Canad. Math. Bull. Vol. 47 (3), 2004 pp. 354-357

An Integral Formula on Seifert Bundles

Amine Fawaz

Abstract. We prove an integral formula on closed oriented manifolds equipped with a codimension two foliation whose leaves are compact.

1 Introduction

Foliations are of fundamental importance in differential geometry, particularly in the study of fiber bundles and connections, but, with some exceptions [5, 7], the geometric aspects of foliations have not received considerable attention.

In this paper we consider a foliation \mathcal{F} of codimension two on a closed oriented manifold M. We suppose that all the leaves of \mathcal{F} are compact. The assumption on the codimension of \mathcal{F} implies that all the leaves have finite holonomy [1]. Therefore M is a Seifert fiber space. The leaf space $B = M/\mathcal{F}$ is an orbifold of dimension two and thus can be equipped with a holomorphic structure; the foliation \mathcal{F} is then transversely holomorphic and also Riemannian.

Let *g* be a Riemannian metric on *M*, bundle-like with respect to \mathcal{F} and for which all the regular leaves (leaves with trivial holonomy) have the same volume *v*. See [4]. By Rummler [6], all the leaves are minimal with respect to the metric *g*. Consider the exact sequence of vector bundles over $M: 0 \longrightarrow L \longrightarrow TM \xrightarrow{\Pi} Q \longrightarrow 0$, where *L* is the tangent bundle to $\mathcal{F}, Q \cong L^{\perp}$ (via *g*) the normal bundle, and Π is the orthogonal projection.

Let *T* be the second fundamental form of *L*, $K(L^{\perp})$ the sectional curvature of the plane generated by L^{\perp} , and s_{mix} the mixed scalar curvature of *L* and L^{\perp} . See Section 2. We have:

Theorem Let \mathcal{F} be a foliation of codimension two with compact leaves on a closed oriented manifold M. Let g be a bundle-like metric on M for which all the leaves are minimal and the regular leaves have the same volume v. Then

$$\int_{M} \left[K(L^{\perp}) + \frac{3}{2} s_{\min} + \frac{3}{4} |T|^{2} \right] \, d\sigma = 2\pi v \chi(B),$$

where |T| is the Hilbert-Shmidt norm of T, $d\sigma$ is the volume form associated with g, and $\chi(B)$ is the Euler-Poincaré characteristic of B.

Corollary Suppose that \mathcal{F} is 1-dimensional. Then

$$\int_{M} \left[K(L^{\perp}) + \frac{3}{2} \operatorname{Ric}(V) \right] \, d\sigma = 2\pi v \chi(B),$$

Received by the editors November 12, 2002. AMS subject classification: 53C12, 53C15. ©Canadian Mathematical Society 2004.

where V is a unit vector field tangent to \mathcal{F} and Ric(V) is the Ricci curvature in the direction V.

2 Some Notations and Preliminaries

We follow [5]. Let (M, g) be a Riemannian manifold and \mathcal{F} a foliation on M. As in the introduction we let L to be the tangent bundle to \mathcal{F} and L^{\perp} its normal bundle with respect to the metric g. Recall that the second fundamental form T of L is defined by

$$T(v, w) = \Pi(\nabla_v w) \quad \text{if } v, w \in L,$$

$$T(v, x) = \Pi^{\perp}(\nabla_v x) \quad \text{if } v \in L, x \in L^{\perp}$$

where ∇ is the Levi-Civita connection associated with the metric *g*, and Π^{\perp} is the orthogonal projection onto *L*. Note the symmetry of *T* with respect to the arguments *v* and *w*; this is due to the integrability of the distribution *L*. It is well known that $T \equiv 0$ if and only if the foliation \mathcal{F} is totally geodesic.

