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The flow in and around a pair of plumes from sources that are vertically and horizontally
offset is investigated. An analytical potential flow model is developed using an adapted
version of the Milne–Thomson circle theorem to represent the flow due to adjacent
circular and point sinks. This approximates the horizontal section through offset plumes,
which have differing radii at the same vertical position. The predictions of this model
are compared against Reynolds-averaged Navier–Stokes (RANS) simulations of the same
system. These yield time-averaged results and so are particularly suitable for investigating
the relatively weak entrainment field. Single and double plume results from RANS are also
presented to compare with known results. Good agreement is found between the features in
the analytical model and in the numerical solutions including the location of the stagnation
point between the two plumes.
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1. Introduction

Turbulent, buoyant plumes are flows that arise from isolated sources of buoyancy, which
include sources of heat, as well as injections of buoyant fluid. The interaction of multiple
turbulent plumes in close proximity occurs in a wide range of environmental and
industrial applications, such as smoke from chimneys, ventilation flow in restricted spaces,
hydrothermal vents and multiple air pollution sources. Plume interaction, either with other
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plumes or with domain boundaries, can give rise to significantly modified flow behaviour
in the near-source region (Cenedese & Linden 2014; Li & Flynn 2021).

Extensive research has been carried out on the bulk movement of fluid by plume
entrainment in the built environment. Natural ventilation models can be used to
approximate plumes rising from multiple heat sources and act as guidance when designing
a room with sufficient air movement for occupants to be comfortable (Linden, Lane-Serff
& Smeed 1990; Durrani et al. 2011). Additionally, the interaction of multiple plumes has
been investigated in an unrestricted domain with applications to climate and atmospheric
modelling (Mokhtarzadeh-Dehghan, König & Robins 2006; Rooney 2015).

Thus far, most studies have examined plume interaction from a common baseline,
i.e. with multiple sources at the same height. The work to be presented here extends
the plume-interaction model of Rooney (2015, 2016) to the case of two sources with a
vertical as well as a horizontal offset. This opens the way for quantification of the effects
of vertical offsets on flow in the near field. This can certainly occur in building ventilation
problems with heat sources at different levels, and also in atmospheric convection at
different heights. Furthermore, plume interaction from sources with a vertical offset occurs
between thermal vents in the ocean positioned at different heights above the ocean floor.

This study focuses on the morphology of the entrainment field in the plume
environment. The entrainment flow is weak compared with the mean vertical velocities
within the plume, but previous work (Rooney 2016) indicated the significance of
entrainment for defining the plume boundary. This in turn affects the evolution of the other
plume characteristics. For the cases studied here, the ambient flow structures provide a way
to compare theory with numerical experiments.

The relative weakness of entrainment flows makes them potentially difficult to measure,
either in experiments or in time-varying numerical simulations. They are, however,
more accessible using computational fluid dynamics (CFD) simulations. In particular,
time-averaged flows using the Reynolds-averaged Navier–Stokes (RANS) formulation
provides a good representation of many aspects of single plume flow (Hargreaves, Scase
& Evans 2012; Kumar et al. 2022). Also, studies of multiple plumes using RANS (Durrani
et al. 2011; Lou et al. 2019) have shown good comparison with the theoretical and
experimental results of Kaye & Linden (2004). However, the near-field entrainment of
vertically offset sources has not been investigated. Therefore, RANS will be used to
examine both the interacting plumes and their environment. Some possible indications
of limits on the capability of RANS in this context will also be discussed.

We begin by presenting some background literature on the dynamics of a single plume
in § 2, which is necessary to develop the new analytical theory in § 3. Details of the
numerical simulation are presented in § 4. In § 5 we validate and verify our single plume
and the no vertical offset case against existing theory and experiments, before comparing
our theoretical model and RANS results for the case of vertically offset plumes.

2. Dynamics of a single plume

2.1. Similarity model of a pure plume
The fluid in a plume moves under gravity and is driven by a density difference between
the plume fluid and its surrounding environment. The plume body exhibits significant
mean vertical velocity w and reduced gravity g′. The reduced gravity g′ is defined as g′ =
g(ρa − ρ)/ρ0, where ρa and ρ denote the density of the ambient fluid and the plume,
respectively, ρ0 is some reference density and g is the acceleration due to gravity. The
radial profiles of these time-averaged quantities are approximately Gaussian, and may be
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Vertically offset turbulent plumes

represented as

w̃ = CwF0
1/3z−1/3 exp (−r2/b̃2), (2.1)

g̃′ = Cg′F0
2/3z−5/3 exp (−r2/b̃2), (2.2)

where w̃(r, z) is the vertical velocity, g̃′(r, z) is the reduced gravity, b̃(z) is the e-folding
length, r is the radial or cross-plume coordinate, z is the vertical coordinate, and Cw and
Cg′ are constants. In the self-similar regime, b̃ ∝ z. A small difference in the e-folding
length scale between the two profiles is often observed, but also often assumed negligible
so that the approximation of a single length scale is made, as above.

Such buoyant plumes are typically modelled with integral models. The classical model
of Morton, Taylor & Turner (1956) comprises a set of three coupled ordinary differential
equations, which are based on three main assumptions: self-similarity, Boussinesq
approximation and the constant entrainment coefficient α. In an unstratified environment
the equations for volume flux Q, momentum flux M and buoyancy flux F are

dQ
dz

= 2αM1/2,
dM
dz

= 2
QF
M
,

dF
dz

= 0. (2.3a–c)

The ‘top-hat’ formulation replaces the peak values of w and g′ and the Gaussian e-folding
length scale with horizontally averaged values of w and g′ and an associated mean radius
b. The fluxes can then be expressed as

Q = b2w, M = b2w2, F = b2wg′. (2.4a–c)

From here on, we use w(z) and g′(z) to denote the top-hat variables, replacing the Gaussian
profiles of w̃(r, z) and g̃′(r, z), respectively.

In the formulation of these equations it is assumed that the plume originates from a point
source. In actuality, plumes will begin from a source with some finite radius. To account
for the finite nature of the source, one can extrapolate the sides of the plume back to some
point origin, as shown in figure 1(a). This virtual origin correction is made by taking the
height as z + zv (when calculating the plume radius by the similarity solution (2.5), for
instance), where zv is the height of the finite source above the virtual point source. At
larger heights when z � zv , the virtual origin correction will be negligible.

Under the assumption that the ambient fluid is of uniform density (ρ0 ≡ ρa), Morton
et al. (1956) give a similarity solution for an axisymmetric pure plume as

b = 6α
5

z, (2.5)

w = 5
6α

(
9
10
αF
)1/3

z−1/3, (2.6)

g′ = 5F
6α

(
9
10
αF
)−1/3

z−5/3. (2.7)

2.2. The sink model of entrainment
A line sink of strength −m(z) positioned at the origin has complex potential

Ω = − m
2π

ln Z, (2.8)
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Figure 1. The configuration of two plumes with vertical offset ζ and horizontal source separation χ shown
in the (a) xz plane and (b) xy plane. The ‘lower’ plume is on the left and the ‘upper’ plume is on the right.
The origin of coordinates O is positioned along the centreline of the lower plume at the height of the upper
plume virtual origin such that the virtual origin of the lower plume is at (0, 0,−ζ ), and that of the upper is at
(χ, 0, 0). The shaded circular region shows the cross-sectional area of the lower plume at z = 0.

where Z = x + iy = reiθ . Since the flow induced by plume entrainment is horizontal and
irrotational, Kaye & Linden (2004) used line sinks to represent the flow exterior of two
interacting plumes.

