An Integral Formula on Seifert Bundles

Amine Fawaz

Abstract. We prove an integral formula on closed oriented manifolds equipped with a codimension two foliation whose leaves are compact.

1 Introduction

Foliations are of fundamental importance in differential geometry, particularly in the study of fiber bundles and connections, but, with some exceptions [5, 7], the geometric aspects of foliations have not received considerable attention.

In this paper we consider a foliation \mathcal{F} of codimension two on a closed oriented manifold M. We suppose that all the leaves of \mathcal{F} are compact. The assumption on the codimension of \mathcal{F} implies that all the leaves have finite holonomy [1]. Therefore M is a Seifert fiber space. The leaf space $B=M / \mathcal{F}$ is an orbifold of dimension two and thus can be equipped with a holomorphic structure; the foliation \mathcal{F} is then transversely holomorphic and also Riemannian.

Let g be a Riemannian metric on M, bundle-like with respect to \mathcal{F} and for which all the regular leaves (leaves with trivial holonomy) have the same volume v. See [4]. By Rummler [6], all the leaves are minimal with respect to the metric g. Consider the exact sequence of vector bundles over $M: 0 \longrightarrow L \longrightarrow T M \xrightarrow{\Pi} Q \longrightarrow 0$, where L is the tangent bundle to $\mathcal{F}, Q \cong L^{\perp}$ (via g) the normal bundle, and Π is the orthogonal projection.

Let T be the second fundamental form of $L, K\left(L^{\perp}\right)$ the sectional curvature of the plane generated by L^{\perp}, and $s_{\text {mix }}$ the mixed scalar curvature of L and L^{\perp}. See Section 2. We have:

Theorem Let \mathcal{F} be a foliation of codimension two with compact leaves on a closed oriented manifold M. Let g be a bundle-like metric on M for which all the leaves are minimal and the regular leaves have the same volume v. Then

$$
\int_{M}\left[K\left(L^{\perp}\right)+\frac{3}{2} s_{\operatorname{mix}}+\frac{3}{4}|T|^{2}\right] d \sigma=2 \pi v \chi(B)
$$

where $|T|$ is the Hilbert-Shmidt norm of $T, d \sigma$ is the volume form associated with g, and $\chi(B)$ is the Euler-Poincaré characteristic of B.

Corollary Suppose that \mathcal{F} is 1 -dimensional. Then

$$
\int_{M}\left[K\left(L^{\perp}\right)+\frac{3}{2} \operatorname{Ric}(V)\right] d \sigma=2 \pi v \chi(B)
$$

Received by the editors November 12, 2002.
AMS subject classification: 53C12, 53C15.
(c)Canadian Mathematical Society 2004.
where V is a unit vector field tangent to \mathcal{F} and $\operatorname{Ric}(V)$ is the Ricci curvature in the direction V.

2 Some Notations and Preliminaries

We follow [5]. Let (M, g) be a Riemannian manifold and \mathcal{F} a foliation on M. As in the introduction we let L to be the tangent bundle to \mathcal{F} and L^{\perp} its normal bundle with respect to the metric g. Recall that the second fundamental form T of L is defined by

$$
\begin{aligned}
& T(v, w)=\Pi\left(\nabla_{v} w\right) \quad \text { if } v, w \in L \\
& T(v, x)=\Pi^{\perp}\left(\nabla_{v} x\right) \quad \text { if } v \in L, x \in L^{\perp}
\end{aligned}
$$

where ∇ is the Levi-Civita connection associated with the metric g, and Π^{\perp} is the orthogonal projection onto L. Note the symmetry of T with respect to the arguments v and w; this is due to the integrability of the distribution L. It is well known that $T \equiv 0$ if and only if the foliation \mathcal{F} is totally geodesic.

