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An Integral Formula on Seifert Bundles

Amine Fawaz

Abstract. We prove an integral formula on closed oriented manifolds equipped with a codimension

two foliation whose leaves are compact.

1 Introduction

Foliations are of fundamental importance in differential geometry, particularly in

the study of fiber bundles and connections, but, with some exceptions [5, 7], the

geometric aspects of foliations have not received considerable attention.

In this paper we consider a foliation F of codimension two on a closed oriented

manifold M. We suppose that all the leaves of F are compact. The assumption on

the codimension of F implies that all the leaves have finite holonomy [1]. Therefore

M is a Seifert fiber space. The leaf space B = M/F is an orbifold of dimension

two and thus can be equipped with a holomorphic structure; the foliation F is then

transversely holomorphic and also Riemannian.

Let g be a Riemannian metric on M, bundle-like with respect to F and for which

all the regular leaves (leaves with trivial holonomy) have the same volume v. See [4].

By Rummler [6], all the leaves are minimal with respect to the metric g. Consider the

exact sequence of vector bundles over M : 0 −→ L −→ TM
Π

−→ Q −→ 0, where L is

the tangent bundle to F, Q ∼= L⊥ (via g) the normal bundle, and Π is the orthogonal

projection.

Let T be the second fundamental form of L, K(L⊥) the sectional curvature of the

plane generated by L⊥, and smix the mixed scalar curvature of L and L⊥. See Section

2. We have:

Theorem Let F be a foliation of codimension two with compact leaves on a closed

oriented manifold M. Let g be a bundle-like metric on M for which all the leaves are

minimal and the regular leaves have the same volume v. Then

∫

M

[

K(L⊥) +
3

2
smix +

3

4
|T|2

]

dσ = 2πvχ(B),

where |T| is the Hilbert-Shmidt norm of T, dσ is the volume form associated with g, and

χ(B) is the Euler-Poincaré characteristic of B.

Corollary Suppose that F is 1-dimensional. Then

∫

M

[

K(L⊥) +
3

2
Ric(V )

]

dσ = 2πvχ(B),
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where V is a unit vector field tangent to F and Ric(V ) is the Ricci curvature in the

direction V .

2 Some Notations and Preliminaries

We follow [5]. Let (M, g) be a Riemannian manifold and F a foliation on M. As in the

introduction we let L to be the tangent bundle to F and L⊥ its normal bundle with

respect to the metric g. Recall that the second fundamental form T of L is defined by

T(v, w) = Π(∇vw) if v, w ∈ L,

T(v, x) = Π
⊥(∇vx) if v ∈ L, x ∈ L⊥,

where ∇ is the Levi-Civita connection associated with the metric g, and Π
⊥ is the

orthogonal projection onto L. Note the symmetry of T with respect to the arguments

v and w; this is due to the integrability of the distribution L. It is well known that

T ≡ 0 if and only if the foliation F is totally geodesic.

Consider a local orthonormal frame field {vα} and {xi} adapted to F, that is vα ∈
L and xi ∈ L⊥, and let K(xi , vα) be the sectional curvature of the plane (xi , vα). The

mixed scalar curvature of L and L⊥ is defined by smix =
∑

i,α K(xi , vα). For each α,

consider the endomorphism

Avα : L⊥ −→ L⊥, Z −→ Π(∇Zvα).

Assuming M is closed and orientable. We have the following integral formula of

Ranjan [5]:

(∗)

∫

M

smix dσ =

∫

M

[

|F|2 −
∑

α

tr(Avα )2
]

dσ +

∫

M

[

|H|2 −
1

2
|T|2

]

dσ,

where H =
∑

α T(vα, vα) is the mean curvature vector of the leaves of F and F =
∑

i A(xi , xi) is the mean curvature vector of the bundle L⊥, A being the second fun-

damental form of L⊥, and tr(Avα )2 is the trace of the operator (Avα )2

We now apply (∗) to the foliation F given in the introduction. By a remark made

earlier, H ≡ 0. Also, F being Riemannian, the orthogonal distribution L⊥ is to-

tally geodesic, which implies that the symmetrized second fundamental form of L⊥

vanishes; hence F ≡ 0. Therefore (∗) reduces in our case to

(∗∗)

∫

M

smix dσ = −

∫

M

∑

α

tr(Avα )2 dσ −

∫

M

1

2
|T|2 dσ.