The principle of superposition implies that the complex potentials of individual line
sinks can be summed to give a total complex potential representing the entrainment field
of an equivalent configuration of interacting plumes. The real part of the resulting complex
potential Ω = φ + iψ corresponds to the velocity potential.

As described previously by Rooney (2015) and Rooney (2016), contours of equal
velocity potential can be used to approximate the mean plume boundaries at any height.
Outside the plume boundaries, the streamfunction from the complex potential yields
the combined horizontal entrainment field of multiple plumes. The vertical evolution of
the system is controlled by the buoyancy of the plumes and the entrainment along the
perimeter of the plume system. The distortion and merging of the plume boundaries is
mirrored by that of the velocity-potential contours (e.g. Rooney 2016, figure 7).

3. Sink model for vertically offset sources

A diagram of two equal strength plumes emerging from point sources with horizontal
separation χ and vertical offset ζ is shown in figure 1. We will assume that the lower
plume is unaffected by the upper plume until it reaches the height of its source. Under
this assumption, the plume will rise as an axisymmetric plume and will have some radius
R when it reaches the upper plume source at height z = 0. As such, its entrainment field
cannot be approximated by a line sink. Instead, the flow on a horizontal cross-section
taken at this height could be approximated by a circular sink of radius R at the origin
next to the line sink of the upper plume at a distance χ along the x axis, as emphasised
in figure 1(b). To represent this plume configuration, the existing circle theorem of
Milne-Thomson (1940) may be adapted such that a circle inserted into the flow is identified
as a velocity-potential contour, rather than a streamline. In this way, the circle can be
identified as the lower plume boundary at z = 0. To produce net entrainment into the lower
plume, a second line sink concentric with the circular boundary must also be incorporated.

966 A24-4

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

43
9 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.439
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3.1. A modified circle theorem
The circle theorem of Milne-Thomson (1940) expresses how an irrotational,
two-dimensional flow of incompressible and invisid fluid is altered upon the insertion
of a circular cylinder into the flow. The circle of radius R obtained from a cross-section
of the cylinder is denoted C and has the equation |Z| = R. The theorem applies when the
complex potential of the initial flow f (Z) has no rigid boundaries and no singularities in the
region |Z| � R for R ∈ R. Placing the circle into this flow changes the complex potential
to

Ω(Z) = f (Z)+ f
(
R2/Z̄

)
, (3.1)

where the bar denotes the complex conjugate. Since R2/Z̄ is the reflection of Z in C
and |Z| > R implies |R2/Z̄| < R, it follows that the additional, perturbing term has no
singularities outside of C. Furthermore, the circle is a streamline. This can easily be
illustrated by considering Z = Reiθ such that the complex potential becomes

Ω(Reiθ ) = f (Reiθ )+ f
(

R2

Re−iθ

)
= f (Reiθ )+ f (Reiθ ), (3.2)

and, hence, is entirely real.
To instead identify the circle as a velocity-potential contour, the theorem must be

modified to ensure a purely imaginary potential on C. Similar to the original theorem,
we require the perturbing term to have all its singularities within the circle. The complex
potential

Ω(Z) = f (Z)− f
(
R2/Z̄

)
(3.3)

satisfies this condition, and is entirely imaginary on C.
As a first example, we consider uniform flow around a circle of radius R centred at the

origin. Taking f (Z) = Z, the complex potential given by the original circle theorem is

Ω = f (Z)+ f (R2/Z̄)

= reiθ + R2

r
e−iθ (3.4)

using Z = reiθ . The imaginary part of the complex potential corresponds to the
streamfunction ψ , where

ψ(r, θ) = sin θ
(

r − R2/r
)
. (3.5)

A streamline is a line everywhere tangent to the local fluid velocity and, hence, ψ remains
constant along streamlines. The streamlines corresponding to the streamfunction in (3.5)
are plotted in figure 2(a). As expected, the boundary |Z| = R corresponds to a level set of
the streamfunction as the potential is entirely real on the circle (imaginary part is constant).

Applying the adapted circle theorem, the streamfunction becomes

ψ(r, θ) = sin θ
(

r + R2/r
)
, (3.6)

and the corresponding streamlines are plotted in figure 2(b). The streamlines demonstrate
that there is now flow both into and out of the circle perpendicular to its boundary
such that the total net flow is zero due to symmetry. Since streamlines are orthogonal
to velocity-potential contours, this flow pattern highlights the circular velocity-potential
contour at |Z| = R that forms as the complex potential is entirely imaginary on the circle.
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Figure 2. Streamlines for uniform flow around a circle of unit radius calculated with the Milne–Thomson
circle theorem and the adapted theorem are shown in (a,b), respectively.

3.2. Vertically offset sources
A line (or point) sink may be used to represent a plume from a point source. To represent
sources with a vertical as well as a horizontal offset, a model is developed to represent
a two-plume system like that shown in figure 1(b). This requires two additions to the
domain containing the line sink. The first is the insertion of a circular velocity-potential
contour as the boundary of the lower plume, using the adapted circle theorem. This aligns
the streamlines normal to the boundary, as in figure 2(b). The second is to represent
the entrainment of the lower plume via a second sink, concentric with the circle. The
additional sink being concentric means that the streamline alignment at the circle boundary
does not change due to its presence. However, there is now a net inflow across the
boundary, representing entrainment of the lower plume. The magnitude of the inflow is
determined by the strength of the second sink.

Coelho & Hunt (1989) discussed the related topic of the flow field external to a jet in
a crossflow, and described that as being similar to potential flow around a cylinder with
suction. This method of modelling the lower plume may be described likewise.

To insert a circular potential contour, we can apply the adapted theorem to the
aforementioned cross-section at z = 0. The complex potential for a line sink of strength
−m(z) at distance χ along the x axis is given as

f (Z) = − m
2π

ln(Z − χ). (3.7)

The adapted circle theorem requires that R < χ such that the singularity of f (Z) lies
outside of the circle. Under this assumption, the total complex potential is

Ω(Z) = − m
2π
(ln(Z − χ)− ln(R2/Z − χ)), (3.8)

using ln(Z) = ln Z̄. Non-dimensionalisation by the horizontal source separation χ yields

Ω(Z∗) = − m
2π

ln
(

Z∗(Z∗ − 1)
γ 2 − Z∗

)
, (3.9)

where Z∗ = Z/χ and γ = R/χ is a dimensionless constant representing the ratio of
the lower plume radius at z = 0 to the horizontal source separation. For Z ∈ C with
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Figure 3. Streamlines for sink flow around a circle calculated by the adapted circle theorem for (a) no
additional sink at the origin, and (b) an additional sink of equal strength placed at the origin. The black circles
represent the radii of the plumes given by (2.5) at height z∗ = 0. At this height, the lower plume has radius R
and the upper plume is a point source (not to scale). The stagnation point in (b) is marked with a red cross.