Consider a local orthonormal frame field $\left\{v_{\alpha}\right\}$ and $\left\{x_{i}\right\}$ adapted to \mathcal{F}, that is $v_{\alpha} \in$ L and $x_{i} \in L^{\perp}$, and let $K\left(x_{i}, v_{\alpha}\right)$ be the sectional curvature of the plane $\left(x_{i}, v_{\alpha}\right)$. The mixed scalar curvature of L and L^{\perp} is defined by $s_{\text {mix }}=\sum_{i, \alpha} K\left(x_{i}, v_{\alpha}\right)$. For each α, consider the endomorphism

$$
A^{v_{\alpha}}: L^{\perp} \longrightarrow L^{\perp}, Z \longrightarrow \Pi\left(\nabla_{Z} v_{\alpha}\right)
$$

Assuming M is closed and orientable. We have the following integral formula of Ranjan [5]:

$$
\begin{equation*}
\int_{M} s_{\text {mix }} d \sigma=\int_{M}\left[|F|^{2}-\sum_{\alpha} \operatorname{tr}\left(A^{v_{\alpha}}\right)^{2}\right] d \sigma+\int_{M}\left[|H|^{2}-\frac{1}{2}|T|^{2}\right] d \sigma \tag{*}
\end{equation*}
$$

where $H=\sum_{\alpha} T\left(v_{\alpha}, v_{\alpha}\right)$ is the mean curvature vector of the leaves of \mathcal{F} and $F=$ $\sum_{i} A\left(x_{i}, x_{i}\right)$ is the mean curvature vector of the bundle L^{\perp}, A being the second fundamental form of L^{\perp}, and $\operatorname{tr}\left(A^{v_{\alpha}}\right)^{2}$ is the trace of the operator $\left(A^{v_{\alpha}}\right)^{2}$

We now apply $(*)$ to the foliation \mathcal{F} given in the introduction. By a remark made earlier, $H \equiv 0$. Also, \mathcal{F} being Riemannian, the orthogonal distribution L^{\perp} is totally geodesic, which implies that the symmetrized second fundamental form of L^{\perp} vanishes; hence $F \equiv 0$. Therefore $(*)$ reduces in our case to

$$
\begin{equation*}
\int_{M} s_{\text {mix }} d \sigma=-\int_{M} \sum_{\alpha} \operatorname{tr}\left(A^{v_{\alpha}}\right)^{2} d \sigma-\int_{M} \frac{1}{2}|T|^{2} d \sigma \tag{**}
\end{equation*}
$$

We now prove the following Gauss-Bonnet style proposition.
Proposition Let $c_{1}(Q)$ be the first Chern class of the line bundle Q and χ be the volume form on the leaves. Then,

$$
\int_{M} c_{1}(Q) \wedge \chi=2 \pi v \chi(B)
$$

Proof Let D be the adapted connection on Q defined by

$$
\begin{array}{ll}
D_{v} x=\Pi[v, x] & \text { for } v \in L, x \in Q \\
D_{x} y=\Pi\left(\nabla_{x} y\right. & \text { for } x, y \in Q
\end{array}
$$

The foliation \mathcal{F} being Riemannian, let U be a simple open set of M such that \mathcal{F} is locally defined by a Riemannian submersion $p: U \longrightarrow U / \mathcal{F}$. We define a local orthonormal frame field on U as follows: $v_{1}, v_{2}, \ldots, v_{p}$ are tangent to $\mathcal{F}(p=$ dimension of \mathcal{F}), and x_{1}, x_{2} are the horizontal lifts of an orthonormal frame on U / \mathcal{F}. We have $D_{v_{\alpha}} x_{i}=0, i=1,2$ and $\alpha=1,2, \ldots, p$. On the other hand, $D_{x_{i}} x_{j}$ is the transversal Levi-Civita connection that is the Riemannian connection on U / \mathcal{F} [7] equipped with the metric $p_{*} g$. Consequently if ω is the connection form associated with the frame $v_{1}, v_{2}, \ldots, v_{p}, x_{1}, x_{2}$, then ω is a basic form, that is $i_{V} \omega=0$, and $\theta(V) \omega=0$ for $V \in L$; here $i_{V}, \theta(V)$ are respectively the interior product and the Lie derivative in the direction V, see [7]. Therefore the 2 -form $c_{1}(Q)=\frac{1}{2 \pi i} d \omega$ is also basic.

Now if F is the generic compact fibre of M, we have

$$
\begin{aligned}
\int_{M} c_{1}(Q) \wedge \chi & =\int_{B}\left(\int_{F} c_{1}(Q) \wedge \chi\right)=\int_{B} c_{1}(Q) \wedge\left(\int_{F} \chi\right) \\
& =\int_{B} v c_{1}(Q)=v \int_{B} c_{1}(Q)=2 \pi v \chi(B)
\end{aligned}
$$

by Satake [8]. See also [2].