Consider a local orthonormal frame field $\{v_{\alpha}\}$ and $\{x_i\}$ adapted to \mathcal{F} , that is $v_{\alpha} \in L$ and $x_i \in L^{\perp}$, and let $K(x_i, v_{\alpha})$ be the sectional curvature of the plane (x_i, v_{α}) . The mixed scalar curvature of *L* and L^{\perp} is defined by $s_{\text{mix}} = \sum_{i,\alpha} K(x_i, v_{\alpha})$. For each α , consider the endomorphism

$$A^{\nu_{\alpha}}: L^{\perp} \longrightarrow L^{\perp}, Z \longrightarrow \Pi(\nabla_{Z} \nu_{\alpha}).$$

Assuming M is closed and orientable. We have the following integral formula of Ranjan [5]:

$$(*) \qquad \int_M s_{\rm mix} \, d\sigma = \int_M \left[|F|^2 - \sum_\alpha \operatorname{tr}(A^{v_\alpha})^2 \right] \, d\sigma + \int_M \left[|H|^2 - \frac{1}{2} |T|^2 \right] \, d\sigma,$$

where $H = \sum_{\alpha} T(\nu_{\alpha}, \nu_{\alpha})$ is the mean curvature vector of the leaves of \mathcal{F} and $F = \sum_{i} A(x_{i}, x_{i})$ is the mean curvature vector of the bundle L^{\perp} , A being the second fundamental form of L^{\perp} , and tr $(A^{\nu_{\alpha}})^{2}$ is the trace of the operator $(A^{\nu_{\alpha}})^{2}$

We now apply (*) to the foliation \mathcal{F} given in the introduction. By a remark made earlier, $H \equiv 0$. Also, \mathcal{F} being Riemannian, the orthogonal distribution L^{\perp} is totally geodesic, which implies that the symmetrized second fundamental form of L^{\perp} vanishes; hence $F \equiv 0$. Therefore (*) reduces in our case to

(**)
$$\int_M s_{\min} d\sigma = -\int_M \sum_{\alpha} \operatorname{tr}(A^{\nu_{\alpha}})^2 d\sigma - \int_M \frac{1}{2} |T|^2 d\sigma.$$

We now prove the following Gauss-Bonnet style proposition.

Proposition Let $c_1(Q)$ be the first Chern class of the line bundle Q and χ be the volume form on the leaves. Then,

$$\int_M c_1(Q) \wedge \chi = 2\pi v \chi(B).$$

Proof Let *D* be the adapted connection on *Q* defined by

$$D_{v}x = \Pi[v, x] \quad \text{for } v \in L, x \in Q$$
$$D_{x}y = \Pi(\nabla_{x}y) \quad \text{for } x, y \in Q.$$

The foliation \mathcal{F} being Riemannian, let U be a simple open set of M such that \mathcal{F} is locally defined by a Riemannian submersion $p: U \longrightarrow U/\mathcal{F}$. We define a local orthonormal frame field on U as follows: v_1, v_2, \ldots, v_p are tangent to \mathcal{F} (p=dimension of \mathcal{F}), and x_1, x_2 are the horizontal lifts of an orthonormal frame on U/\mathcal{F} . We have $D_{v_\alpha} x_i = 0, i = 1, 2$ and $\alpha = 1, 2, \ldots, p$. On the other hand, $D_{x_i} x_j$ is the transversal Levi-Civita connection that is the Riemannian connection on U/\mathcal{F} [7] equipped with the metric p_*g . Consequently if ω is the connection form associated with the frame $v_1, v_2, \ldots, v_p, x_1, x_2$, then ω is a basic form, that is $i_V \omega = 0$, and $\theta(V)\omega = 0$ for $V \in L$; here $i_V, \theta(V)$ are respectively the interior product and the Lie derivative in the direction V, see [7]. Therefore the 2-form $c_1(Q) = \frac{1}{2\pi i} d\omega$ is also basic.

Now if *F* is the generic compact fibre of *M*, we have

$$\int_{M} c_1(Q) \wedge \chi = \int_{B} \left(\int_{F} c_1(Q) \wedge \chi \right) = \int_{B} c_1(Q) \wedge \left(\int_{F} \chi \right)$$
$$= \int_{B} v c_1(Q) = v \int_{B} c_1(Q) = 2\pi v \chi(B)$$

by Satake [8]. See also [2].