Z = x + iy,

ln Z = 1
2

ln (x2 + y2)+ i arctan
(y

x

)
. (3.10)

Hence, the complex potential in (3.9) can be written as

Ω(Z∗) = − m
2π

ln
(

x∗(x∗ − 1)− y∗2 + i ( y∗(x∗ − 1)+ x∗y∗)
γ 2 − x∗ − iy∗

)
. (3.11)

The streamfunction is obtained from the imaginary part as

ψ(x∗, y∗) = − m
2π

arctan

(
y∗ (γ 2(2x∗ − 1)− (x∗2 + y∗2)

)
γ 2(x∗(x∗ − 1)− y∗2)− x∗(x∗2 + y∗2)+ x∗2 + y∗2

)
, (3.12)

where asterisks are used to denote non-dimensional quantities.
The corresponding streamlines plotted in figure 3(a) demonstrate that flow leaves the

circle in the direction of the upper plume source. To increase the flow into the circle and,
hence, create a circular sink, an additional sink is required at the centre of the circle to
represent the entrainment of the lower plume. We label the sinks such that the original
sink at a distance χ along the x axis has strength −m1(z) whilst the further sink at the
origin has strength −m2(z).

Upon addition of the second sink, the complex potentials in (3.8) and (3.9) become

Ω(Z) = −m1

2π

[
ln(Z − χ)− ln(R2/Z − χ)

]
− m2

2π
ln Z (3.13)

and

Ω(Z∗) = −m2

2π
ln
[(

(Z∗ − 1)Z∗

γ 2 − Z∗

)M

Z∗χ
]
, (3.14)

respectively, where M = m1/m2 is the ratio of sink strengths. The equation for the
streamfunction changes similarly as

ψ(x∗, y∗) = −m1

2π
arctan

(
y∗(γ 2(2x∗ − 1)− (x∗2 + y∗2))

γ 2(x∗(x∗ − 1)− y∗2)− x∗(x∗2 + y∗2)+ x∗2 + y∗2

)
− m2

2π
arctan

(
y∗

x∗

)
. (3.15)

966 A24-7

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

43
9 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.439


M.K. Richards and others

An example with equal sink strengths (M = 1) is plotted in figure 3(b). The additional
sink at the origin means that a greater proportion of the flow is now directed into the lower
plume. As a result, a stagnation point forms between the two plumes and its position is
controlled by the ratio of sink strengths M.

As mentioned above, Coelho & Hunt (1989) also pointed out the similarity between an
entraining jet or plume and a cylinder with suction at the surface. The method presented
above (applying the modified circle theorem plus an additional sink to represent a circular
sink of known strength) has applications for modelling other situations. One example
would be the insertion of a porous cylinder into a two-dimensional flow for the purpose of
extracting fluid. For example, a sink concentric with the circular boundary in figure 2(b)
would have the effect of drawing some of the ambient flow into the cylinder, altering
the flow field accordingly. If the additional sink were replaced by a source, that would
alternatively represent fluid extrusion through a porous cylinder. Sucking or blowing at the
boundary of cylindrical obstacles is one method of modifying fluid–structure interaction
to reduce drag or to increase flow stability for instance (Fransson, Konieczny & Alfredsson
2004; Chen et al. 2022). It is possible that a suitable coordinate transformation may allow
application of this method using the circle theorem to represent a sink of non-circular
geometry (for example, this would be straightforward for an elliptical sink).

3.3. Entrainment in offset sources
To calculate the sink strengths at any given height, we take the sink strength to be
equal to the entrainment across any velocity-potential contour, which is shown by the
entrainment-flux integral calculations of Rooney (2016). Since the entrainment constant α
is selected as in Morton et al. (1956), the entrainment flux into the plume at any particular
height is equivalent to the sink strength and is defined by (Kaye & Linden 2004)

m = 2παbw. (3.16)

Up until height z = 0, the lower plume is assumed to be unaffected by the upper plume
source. Therefore, it is axisymmetric and the total entrainment into its circular area at this
height can be calculated simply with (3.16). The similarity solution of Morton et al. (1956)
implies that

b ∼ αz (3.17)

w ∼ α−2/3F1/3z−1/3, (3.18)

where F is the buoyancy flux of the plume.
When a small height above the upper plume point source is considered, both plumes

can be assumed to remain approximately axisymmetric (Li & Flynn 2021). As the height
above the plume source increases, the plumes will distort so that there is no single value of
radius. However, in the region under consideration, this distortion is initially small (as will
be evident from RANS results in later sections) and the plumes will be assumed to have
a circular cross-section, the radius of which can be calculated by the similarity solution
(2.5).

Using the subscripts 1 and 2 to correspond to the values of the upper and lower plumes,
respectively, the entrainment of the upper plume at a height z above the upper plume is
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given as

m1 ∼ α4/3F1/3
1 z2/3. (3.19)

For a vertical offset of ζ , the entrainment of the lower plume at this height is

m2 ∼ α4/3F1/3
2 (z + ζ )2/3, (3.20)

and, hence, the ratio of entrainment is

M =
(

F1

F2

)1/3 ( z
z + ζ

)2/3

. (3.21)

This indicates that M is zero at z = 0, i.e. at the level of the point source. Additionally, in
an unstratified environment it is assumed that the buoyancy flux does not vary with height
and, hence, the ratio F1/F2 at all heights z is equal to the initial ratio of buoyancy fluxes
for the two plumes, so M → (F1/F2)

1/3 for large z.

3.4. Flow speed on contours
From the complex potential in (3.14), the velocity field may be obtained as dΩ/dZ =
U − iV . For vertically offset plumes, this is

dΩ
dZ

= 1
χ

dΩ
dZ∗ (3.22)

= − m2

2πχ

(M + 1)Z∗2 − (γ 2(2M + 1)+ 1)Z∗ + (M + 1)γ 2

(Z∗ − γ 2)(Z∗ − 1)Z∗ , (3.23)

so that

U = − m2

2πχ

N
D

, (3.24)

where

N = (M + 1)[(γ 2 + x∗2 − y∗2)(1 − x∗)(γ 2 − x∗)x∗]

− x∗2(γ 2 − x∗)(1 − x∗)(γ 2(2M + 1)+ 1)

+ y∗2(M + 1)(γ 2 + 1 − 3x∗)(γ 2 + x∗2 − y∗2)

− x∗y∗2(γ 2 + 1 − 3x∗)(γ 2(2M + 1)+ 1)+ 2x∗2y∗2(M + 1)(3x∗ − 2γ 2 − 2)

+ 2x∗y∗2(M + 1)(γ 2 − y∗2)− x∗y∗2(3x∗ − 2γ 2 − 2)(γ 2(2M + 1)+ 1)

− y∗2(γ 2(2M + 1)+ 1)(γ 2 − y∗2), (3.25)