3 Proof of the Theorem

Using the notations of the proposition, the form $c_{1}(Q)=\frac{1}{2 \pi i} d \omega$ descends to the local quotient to the curvature form $\Omega=K d \lambda$, where K is the Gaussian curvature of the open U / \mathcal{F} and $d \lambda$ the volume form. A theorem of O'Neill applied to the Riemannian submersion $p: U \longrightarrow U / \mathcal{F}$ implies that $K=K\left(x_{1}, x_{2}\right)+\frac{3}{4}\left|\Pi^{\perp}\left[x_{1}, x_{2}\right]\right|^{2}$. See [3, p. 127].

Recall that the endomorphism $A^{v_{\alpha}}, \alpha=1,2, \ldots, p$ is defined by

$$
A^{v_{\alpha}}: L^{\perp} \longrightarrow L^{\perp}, Z \longrightarrow \Pi\left(\nabla_{Z} v_{\alpha}\right)
$$

The foliation \mathcal{F} being transversely holomorphic, $A^{v_{\alpha}}$ is \mathcal{C}-linear [2], hence represented by a matrix of the form $\left(\begin{array}{cc}C_{\alpha} & D_{\alpha} \\ -D_{\alpha} & C_{\alpha}\end{array}\right)$. Moreover since \mathcal{F} is Riemannian we have $C_{\alpha} \equiv 0,(\alpha=1,2, \ldots, p)$, consequently $\operatorname{tr}\left(A^{v_{\alpha}}\right)^{2}=-2 D_{\alpha}^{2}$. On the other hand, elementary computations show that $\left|\Pi^{\perp}\left[x_{1}, x_{2}\right]\right|^{2}=4 \sum_{\alpha} D_{\alpha}^{2}$. This shows that the Chern class $c_{1}(Q)$ is represented by

$$
\left[K\left(x_{1}, x_{2}\right)-\frac{3}{2} \sum_{\alpha} \operatorname{tr}\left(A^{v_{\alpha}}\right)^{2}\right] d \lambda
$$

($d \lambda=* \chi$, where $*$ is the Hodge Star operator). Therefore,

$$
\int_{M} c_{1}(Q) \wedge \chi=\int_{M}\left[K\left(x_{1}, x_{2}\right)-\frac{3}{2} \sum_{\alpha} \operatorname{tr}\left(A^{v_{\alpha}}\right)^{2}\right] d \sigma
$$

Using ($* *$), we see that

$$
\int_{M} c_{1}(Q) \wedge \chi=\int_{M}\left[K\left(L^{\perp}\right)+\frac{3}{2} s_{\text {mix }}+\frac{3}{4}|T|^{2}\right] d \sigma=2 \pi v \chi(B)
$$

by the proposition. The theorem is proved.
Proof of the corollary Observe that the generic fibre in this case is a compact Lie group. Therefore, one can choose the metric g so that the fibres are geodesics. Hence, $T \equiv 0$. On the other hand, $\operatorname{Ric}(V)$, here, is the sum of all sectional curvatures of planes containing V which is $s_{\text {mix }}$ and the corollary follows.

References

[1] R. Edwards, K. Millet and D. Sullivan, Foliations with all leaves compact. Topology 16(1977), 13-32.
[2] A. Fawaz, A note on Riemannian flows on 3-manifolds. Houston J. Math. 29(2003), 137-147.
3] S. Gallot, D. Hulin and J. Lafontaine, Riemannian Geometry, second edition. Springer-Verlag, Berlin, 1987.
[4] M. Nicolau and A. Reventós, On some geometrical properties of Seifert bundles. Israel J. Math. 47(1984), 323-334.
[5] A. Ranjan, Structural equations and an integral formula for foliated manifolds. Geom. Dedicata 20(1986), 85-91.
[6] H. Rummler, Quelques notions simples en géométrie riemannienne et leurs applications aux feuilletages compacts. Comment. Math. Helv. 54(1979), 224-239.
[7] Ph. Tondeur, Geometry of foliations. Birkhauser Verlag, Basel, 1997.
[8] I. Satake, The Gauss-Bonnet theorem for V-manifolds. J. Math. Soc. Japan 9(1957), 464-492.

Department of Mathematics
The University of Texas of the Permian Basin
4901 East University
Odessa, TX 79762
U.S.A.
e-mail: fawaz_a@utpb.edu

