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1. Introduction

Let Zn be the number of individuals in the w-th generation of a discrete
branching process, descended from a single ancestor, for which we put

oo

F(s) = 2 siP[Z1 = /], 0 < F(0) < 1, se [0, 1].
3=0

It is well known that the probability generating function of Zn is Fn(s),
the n-th functional iterate of F(s), and that if m = EZX does not exceed
unity, then lim n -> oo {Fn(s)} = 1 , 0 5S s :£ 1 (Harris [1], Chapter 1).
In particular, extinction is certain.

For a subcritical process (i.e. m < 1) results of Kolmogorov and Yaglom
(see [1]) state that if F"(l —) < oo

(1.1) lim = (i, 1 <; a < oo
re-^oo 1 — Fn{0)

(1.2) lim Gn(s) = G{s), s e [0, 1]
n—»-cx3

exists, where
oo F (<i\ F (0\

G / \ X"* •} 7">r 'Z "\ *7 -^ n-\ n\ ° / x n\ )

and G(s) is a proper generating function, with the mean of the corresponding
distribution G'(l —) = [x, and the corresponding variance, a2, finite.

In two recent papers, Heathcote and Seneta [2], and Seneta [4], are
concerned with bounds for ET, Var T and /u, where T is the time to extinc-
tion. In relation to this, we note that since

P\T > n] = 1 — Fn(0) ~ /i-1 • mn

as n -> oo, all moments of the distribution of T exist. The second of the
above-mentioned papers considers only the Poisson offspring distribution,
for which F(s) = exp m(s— 1). Here it is shown that the bounds are suffi-
ciently good to yield the asymptotic expressions
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672 E. Seneta [2]

ET Omlog(l-w)

(l—m)

1

as w -> 1—, where 1 sf ym, pm, dm^ 2. The paper conjectures also that
Vm» Pm> Qm

 c a n in fact be replaced by the constant 2, in the above expres-
sions.

In the present note we sharpen and generalize these results by consider-
ing a class of branching processes whose offspring distributions depend in
a specific way on the mean. By this we mean that the following conditions
are satisfied:

(i) F(s) = F(m; s) is a p.g.f. for all m such that 1 —e < m < 1,
(i.e. in some left open neighbourhood of m = 1) and

F(m; s) ->• F(*; s), as m -*• 1—, s e [0, 1]

where F(*; s) is a proper p.g.f.

(ii) F"(*; 1) > 0

(iii) F"'(m; 1) < C = const., m e (1—e, 1).

NOTE. Dashes shall always refer to differentiation with respect to s.
By utilizing some techniques from both [2] and [4], together with a

general approach which is basically simpler, we show that for this class of
branching processes:

(1.3) !

for integral a ^ 1;

(1.5) [i~

as m-^-l — . In this simple situation, £(s), the Riemann zeta-function,
is given by
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[3] Sub-critical branching processes 673

Thus, inter alia, the conjectures for the Poisson case are valid.
In a concluding section (§5) we discuss the effect of removing some of

the above restrictions, particularly (ii), and give some examples. The
correlation of results (1.5) and (1.6) to existing results is also discussed.

2. Bounds with mean fixed

Since we are not concerned with varying m in this section we shall
omit explicit mention of it in the functional form. Our procedure, initially
that of [2] viz. using first and second order mean-value theorems, differs
from [2] in that we obtain bounds not for (1—Fn{0)}, but rather its reci-
procal. Since Fk+n(s) = Fn[Fk(s)], for integral n, k S> 0

l--F*+i(0) = {l-Fk(0)}F'(6k)

where Fk(0) < dk < 1, we have by monotonicity of F'(s) (and since
Fk{0) f 1 as k -> oo) that for 0 ^ h ^ k

(2.1) F'(Fh(0)){l-Fk(0)} ^ l-Fk+1(O) <: m{l-Fk(O)}.