D = x∗2γ 4 − 2x∗3γ 2(γ 2 + 1)+ x∗4(1 + 4γ 2 + γ 4)− 2x∗5(γ 2 + 1)+ x∗6

+ y∗4(γ 4 + 1)+ x∗2y∗2(3(x∗2 + y∗2)+ 2γ 2(γ 2 + 1)+ 2(γ 2 + 1)− 4x∗(1 + γ 2))

− 2x∗y∗4(γ 2 + 1)− 2γ 2x∗y∗2(γ 2 + 1)+ y∗2( y∗4 + γ 4). (3.26)

To find the position of the stagnation point between the two plumes at height z = 0, we
note that the velocity component V goes to zero along the line y∗ = 0 that connects the
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two plumes. Hence, the flow speed along this line is entirely in the x direction and can be
found by evaluating

U|y∗=0 = (M + 1)(γ 2 + x∗2)− x∗(γ 2(2M + 1)+ 1)
x∗(x∗ − 1)(x∗ − γ 2)

. (3.27)

To find the non-dimensional distance of the stagnation point from the lower plume
centreline x∗

s , Uy∗=0 is set equal to zero and the equation is solved for x∗ to obtain

x∗
s = γ 2(2M + 1)+ 1 ±

√
(γ 2(2M + 1)+ 1)2 − 4γ 2(M + 1)2

2(M + 1)
. (3.28)

Physically, the stagnation point must lie between the two plumes, otherwise one plume
would be forced to behave as a source rather than a sink. Additionally, the stagnation point
is valid only when it lies outside of the radii of the plumes. The solution given by the
negative square root of (3.28) lies inside the radius of the lower plume and can therefore
be disregarded. If the stagnation point given by the positive square root also lies within the
lower plume radius, then plume detrainment occurs. The limiting case is defined where the
stagnation point lies at x∗

s = γ , i.e. on the radius of the circular sink at the point closest to
the upper plume source. This value can be substituted into the positive square root case of
(3.28) to find the corresponding critical ratio of sink strengths Mc as

Mc = 1 − γ

2γ
. (3.29)

The value Mc describes the maximum ratio of sink strengths that can be reached before
detrainment of the lower plume occurs and the flow field becomes unrealistic. If M � Mc,
the sink at the origin is sufficiently strong to overcome detrainment and the lower plume
continues to act as a sink at all points on its boundary. In this case, a valid stagnation
point forms and its position is given by taking the positive square root in (3.28). Letting
(M + 1)−1 = φ � 1, then (3.28) may be rewritten as

x∗
s = φ

2
+ γ 2

(
1 − φ

2

)
±
√(

φ

2
+ γ 2

(
1 − φ

2

))2

− γ 2, (3.30)

which helps demonstrate that x∗
s → 1 as M → 0.

When M > Mc, there is no stagnation point and the flow from the lower plume is
directed into the upper plume such that the lower plume will eventually be absorbed by the
upper plume. This is more likely to occur if the upper plume is ‘stronger’ (has a greater
buoyancy flux) than the lower plume. In this case, the lower plume cannot maintain its own
structure. The model therefore indicates the conditions under which the lower plume loses
its integrity, and detrains into the upper plume. It should be noted that, at and beyond this
point, the model described here will no longer represent the plume flow structure, since
the flow has undergone a qualitative change. Streamlines for examples of different sink
strength ratios M are shown in figure 4.

4. Numerical simulation

4.1. The governing equations
We used ANSYS Fluent Academic Research Mechanical and CFD Release 2020 R2
(ANSYS Inc., Canonsburg, PA, USA) to perform RANS simulations. The steady RANS
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(a) (b) (c)M < Mc M = Mc M > Mc

Figure 4. Streamlines calculated by the adapted circle theorem with an additional sink positioned at the origin
and Mc = 2. The ratio of sink strengths are (a) M = 1, (b) M = 2 and (c) M = 3. The stagnation point
is marked with a red cross in (a,b), but does not exist outside of the plume boundaries in (c). Therefore,
(c) depicts a flow field that would be unrealistic for merging offset plumes.

equations for mass and momentum conservation in an incompressible fluid, solved in a
three-dimensional Cartesian coordinate system are

∂(ρui)

∂xi
= 0, (4.1)

∂(ρuiuj)

∂xj
= − ∂p

∂xi
+ ∂

∂xj

(
τij − ρu′

iu
′
j

)
+ (ρ − ρa)gi, (4.2)

where ui are the mean velocity components, u′
i are the fluctuating velocity components, p is

pressure, ρ is density, ρa is ambient density and gi = (0, 0,−g) in the x, y and z directions,
where g is the magnitude of acceleration due to gravity. The Reynolds stresses ρu′

iu
′
j are

modelled using turbulence models to close the system of equations. The deviatoric stress
tensor τij is defined as

τij = μ

(
∂uj

∂xi
+ ∂ui

∂xj

)
− 2

3
μ
∂uk

∂xk
δij, (4.3)

where subscript i, j, k = 1, 2 and 3 and μ is dynamic viscosity.
Using the Boussinesq approximation, we assume small temperature differences and

consider only density variations in the buoyancy term in the momentum equation

(ρ − ρa)g ≈ −ρaβ(T − Ta)g, (4.4)

where β is the coefficient of thermal expansion, T is a reference temperature and Ta is the
constant ambient temperature. Therefore, the density ρ can be expressed as

ρ = ρa (1 − β(T − Ta)) . (4.5)

To close the system of equations, we use a k-ε turbulence model that is known to be
robust in modelling a range of turbulent flows. In particular, we use the renormalisation
group (RNG) k-ε turbulence model, based on its success in modelling a single plume
(Cook & Lomas 1998) and multiple plumes (e.g. Mokhtarzadeh-Dehghan et al. 2006;
Durrani et al. 2011). The turbulent kinetic energy k and dissipation rate ε transport
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equations for the RNG k-ε turbulence model are given as

∂(ρkui)

∂xi
= ∂

∂xj

(
αkμt

∂k
∂xj

)
+ Gk + Gb − ρε, (4.6)

∂(ρεui)

∂xi
= ∂

∂xj

(
αεμt

∂ε

∂xj

)
+ C1ε

ε

k
(Gk + C3εGb)− C∗

2ε
ε2

k
, (4.7)

with turbulent viscosity μt = ρCμk2/ε. The inverse effective Prandtl numbers αk and αε
correspond to the turbulent kinetic energy k and dissipation rate ε, respectively, and their
values are obtained from the RNG theory by Orszag et al. (1993).

Here Gk is the generation of turbulent kinetic energy k due to the mean velocity gradients
and is defined as

Gk = μt(2SijSij)
1/2, (4.8)

where the strain rate tensor Sij is

Sij = 1
2

(
∂ui

∂xj
+ ∂uj

∂xi

)
. (4.9)

The effect of buoyancy on turbulence was established to be significant by Nam & Bill
(1993). Therefore, the generation of turbulent kinetic energy due to buoyancy Gb in (4.6)
and (4.7) is modelled as

Gb = βg
μt

Prt

∂T
∂xi
, (4.10)

with turbulent Prandtl number for energy Prt = 0.85.
The values for the model constants are C1ε = 1.42, C∗

2ε = 2.0 and Cμ = 0.0845. The
constant that controls the effect of buoyancy in (4.7) is modelled according to Henkes, Van
Der Vlugt & Hoogendoorn (1991) and is defined as

C3ε = tanh |v/u|, (4.11)

where v is the vertical velocity component parallel to the gravitational vector and u is the
horizontal velocity component perpendicular to the gravitational vector.