3 Proof of the Theorem

Using the notations of the proposition, the form $c_1(Q) = \frac{1}{2\pi i} d\omega$ descends to the local quotient to the curvature form $\Omega = K d\lambda$, where *K* is the Gaussian curvature of the open U/\mathcal{F} and $d\lambda$ the volume form. A theorem of O'Neill applied to the Riemannian submersion $p: U \longrightarrow U/\mathcal{F}$ implies that $K = K(x_1, x_2) + \frac{3}{4} |\Pi^{\perp}[x_1, x_2]|^2$. See [3, p. 127].

Recall that the endomorphism $A^{\nu_{\alpha}}$, $\alpha = 1, 2, ..., p$ is defined by

$$A^{\nu_{\alpha}} \colon L^{\perp} \longrightarrow L^{\perp}, Z \longrightarrow \Pi(\nabla_Z \nu_{\alpha}).$$

The foliation \mathcal{F} being transversely holomorphic, $A^{\nu_{\alpha}}$ is C-linear [2], hence represented by a matrix of the form $\begin{pmatrix} C_{\alpha} & D_{\alpha} \\ -D_{\alpha} & C_{\alpha} \end{pmatrix}$. Moreover since \mathcal{F} is Riemannian we have $C_{\alpha} \equiv 0, (\alpha = 1, 2, ..., p)$, consequently $\operatorname{tr}(A^{\nu_{\alpha}})^2 = -2D_{\alpha}^2$. On the other hand, elementary computations show that $|\Pi^{\perp}[x_1, x_2]|^2 = 4\sum_{\alpha} D_{\alpha}^2$. This shows that the Chern class $c_1(Q)$ is represented by

$$[K(x_1, x_2) - \frac{3}{2} \sum_{\alpha} \operatorname{tr}(A^{\nu_{\alpha}})^2] d\lambda$$

 $(d\lambda = *\chi, \text{ where } * \text{ is the Hodge Star operator}).$ Therefore,

$$\int_M c_1(Q) \wedge \chi = \int_M \left[K(x_1, x_2) - \frac{3}{2} \sum_{\alpha} \operatorname{tr}(A^{\nu_{\alpha}})^2 \right] \, d\sigma.$$

356

An Integral Formula on Seifert Bundles

Using (**), we see that

$$\int_M c_1(Q) \wedge \chi = \int_M \left[K(L^\perp) + \frac{3}{2} s_{\text{mix}} + \frac{3}{4} |T|^2 \right] d\sigma = 2\pi \nu \chi(B)$$

by the proposition. The theorem is proved.

Proof of the corollary Observe that the generic fibre in this case is a compact Lie group. Therefore, one can choose the metric g so that the fibres are geodesics. Hence, $T \equiv 0$. On the other hand, Ric(V), here, is the sum of all sectional curvatures of planes containing V which is s_{mix} and the corollary follows.

References

- [1] R. Edwards, K. Millet and D. Sullivan, Foliations with all leaves compact. Topology 16(1977), 13–32.
- [2] A. Fawaz, A note on Riemannian flows on 3-manifolds. Houston J. Math. 29(2003), 137–147.
- [3] S. Gallot, D. Hulin and J. Lafontaine, *Riemannian Geometry*, second edition. Springer-Verlag, Berlin, 1987.
- [4] M. Nicolau and A. Reventós, On some geometrical properties of Seifert bundles. Israel J. Math. 47(1984), 323–334.
- [5] A. Ranjan, Structural equations and an integral formula for foliated manifolds. Geom. Dedicata 20(1986), 85–91.
- [6] H. Rummler, *Quelques notions simples en géométrie riemannienne et leurs applications aux feuilletages compacts*. Comment. Math. Helv. **54**(1979), 224–239.
- [7] Ph. Tondeur, Geometry of foliations. Birkhauser Verlag, Basel, 1997.
- [8] I. Satake, The Gauss-Bonnet theorem for V-manifolds. J. Math. Soc. Japan 9(1957), 464-492.

Department of Mathematics The University of Texas of the Permian Basin 4901 East University Odessa, TX 79762 U.S.A.

e-mail: fawaz_a@utpb.edu