Moreover, for k ^ 0

**+i(0) = F{Ft(0)) = l-{l-Fk ^ >

where ^ ( 0 ) < r\k < 1, so that putting bk = {1—JF^O)}"1 we have

Now, since F"{rjk) ^ F"(Fk{0)) ^ F"(Fh{0)) for 0 ^ h ^ k, and using

m m 2m ~ fc+1 ~ m m 2 F'(Fh{0))

(we shall assume that 0 < -F"(l) < oo). This inequality is the crucial one
from which all subsequent results follow. Keeping h fixed, and iterating,

F"(Fh{0)) ^bh F(Fh{0)) ^ 1 ^bh

m" 2w2 <r0 w< = h+n - mnm" 2w2 <r0 w< = h+n - mn 2mF'(Fh{0))

We then have
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and letting n ->• oo

2m - v Ir =

Also from (*) above,

2F'(Fh(0))(l~m) I dm" \ 1 2m{l—m) ( TO«

= K+n-F"(Fh(0)) U-i
where

T =

so that for integral a ^ 0

*=0 -T (!•) n=l

(2-5) f̂j

1 —

The two sets of inequalities (2.4) and (2.5) shall be sufficient to give
us the required asymptotic results by suitable limiting considerations.

3. Limit results: preliminaries

A. We begin with some remarks on the sums occurring in the bounds (2.5),
for a = 0, 1. Since, from [4] (§ 3) for 0 < p, s < 1

log (1-ps) < » ps* < _ p s _ log (1-ps)
logs ~ j=i 1—ps' ~ 1—ps logs

if p ( = p(s)) is such that, as s -> 1 —

(1—ps) ~ c • (1—s) (0 < c = const.)

it follows that

(3.1) lim (- Ji=fl^ - £ -fU = 1.
,_!_ I log (1—S) Pi l—pS'j

Moreover, it was shown in [4] (§ 3) that
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(3-2) lim [-3T- * 1 T ^ J = X

providing 1—p~ £ • (1—s) as s -> 1— where 0 < A- = const. Since the
procedure for sums of the form,

y i!^!i

is a slight extension, essentially, of the procedure to obtain (3.2), in the
cited reference, we only outline it here. The remarks apply for integral
a ^ 1, 0 <p, s < 1.

(a) The function of a continuous variable x > 0

zapsx

1—Psx

has a unique maximum at x = A/"* which is the unique solution of

x+x log s—ctpsx = 0.
Hence iV* satisfies

0 ^ aps** = a+2V* log s => N* ^
logs _

0 = a ( l+ — log s-PsN') ^ x(l+N*logs-psN') =>N* > - = *
\ « / ~V—1-logs

if l—pr^j k • (1—s), as s -> 1—, where k > 0 is independent of s. To see
the validity of the last asymptotic inequality1, we have

0 ^ l+N* log s - p e - ( ^

and since for x ^ 0,

x2

^ 1—xH
It

0 ^ l+iV*logs-P

(AT* \oa

i.e.

This is just a quadratic inequality for N* > 0, whose solution, as s -»• 1 —,
(if 1—p ~ k • (1—s)) is given by

1 The symbol ' > ' is to be interpreted as ' . . . is not less than a quantity asymptotically
equal to . . .'.
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N* ^
V—logs

Hence, if 1— p ~ k • (1—s), we have

(N*)«PsN' „ const.

~Y=^ * (-log,)^*. (° < const- < °0)

as s -> 1—.

(b) From a double use of the Cauchy integral test

where

|e(s)| ^ const.

Jo 1 =
x*psx dx i r (iogy~io8p)a

^ J
J1 ( l g _ a . rfy = ( _ 1 ) « r ( a + 1 ) C ( a + 1 ) f

for a ^ 0 integral.
An obvious combination of these results shows that for a ^ 1 and

integral, if 1—p~ k • (1—s) as s -> 1—,

(3.3) |jv^r

B. Secondly, we remark that under our conditions (i), (ii) and (iii) of
§ 1, asm-*- 1 —

(a) Fk(m; s) -> Fk(*; s), s e [0, 1]
(b) F'(m;Fh(m;0))->F'(*;Fh(*;0))

(c) F"(m;Fh(m;0))^F"{*;Fh(*;0))
(d) F'(*;l) = l
(e) F"(m; 1) - • F"(*; 1), 0 < F"(*; 1) < oo.