Finally, the energy transport equation is modelled as

∂(ρuih)
∂xi

= ∂

∂xj

[(
κ + cpμt

Prt

)
∂T
∂xj

]
, (4.12)

where the thermal conductivity κ = 0.0248 W (mK)−1, specific heat capacity at constant
pressure cp = 1006.43J (kg K)−1 and h is the specific enthalpy.

4.2. Computational domain and boundary conditions
A schematic of the computational domain and mesh for two vertically offset plume sources
is shown in figure 5. The mesh shown is indicative of the Cartesian mesh used, but is much
more coarse. Additionally, the actual source is much smaller compared with the domain,
but was enlarged to make its geometry and the boundary conditions visible on the figure.
To reduce the number of grids and computational complexity, we use an xz symmetry
plane at y = 0 and only model half of the plumes since the problem is symmetric about
y = 0. The two plumes are in close proximity to each other, therefore allowing for plume
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Vertically offset turbulent plumes

Figure 5. Computational domain and mesh with xz symmetry plane at y = 0. The boundary conditions are
colour coded. Grey, pressure inlet at ambient temperature for the bottom and side planes; red, pressure inlet at
source temperature for plume sources; blue, pressure outlet for top plane; green, no-slip wall for plume offset.
(Note: this is not to scale, the grid cells and plume sources have been scaled up for better visualisation)

interaction in the domain. Both plumes have the same source length scale d = 0.02 m, and
the lower plume source is located at the bottom boundary z = −ζ , where ζ is the vertical
offset. To model the higher plume, we extrude a prism of dimensions d × d/2 × ζ from the
base domain, which is located at a horizontal distance χ from the lower plume. The size of
the domain measured in multiples of the plume source length scale is 30d × 15d × 50d in
the x, y and z directions, respectively. To prevent large-scale recirculation and instabilities,
the size of the domain is relatively large compared with the length scale of the plume
source. The horizontal extent of the domain in the x direction of 30d is comparable to the
set-up for two interacting plumes used by Durrani et al. (2011), where their domain is 40d
in the x and y directions. Our domain has a ratio of zmax/xmax = 1.6, which is similar to
Pham, Plourde & Doan (2007). We also ensured that the domain is high enough to allow
the plumes to merge, thus preventing the influence of the top boundary conditions on the
near-field region.

Although the theory presented above assumes a point source, we can only model the
plumes with a finite source. Therefore, we compare the results from both methods by
estimating the virtual point source zv of our plumes with finite sources. We model the
plumes with square sources instead of a circular source because of the advantages of using
a structured grid and the challenges associated with meshing in the case of a higher plume
with a circular source inside a Cartesian domain. A structured grid provides a high level
of quality and control for a mesh independence study, faster convergence because the
elements are aligned to the flow, and lesser computational time due to less memory for
storing mesh structure. Most importantly, if the source size is relatively small compared
with the domain (as is the case for our set-up), the effect of source shape on the steady
behaviour of an axisymmetric plume can be neglected because the cross-section quickly
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Mesh Nx Ny Nz

M1 300 150 400
M2 150 75 200
M3 75 37 100

Table 1. Number of grid points N in x, y and z directions for three different meshes.

transitions to a circular cross-section, as observed by Marjanovic, Taub & Balachandar
(2017). In our simulations the cross-section becomes circular over heights of less than 3d.
Moreover, square sources in a Cartesian rectangular domain have been successfully used
to model single axisymmetric plumes (e.g. Mokhtarzadeh-Dehghan et al. 2006; Yan 2007;
Marjanovic et al. 2017), and multiple axisymmetric plumes (e.g. Durrani et al. 2011; Lou
et al. 2019).

The computational mesh is a structured grid with quadrilateral (two-dimensional) and
hexahedral (three-dimensional) elements. A constant grid spacing Δ in the x and y
directions and a stretched grid clustered at the sources with a growth rate of 1.02 (i.e. 2 %
increase in neighbouring cells) in the z direction was implemented to capture the high
turbulent kinetic energy that exists off-axis and away from the source (Pham et al. 2007).
Table 1 provides the number of grid points Nx, Ny and Nz in the x, y and z directions
for three different meshes used for the mesh independence study, which will be presented
later. The details of the mesh used for all simulations are given under mesh M1 in table 1,
where Δ = 0.1d in the x and y directions was found to be sufficient.

To closely model ‘interacting plumes’ in an unrestricted domain, we impose a Dirichlet
boundary condition on the side, top and bottom boundaries, allowing for ambient fluid
to enter at temperature Ta = 300 K and leave the domain. This was implemented using
a pressure inlet boundary condition on the sides and bottom boundaries and imposing a
pressure outlet condition on the top boundary. The sources were modelled using a pressure
inlet condition at T0 = 800 K, where T0 > Ta. Transition to turbulence occurs at about
Grashof number Gr ≈ 109 (Bill & Gebhart 1975), where Gr is defined as

Gr =
(
μa

ρa

)2

gz3 (T0 − Ta)

Ta
, (4.13)

and μa is the ambient dynamic viscosity.
Therefore, T0 is chosen such that the plume is turbulent relatively quickly at a height

z/χ ≈ 1 in the computational domain. The gauge pressure for all boundaries was set to
zero. A no-slip condition was imposed on the side walls of the higher plume source with
length ζ for representing vertically offset plumes. The horizontal separation χ is such
that the lower plume is unaffected by the no-slip side wall of the higher plume i.e. z < 0,
consistent with the assumption made in our analytical model.

4.3. Numerical method
The transport equations are discretised using a finite-volume-based method. A
second-order upwind scheme was used for all convective terms. The least square
method was used to compute the scalar values at the cell faces, velocity derivatives
and secondary diffusion. We used the SIMPLE-consistent (SIMPLEC) scheme to solve
the pressure–velocity coupling. A multigrid algorithm that computes corrections on a
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series of coarse grid levels was implemented to accelerate convergence. At the start of
each simulation run, the entire domain was initialised to a temperature T = Ta + δT to
improve convergence, where δT is a small, uniform perturbation. The ratio δT/Ta ≈ 0.016;
however, the results were observed to be independent with respect to changes in δT . All
simulations ran until the convergence criteria is satisfied, such that the residual of the
conservation and transport equations is less than 10−5.

Since we only specify gauge pressure at the source and the source does not exhibit
self-similarity, we calculate the dimensional source volume Q0, momentum M0 and
buoyancy F0 fluxes by summing the flux of each grid cell at the square source, where
the fluxes for each grid cell are defined as

Q0 = Δ2w, M0 = Δ2w2, F0 = Δ2wg′, (4.14a–c)

and Δ = 0.1d is the constant grid spacing.
Assuming the plume is axisymmetric and self-similar, we determine the dimensional

fluxes at different heights above the source by integrating as follows:

Q(z) = 2π

∫ b̃(z)

0
w̃(r, z)r dr, M(z) = 2π

∫ b̃(z)

0
w̃(r, z)2r dr,

F(z) = 2π

∫ b̃(z)

0
w̃(r, z)g̃′(r, z)r dr.

