summary

In this paper we considered three different definitions for angular bisectors in a

Minkowski plane.

The first two types of bisectors (Busemann’s and Glogovskij’s angular bisectors)

are uniquely determined by the metric of the plane. The third definition involves an

angular measure as parameter.

We answered the question when two bisector definitions coincide for the whole

plane. See Table 1, where µ1 and µ2 are arbitrary angular measures, µa and µl are the

angular measures induced by area and arc length.

= AG Aµ2

AB M
2 is Radon, see [5] M

2 is Euclidean

µ2 = µa = µl, see Section 5

Aµ1
M

2 is Euclidean µ1 = µ2, see Lemma 4

µ1 = µa = µl, see Section 6 for µl = µa, M
2 has an equiframed

unit circle, see Section 4

Table 1: Characterization of equivalences for angular bisectors in Minkowski planes

Now we can extend our definitions to define angular bisectors to arbitrary Min-

kowski spaces M
d, d ≥ 3. Given an angle with apex 0, consider the 2-plane spanned

by the two legs, i.e., take the restriction of the space to a 2-plane. Then one can

determine the different angular bisectors. For simplicity, we assume that for a µ-

bisector we are given a separate angular measure for every two-dimensional subspace.

This measure may be the trace of a measure defined on the unit sphere or something

like that, but it does not matter.

Using the simple fact that a Minkowski space is Euclidean if and only if each two-

dimensional subspace is Euclidean and the corresponding result for Radon-like sub-

spaces (see [5]), Table 2 summarizes the classification of equivalences of two such

bisectors.

Open was the question for the equivalence Aµl
= Aµa

, i.e., if each intersection of

the unit sphere (= set of all unit vectors) with a 2-plane through 0 is an equiframed

curve. In a separate paper [4] the author will show that all Minkowski spaces with

this property are really Euclidean spaces.
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= AG Aµ2

AB M
d is Euclidean, see [5] M

d is Euclidean

µ2 = µa = µl, see Section 5

Aµ1
M

d is Euclidean µ1 = µ2, see Lemma 4

µ1 = µa = µl, see Section 6 for µl = µa, ?

Table 2: Characterization of equivalences for angular bisectors in Minkowski spaces M
d, d ≥ 3
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16(2003), 1–14.
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