To prove (a) consider the inequality

\Fk(m; s)-Fk(*; s)\ ^ |FM(»»; F(w; s ) ) - F w ( m ; F(«; s))\
+ |F M (m; F(*; s ) ) - ^ ^ * ; F(*; s))|

and notice that the first part tends to zero since by the mean value theorem
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\F^x{m; F(m; sfl-F^m; F(*; s))\ = Fi.1(m; dm)\F(m; s)-F{*; s)\

where 0 ^ <5m ̂  1 so that F\_x{m; <5J(^ -F*_iK' 1) = w*-1) is bounded
as m -> 1—, and F(m; s) -> i?(*; s) by (i). The second part of the right hand
side approaches zero by induction on k, and (i). Propositions (b) and (c)
are proved by analogous arguments: consider (c):

\F"{m;Fh(m;O))~F"{*;Fh(*;O))\^\F"{m;Fh(m;O))-F"(m;Fh(*;O))\

+ \F"{m; Fh(*; 0))-F"(*; Fh(*;

Here let us focus attention first on

\F"{tn;Fh(*;0))-F"(*;Fh(*;0))\,

in which we notice that

HJ-ljPiZ, = j][Fh(*; 0)]' £ j(j-l)[Fh{*; 0)]'.

where the right hand side is independent of m, and so

F"(m; FA(*; 0)) = f

)=0

2[1-F»(»; 0)]-» < oo

since 0 < Fh(*; 0) < 1 (see below). Thus by dominated convergence of the
series for F"{m; Fh(*; 0)), and since the assumption (i) implies coefficient
convergence in F(m; s) to F(*; s), it follows that asm->- 1 —

\F"(m; Fh(*; 0))-F"(*; Fh(*; 0))| ^ 0.

On the other hand,

\F"{tn; Fh{m; 0))-F"(m; Fh{*; 0))| = F'"(m; 6J\Fh(m; 0)-Fh(*; 0)|

where 0 ^ 0m ̂  1; and so as m -> 1— (since F'"(m; 1) is bounded, by (iii),
and from (a) above) we get the requisite tendency to zero.

Propositions (d) and (e) follow since condition (i) implies convergence
in distribution as m —> 1 —, and condition (iii) is equivalent to uniform
boundedness of the third moment as m ->• 1 —. Hence by a well known
corollary of the moment convergence theorem, we have convergence of the
first and second moments to those of the limit distribution, which are
necessarily finite. Condition (ii) completes assertion (e).

In concluding this section, we note in particular that

0 < F(*; 0) < 1

this being implied by (d) and (e), and since from (d) also F'(*; 1) = 1,
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the branching process defined by F(*; s) is 'critical', and extinction is
therefore certain, i.e.

as h -> oo. (This was of course used above also in the proof of (b) and
(c), to obtain uniform convergence).

4. Limit results

We are now in a position to combine the results of § 2 and § 3 to deduce
first (1.3) and (1.4), and then (1.5) and (1.6).

To obtain (1.3), consider (2.5), with a = 0 and identify 6 and r
successively with p = p(s) of § 3; and s with m. (Note also, that since
F"(m; 1) -> F"{*; 1) a s » - > 1—, oo > F"(m; 1) > 0 for m sufficiently
close to unity.) First notice that we have putting p = d, s = m

v ' 2{l-Fh(m;0)}-iF'(m;Fh(m;0))(}

~C-{l—m) (0 < C = C(h) < oo)

as m -> 1 — . This result, which amounts to saying that the part in square
brackets approaches C = C(h) as m -> 1—, is a direct consequence of the
propositions of § 3.B and the assumptions (i)— (iii). So also

(4.2) 1—rm~K-(l —m) (0 < K = K(h) < oo)

The remarks (4.1) and (4.2) make it possible to apply (3.1) to the
bounds of (2.5) with a = 0, which are of the form required by (3.1) after
division throughout by —log (1—m). Letting m -> 1— we obtain, therefore,
using also the results of § 3.B,

— ET

F"(*; 1) - „_*_ (log (1-m)
-ET{ -ET )

^ hm sup
m^1J

r Uog (1—m)\

2

-F"(*;Fh{*;0))

N.B. Until this point, h has been fixed, but arbitrary.
Now, F(*; s) is a proper generating function with F'(*; 1) = 1,

F"(*; 1) > 0. Hence from the well known extinction property in this case,
as pointed out Fh(*; 0) f 1 as h -> oo. Since, in the above expression, h may
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be made arbitrarily large, and we have the necessary dominated convergence,

,. . -ET
lim

ro—>-l—

which is (1.3) as required.
To prove (1.4), we need to consider (2.5) with integral a 5: 1; we do

this in a little more detail than in the case a = 0, since the situation is
slightly more complex. Consider the right hand inequality of (2.5):

f k«P[T > k]
(4.3) *=°

- tm"

where h is arbitrary and fixed. We notice first that 1—T~K' • (1—m) as
m -> 1— where 0 < K' = K'(h) < oo. Identifying r and m with p and s
of § 3.A then have from (3.3) (since a 2: 1) that as m -> 1 —

Thus multiplying (4.3) by (1—w)a/r(a+l)^(a+l) we have a s w - > 1

(1—mY °°

2m(l—m)a+1

since the remaining contributing terms of the right hand side of (4.3) are
O{— (1—m) log (l—m)} as m ~> 1 —.