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ (4.15)

Here r is the radial coordinate relative to the local plume centre, and w̃(r, z) and g̃′(r, z)
correspond to the vertical velocity and buoyancy profiles, respectively.

The boundary conditions allow ambient fluid into the domain that leads to a component
of vertical flow within the domain. Therefore, we only integrate within the plume by
defining a plume radius b̃(z) to accurately quantify the fluxes. According to Cook & Lomas
(1998), the Gaussian plume radius b̃(z) is estimated as the radial distance from the plume
axis to the point at which the vertical velocity w̃ has fallen to 1/e of its axial value. We
evaluate the accuracy of this approximation by comparing the volume flux Q scaling with
theory (Morton et al. 1956) in § 5.2. In the case of two interacting plumes, the flux for
each independent plume is summed since we only compare results in the region where
the plumes can be referred to as independent, as described by Cenedese & Linden (2014).
Finally, to compare numerical results with theory, we use the approximation proposed by
Cook (1998) that links the Gaussian profile to the top-hat profile

w = w̃c/2, b =
√

2b̃, (4.16a,b)

where w̃c is the vertical centreline (peak) velocity of the Gaussian profile, and w and b are
the top-hat velocity and top-hat radius, respectively.

5. Results

Simulations were performed at a fixed horizontal separation for a range of vertical offsets.
To non-dimensionalise results, we take the characteristic length to be the horizontal source
separation χ = 0.2 m, and the characteristic velocity is (F0/χ)

1/3. In this paper an asterisk
is used to distinguish dimensional quantities from their dimensionless equivalents. We
begin by simulating the single plume case to obtain the entrainment constant α and virtual
origin zv used in the theory. We then verify the no offset case with existing theory and
results. Finally, we extend the model to the case of vertically offset merging plumes
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described above, concentrating on the entrainment field at different heights in the region
between the upper source and the initial merger of plumes. In order to compare the
predictions made by the theoretical and numerical models in this paper, the virtual origin
correction will be added into all heights from now on, i.e. we map z → z + zv .

5.1. Single plume
The source fluxes are estimated by summing the fluxes for each grid cell at the source using
(4.14a–c). Therefore, the source volume Q0, momentum M0 and buoyancy F0 correspond
to 1.21 × 10−4 m3 s−1, 3.73 × 10−5 m4 s−2 and 1.92 × 10−3 m4 s−3, respectively. The
boundary conditions that impose the source fluxes lead to non-ideal conditions around the
source, i.e. the plume around the source does not exhibit self-similarity. This behaviour
can be characterised by the source parameter Γ0 according to Hunt & Kaye (2001) as

Γ0 = 5Q2
0F0

27/2απ1/2M5/2
0

. (5.1)

The behaviour of a plume close to the source depends on the balance between M0 and
F0. Excess momentum (Γ0 < 1) is referred to as a forced plume, momentum deficit (Γ0 >
1) is a lazy plume and Γ0 = 1 is a pure plume. Lazy and forced plumes tend toward a pure
plume far field from the source, thus becoming self-similar away from the source. Based
on the estimated source fluxes, we obtain a lazy plume of Γ0 = 6.77, causing a narrowing
of the plume radius b close to the source over a distance of 4d, which is close to the results
of Marjanovic et al. (2017).

The radial profiles of vertical velocity w̃ and reduced gravity g̃′ at two heights
z/d = 15 and 30 above the source are presented in figure 6 where the w̃ and g̃′ are
non-dimensionalised by F−1/3

0 z1/3 and F−2/3
0 z5/3, respectively. The relative closeness of

the radial curves at z/d of 15 and 30 for both w̃ and g̃′ shows the self-similar behaviour
of the plume. They also show good comparison with direct numerical simulation (DNS)
results by Marjanovic et al. (2017) and experimental results by Rouse, Yih & Humphreys
(1952). However, there is a larger difference at the plume’s centreline (x = 0). The velocity
underpredicts both experimental and DNS results, showing about a 10 % error, while the
reduced gravity slightly overpredicts the experimental results with about a 2 % error.

The most reliable method to estimate zv according to Devenish, Rooney & Thomson
(2010) uses the centreline reduced gravity g̃′

c scaling defined as g̃′
c

3/5z = g̃′
c

3/5zv + c.
Therefore, the virtual origin can be estimated by the magnitude of the slope of g̃′

c
3/5z

against g̃′
c

3/5 in the fully developed region (g̃′
c ∼ z−5/3). Figure 7 shows the curve of

g̃′
c

3/5z against g̃′
c

3/5, and in the fully developed region, where g̃′
c

3/5 < 3, the equation of
the line is given as

g̃′
cz = −0.011 m g̃′

c + 0.365 m. (5.2)

Hence, the dimensionless virtual origin z∗
v = 0.011/χ is 0.055. This value is used to

represent the virtual origin of each plume in both the offset and no-offset cases to follow.
According to the jet-length-based correction by Morton (1959), the virtual origin can be

estimated as zv = 1.057Lm, where Lm is a momentum jet length defined as

Lm = 2−5/4α−0.5π−1/4 M3/4
0

F1/2
0

. (5.3)

Based on their formulation, the dimensionless virtual origin z∗
v = 0.053 shows good

agreement with our prediction from the reduced gravity scaling.
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Figure 6. Gaussian profile showing self-similarity at z/d = 15 and 30, and compared with DNS results by
Marjanovic et al. (2017) and experimental results by Rouse et al. (1952). (a) Reduced gravity g̃′ radial profile.
(b) Vertical velocity w̃ radial profile.
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Figure 7. Virtual origin correction using centreline reduced gravity g̃′
c. Equation of the linear fit in the fully

developed region is given as g̃′
cz = −0.011 m g̃′

c + 0.365 m.

A mesh independence study was conducted using three meshes with varying grid
points as shown in table 1. The centreline scaling of vertical velocity w̃c and reduced
gravity g̃′

c with z∗ are presented in figure 8 for the three meshes, and the w̃c and g̃′
c

are non-dimensionalised by F−1/3
0 χ1/3 and F−2/3

0 χ5/3, respectively. The initial velocity
increase is due to the non-ideal conditions (i.e. laziness) at the source. Away from the
source, at z∗ > 1, g̃′

c and w̃c approximately scale by z∗−5/3 and z∗−1/3, respectively,
which is consistent with the scaling of turbulent plumes (Morton et al. 1956). Around
the source, the meshes converge as the grid points increase from M3 to M1, thus showing
mesh independence.