We now prove the following Gauss-Bonnet style proposition.

Proposition Let c1(Q) be the first Chern class of the line bundle Q and χ be the volume

form on the leaves. Then,

∫

M

c1(Q) ∧ χ = 2πvχ(B).
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Proof Let D be the adapted connection on Q defined by

Dvx = Π[v, x] for v ∈ L, x ∈ Q,

Dx y = Π(∇x y for x, y ∈ Q.

The foliation F being Riemannian, let U be a simple open set of M such that F is

locally defined by a Riemannian submersion p : U −→ U/F. We define a local or-

thonormal frame field on U as follows: v1, v2, . . . , vp are tangent to F (p=dimension

of F), and x1, x2 are the horizontal lifts of an orthonormal frame on U/F. We have

Dvα
xi = 0, i = 1, 2 and α = 1, 2, . . . , p. On the other hand, Dxi

x j is the transver-

sal Levi-Civita connection that is the Riemannian connection on U/F [7] equipped

with the metric p∗g. Consequently if ω is the connection form associated with the

frame v1, v2, . . . , vp, x1, x2, then ω is a basic form, that is iV ω = 0, and θ(V )ω = 0

for V ∈ L; here iV , θ(V ) are respectively the interior product and the Lie derivative

in the direction V , see [7]. Therefore the 2-form c1(Q) =
1

2πi
dω is also basic.

Now if F is the generic compact fibre of M, we have
∫

M

c1(Q) ∧ χ =

∫

B

(

∫

F

c1(Q) ∧ χ
)

=

∫

B

c1(Q) ∧ (

∫

F

χ)

=

∫

B

vc1(Q) = v

∫

B

c1(Q) = 2πvχ(B)

by Satake [8]. See also [2].

3 Proof of the Theorem

Using the notations of the proposition, the form c1(Q) =
1

2πi
dω descends to the

local quotient to the curvature form Ω = Kdλ, where K is the Gaussian curvature

of the open U/F and dλ the volume form. A theorem of O’Neill applied to the

Riemannian submersion p : U −→ U/F implies that K = K(x1, x2)+ 3

4
|Π⊥[x1, x2]|2.

See [3, p. 127].

Recall that the endomorphism Avα , α = 1, 2, . . . , p is defined by

Avα : L⊥ −→ L⊥, Z −→ Π(∇Zvα).

The foliation F being transversely holomorphic, Avα is C-linear [2], hence repre-

sented by a matrix of the form
(

Cα Dα
−Dα Cα

)

. Moreover since F is Riemannian we have

Cα ≡ 0, (α = 1, 2, . . . , p), consequently tr(Avα )2
= −2D2

α. On the other hand,

elementary computations show that |Π⊥[x1, x2]|2 = 4
∑

α D2

α. This shows that the

Chern class c1(Q) is represented by

[K(x1, x2) −
3

2

∑

α

tr(Avα )2] dλ

(dλ = ∗χ, where ∗ is the Hodge Star operator). Therefore,
∫

M

c1(Q) ∧ χ =

∫

M

[

K(x1, x2) −
3

2

∑

α

tr(Avα )2
]

dσ.
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Using (∗∗), we see that

∫

M

c1(Q) ∧ χ =

∫

M

[

K(L⊥) +
3

2
smix +

3

4
|T|2

]

dσ = 2πvχ(B)

by the proposition. The theorem is proved.

Proof of the corollary Observe that the generic fibre in this case is a compact Lie

group. Therefore, one can choose the metric g so that the fibres are geodesics. Hence,

T ≡ 0. On the other hand, Ric(V ), here, is the sum of all sectional curvatures of

planes containing V which is smix and the corollary follows.

References

[1] R. Edwards, K. Millet and D. Sullivan, Foliations with all leaves compact. Topology 16(1977), 13–32.
[2] A. Fawaz, A note on Riemannian flows on 3-manifolds. Houston J. Math. 29(2003), 137–147.
[3] S. Gallot, D. Hulin and J. Lafontaine, Riemannian Geometry, second edition. Springer-Verlag, Berlin,

1987.
[4] M. Nicolau and A. Reventós, On some geometrical properties of Seifert bundles. Israel J. Math.

47(1984), 323–334.
[5] A. Ranjan, Structural equations and an integral formula for foliated manifolds. Geom. Dedicata

20(1986), 85–91.
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