The left hand inequality of (2.5) may be treated in the same way,
since l — 0~ C • (l—m)(0 < C = C'{h) < oo) a s » - > 1—, so that we
get eventually

**'{•> W'«)) < I i m inf
F " ( i ) = 1 ^

2
F"(*; Fft(*; 0))
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Thus once more letting h -> oo, we get the required result (1.4):

2

To obtain (1.5) and (1.6) we return to (2.4) where, first letting m -»• 1—,
and then letting h -»• oo yields

lim (1—•m)/Ji = •

Since (see [4])

(T2 = V ** —fl2

where
v* = Var Zx = F"(m;

it is easily shown that

m-H- a2

as required.

5. Supplementary remarks

Some remarks on the class of distributions defined by conditions (i),
(ii) and (iii) are in order. The condition (i) is one which renders the procedure
m-*-l — meaningful; (iii) ensures the convergence of first and second
moments, and is also used to prove assertion B(c) of § 3. Neither of these
is open to obvious relaxation, as their role is relatively clear cut.

On the other hand condition (ii) is obviously necessary to give the
correct asymptotic behaviour in formulae (1.3) —(1.6), and a relaxation
of this condition is of interest in that we are concerned as to how this
changes the behaviour as m -> 1 — . First we notice that F"(*; 1) = 0,
in view of (i) of § 1 and B(d) of § 3 implies F(*; s) = s; in fact, as pointed
out, F"(*; 0) > 0 renders F(*; s) a sensible p.g.f. for a branching process,
and since F'(*; 1) = 1, enables us to say Fh(*; 0) ^ 1 as h -> oo, a most
important step in our arguments.

Nevertheless, when F"(*; 1) = 0, some deductions are possible, if we
make some further assertion. We shall only consider one such in general
viz. F"(m; 1) > 0 for all m sufficiently close to one. A careful consideration
of the bounds in § 2 reveals that in this case (as expected from (1.3)
and (1.5))

(5.1) lim (l—m)/i = 0
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I ET )
(5.2) lim = oo.
V ' i- I—log (l-m)j

m—*1

An example of such a distribution is given by the probability generating
function of bilinear fractional form

F(m; s) = 1—m2-\ , 0 < m < 1
1 — (1—m)s

which defines a modified geometric distribution. In this case we can calculate
fi and a2 (see [4]) and obtain ET asymptotically:

m

q+»o > 2
m2 "*

log 2
(1-m)

as m->-l—, which agrees with (5.1) and (5.2). Note also /*2/<r2 -> 2 as
w -»• 1 — .

The extremely pathological case not covered by any of the above is
the two-point offspring distribution

F(m; s) = (1—m)-\-ms, 0 < m < 1

since F"(m; 1) = 0 all m e (0, 1). In this case

= 1

for all k ^ 0, and

ET
OO

= 2{i-

1-F,

Fk(m; 0)}

0)

/t=0 A'=0

which seems to behave analogously to the case just discussed.
In conclusion, we point out the relation of some of the present results,

to relevant ones in the literature.
It was pointed out in [4], § 6, that a diffusion approximation result

of Feller, as "m -> 1—" suggested the validity of (1.5) and (1.6) in a wide
class of cases for which 'm -> 1—' had a meaning. Another result of more
immediate relevance in relation to this is the apparent assertion of Nagaev
and Muhamedhanova [3] that if we put for our branching process (under
conditions closely resembling (i), (ii) and (iii))
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then

y < o
^-oo, and w ->- 1+ or » ->• 1 - , which certainly suggests that, as
1 —

from considerations (1.1) and (1.2). (See also [5].)
Finally, the procedure in our main discussion via inequality (2.3),

was suggested to the author by (the body of) the proof of Lemma 1 in [3]
where the expression (2.2) occurs. There is no other overlap in actual
content: in fact the proofs of Nagaev and Muhamedhanova seem to con-
centrate equally on the case m > 1, and thus do not consider time to
extinction at all.
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