Based on the centreline velocity w̃c where r = 0, the constant value Cw from the
Gaussian profile of w̃ in (2.1) can be calculated to determine the vertical velocity
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Figure 8. Mesh independence study showing the centreline scaling of the dimensionless w̃c and g̃′
c with z∗ for

three meshes. Here w̃c and g̃′
c scales by z∗−1/3 and z∗−5/3, respectively. The number of grid points increases

from M3 to M1 with mesh details shown in table 1.

scaling with height z. We express this as a top-hat velocity using (4.16a,b), therefore, the
non-dimensionalised top-hat velocity w∗ scaling is

w∗ = 1.92z∗−1/3
. (5.4)

Entrainment is a key characteristic of a turbulent plume, and the entrainment constant α
is estimated using the same definition as given in Marjanovic et al. (2017),

α =
√

2
d
dz

∫ b̃

0
w̃r dr

2

[∫ b̃

0
w̃2r dr

]1/2 . (5.5)

By computing (5.5) within the plume radius, the values of α at different heights
are shown in figure 9. We observe increasing entrainment as we move away from the
source and as the plume approaches self-similarity. The entrainment variation with height
becomes relatively constant (α ≈ 0.12) in the self-similar/fully developed region, i.e. z∗ >
1. The slight reduction in α at the top is attributed to the influence of the pressure outlet
boundary condition; however, this is beyond the region of interest in the case of interacting
plumes. The momentum deficit at the source leads to a lazy plume, causing an acceleration
of the plume and increasing α before it becomes relatively constant in the self-similar
region, as seen in figure 9. By contrast, the DNS results of Marjanovic et al. (2017) show
a larger value of α around the source region (as high as 0.2) before it reduces, tending
towards a constant α. A possible reason for this could be that they use a different boundary
condition for the source by specifying the source velocity, which will impose different
flow behaviour in close proximity to the source. Another plausible reason for the lack of
large entrainment near the source in our RANS simulation could indicate a limitation of
the steady-state method in capturing the turbulent flow behaviour around the source, as
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Figure 9. Variation of entrainment with height z∗ by using (5.5) to estimate α.

discussed by Pham et al. (2007). Although plumes exhibit variation in entrainment as seen
here, we adopt a constant entrainment model for comparison with theory. We use the value
of α in the self-similar region, i.e. α = 0.12, which is within the range of α seen in the
literature (e.g. Devenish et al. 2010; Marjanovic et al. 2017).

5.2. No vertical offset
When the plumes have no vertical offset, they will rise from point sources positioned at
equal heights and the analytical model presented in this paper reduces to that of Rooney
(2016). Whilst it has been noted that the entrainment of each plume can affect the centreline
velocity of its neighbour (Kaye & Linden 2004), the theoretical model neglects this
deflection and takes the centreline separation as approximately constant and equal to χ
at all heights. The attraction of both plumes within the region of interest in the RANS
simulation was observed to be small enough to justify its neglect.

The complex potential in (3.13) can be adapted to the case of no vertical offset by
assuming that R → 0 such that the complex potential in terms of dimensionless quantity
Z∗ becomes

Ω(Z∗) = −m1

2π
ln (1 − Z∗)− m2

2π
ln (Z∗χ), (5.6)

and the streamfunction is given by

ψ(x∗, y∗) = −m1

2π
arctan

(
y∗

x∗ − 1

)
− m2

2π
arctan

(
y∗

x∗

)
. (5.7)

This is symmetric about the midpoint, so the plumes will have equal radii at any height.
Hence, the equal strength plumes give a sink strength ratio M = 1 and, at any given height,
the stagnation point lies directly between the two plumes at x∗

s = 0.5.
Contours of vertical velocity, w, from the RANS simulation for two interacting plumes

with no vertical offset are non-dimensionalised by a characteristic velocity (F0/χ)
1/3 and

presented in figure 10. Initially there is relatively little deflection of the plumes from the
vertical, but as they rise, the independent plumes attract and entrain each other, eventually
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Figure 10. Contour plot of non-dimensional vertical velocity for two symmetric plumes with no vertical
offset.

merging to form a merged single plume far from the source (Baines 1983). However, to
compare both theory and numerical simulation, we only focus on the region before the
plumes merge.

The variation of total volume flux Q∗ with height z∗ for two interacting and
non-interacting plumes are shown in figure 11. Here Q is calculated for the interacting
plumes by integrating across each of the independent plumes using (4.15), while the
volume flux for the single plume set-up is doubled to obtain Q for the non-interacting case.
Since the Q scaling for both results is similar, we conclude that two interacting plumes
have little to no effect on the total volume flux within the region of interest, i.e. before the
plumes start to merge. The results are compared with the equation for total volume flux
carried by two plumes as defined by Cenedese & Linden (2014),

Q = 2
(

9
10

)1/3 6
5
π2/3α4/3F1/3

0 z5/3. (5.8)

Our result underestimates the total volume flux but has a similar scaling. The reason we
underpredict the volume flux is attributed to the method of approximating the Gaussian
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100

10–3

Q∗

z∗

10–2

RANS (interacting)

RANS (non-interacting)

Cenedese & Linden (2014)

Figure 11. Non-dimensional total volume flux Q∗ scaling from RANS simulations for two interacting and
non-interacting plumes with no vertical offset, compared with Cenedese & Linden (2014) using (5.8). Here Q
is non-dimensionalised by χ−5/3F−1/3

0 . The non-interacting result is twice the volume flux for a single plume.

radius b̃ defining the region of integration. Nevertheless, this difference in flux is relatively
small.

Figure 12 shows the streamlines predicted by the numerical simulation at a height
of z∗ = 0.75 and coloured with a non-dimensional velocity magnitude of u and v. Due
to the respective entrainment of both plumes, a stagnation point x∗

s forms between the
plumes. The dimensionless vertical velocity contour across the plane further reveals the
radii of the plumes to be slightly distorted due to the entrainment field. The stagnation
point between the plumes is represented by the red cross at x∗

s = 0.5. The dimensionless
horizontal velocity u∗ = u/(F0/χ)

1/3 along the line y∗ = 0 is plotted for different heights
in figure 13. As this is the horizontal velocity, flow towards the centre is positive at the
left edge and negative at the right edge of each panel. Since the entrainment of each
plume is of equal strength, the dimensionless horizontal velocity u∗ between the plumes
will be negative when x∗ < 0.5 and positive when x∗ > 0.5. Therefore, a stagnation point
exists where the velocity is zero, which occurs at x∗ = 0.5. The dimensionless centreline
horizontal velocity predicted by the RANS simulation shows good agreement with the
results of the theoretical model that are plotted in red alongside the RANS results in
figures 13(b)–13(d). Each plume seeks to draw fluid in toward the plume axis through
entrainment. As a result, the horizontal flow speeds between the two plumes are lower than
those outside the plumes since the flow induced by the two plumes is acting in opposite
directions.

The dynamics of two merging plumes can be divided into three regions according to
Cenedese & Linden (2014). The first region of the merging process, which is the focus
of our work, is referred to as the independent region. The upper bound of this region is
defined as the touching height zt, where the radius of the plumes touch. Using the top-hat
formulation as defined in (4.16a,b), figure 14 plots the axes of the plumes at increasing
heights, defined by the positions of maximum vertical velocity, and shows that the axes
move inwards as the plumes interact. This indicates that the horizontal separation between
plumes decreases with height, but this effect is small (less than 5 % of the horizontal
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Figure 12. The RANS streamlines on the xy plane at z∗ = 0.75 for no vertical offset ζ ∗ = 0, coloured by the
velocity magnitude and non-dimensionalised by the source velocity (F0/χ)

1/3. The grey contours show the
dimensionless vertical velocity w∗, and the red cross denotes the location of the stagnation point at x∗

s = 0.5.
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Figure 13. (a) Dimensionless horizontal velocity u∗ predicted by CFD simulation along y∗ = 0 for two plumes
with no vertical offset. Comparison to the velocity predicted by the theoretical model (red) is shown for each
of the heights z∗ = 0.5, 1.0 and 1.5 in (b–d), respectively. Shaded regions represent the area within the radius
of each plume for which the theoretical model does not apply.
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0.6 0.7 0.8 0.9 1.0
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2.0
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RANS (plume radius)

RANS (plume axis)

Cenedese & Linden (2014) – interacting

MTT model (1956) – non-interacting

Figure 14. Comparison of increasing the left and right plume radius b with height z∗ against Cenedese &
Linden (2014) and Morton et al. (1956). Inward movement of the plumes’ axes from the RANS case are shown,
starting at x∗ = 0 and 1 for z∗ = 0.5. Plume axis is determined by the x position of maximum w velocity at a
given z∗, while plumes radii b is estimated using (4.16a,b).

separation χ ), and therefore validates the use of a constant horizontal separation in the
theoretical model. The radii of both plumes at different heights are also plotted as data
points. Our result is compared with the prediction of Cenedese & Linden (2014) taking
mutual entrainment into account, and to the Morton et al. (1956) model assuming no
interaction. The touching height z∗

t is obtained as the height where the radii coincide,
i.e. z∗

t = 2.65. Due to the inward movement of the plumes’ axes, the sum of the radii is
2b = 0.92χ , which is less than the initial source separation. Cenedese & Linden (2014)
predicted that z∗

t = 0.35/α. By taking α = 0.12, as obtained from the single plume results
earlier, z∗

t = 2.92. Therefore, there is a 10 % difference compared with our results, which
is relatively small. Assuming no interaction between the plumes (Morton et al. 1956),
z∗

t = 0.42/α = 3.5, which shows a larger difference of 32 % compared with our result.
Figure 13(a) appears to show two effects superimposed; a domain-wide convergence

centred on the middle of the domain, with two local plumes converging on top. The
implication of the horizontal velocity not going to zero at the points where the vertical
velocity is maximum, as shown in figure 14, is that there may be a residual flow inside
each local plume, which has the effect of reducing its lateral movement in the entrainment
field. A qualitatively similar feature was discussed by Coelho & Hunt (1989), in the context
of jet deflection being less than that of an equivalent solid body in a background current.
(Internal plume circulations due to background flow are also evident in the data of Jordan
et al. (2021) for instance.)

5.3. Vertically offset plumes
Figures 10 and 14 in the previous subsection show some evidence of plume distortion out
of axisymmetry due to the effects of plume merging. The modelling of Rooney (2016)
and Li & Flynn (2021) accounts for this through the use of ‘generalized’ plume equations,
which do not prescribe a simple shape for the horizontal plume cross-sections. This also
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requires specification of an entrainment assumption to close the system, which may then
be integrated in the vertical (z) direction to the point of merging and beyond.

One previous approach for modelling the internal properties of merging plumes has
been simply to superimpose several, spatially offset copies of the trajectory and Gaussian
profiles of a single plume, and sum up the fields within the plume boundaries (e.g.
Davidson, Papps & Wood 1994; Yannopoulos 2010). To examine the near field of merging
offset plumes, we make the approximation here that, not far above the upper plume
source, the plumes are similar to axisymmetric plumes. In particular, for each plume,
the axisymmetric similarity solution gives both the radius and the entrainment. Hence,
an approximation for the height evolution of M is obtained without the requirement for
numerical integration of the generalized equations. This is a more approximate model
than that of Rooney (2016) and Li & Flynn (2021) and, unlike the ‘overlapping Gaussians’
approach, is not expected a priori to apply near to the point of merging (or beyond). The
results presented below give an indication of the extent of its validity.

We investigate four vertical source offsets ζ ∗ = 0.25, 0.5, 0.75 and 1 for a fixed
horizontal source separation χ = 0.2 m. Since we only consider the case where the two
plumes have equal source fluxes, the value of M in our experiments does not exceed 1
such that M � Mc and the theoretical model is valid for all considered configurations.
We compare our results for heights z∗ ≥ 0.5 due to the ‘laziness’ of the simulated plume
sources that leads to an initial acceleration of the buoyant fluid.

To obtain theoretical results with which to compare the RANS simulations, we require
the entrainment constant α and virtual origin zv calculated from the single plume as
described previously. We assume both plumes have the same virtual origin. The radii of
both plumes can subsequently be calculated from the similarity solution in (2.5), where
the height z takes into account zv , i.e. z → z + zv .

From the equation for vertical velocity variation for a single plume given in (5.4),
the non-dimensional top-hat vertical velocity w∗ for the upper and lower plumes can be
expressed as

w∗
1 = 1.92z∗−1/3 and w∗

2 = 1.92(z∗ + ζ ∗)−1/3, (5.9a,b)

respectively. Hence, the theoretical streamfunction in (3.15) can be calculated and used to
find the velocity field components as

U = 1
χ

dψ
dy∗ and V = − 1

χ

dψ
dx∗ . (5.10a,b)

In each configuration the plumes were taken to have equal strengths such that the ratio of
plume buoyancy fluxes is 1. Accounting for a virtual origin correction, the scaling of sink
strength given in (3.21) can be adjusted for numerical simulation as

M =
(

z∗

z∗ + ζ ∗

)2/3

. (5.11)

Figure 15 validates this M scaling against the RANS simulation. The crosses represent
the entrainment ratio M predicted by the simulation at each height z∗, and each panel
corresponds to a different vertical offset ζ ∗. A line of best fit is plotted through the points
for each offset, and the gradient of each line is very close to 1, showing good agreement
with the analytical solution (5.11).

Results obtained by the theoretical model can be further validated against RANS
simulations. The first two rows of figure 16 give a comparison of the streamlines
predicted by each method at two different heights. The cross-sections generated by
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Figure 15. The M scaling predicted by the analytical model is validated against the RANS simulation for
different vertical offsets ζ ∗. The crosses correspond to values of M predicted by the simulation at heights z∗ ∈
{0.5, 0.75, 1, 1.25, 1.5, 1.75, 2, 2.25, 2.5} above the numerical upper plume, and the dashed line represents a
linear model fit to the data using ordinary least squares regression. All lines have a gradient equal to 1 when
rounded to 8 decimal places.

the numerical simulation at heights z∗ = 0.5 and z∗ = 1.5 are shown in figures 16(a)
and 16(b), respectively. The plots show a greyscale contour plot of w∗ overlayed on
the streamlines predicted by the simulation. The entrainment fields are similar to their
theoretical equivalents in (c,d), and stagnation points form between the two plumes in
each case. The entrainment flow field qualitatively agrees better between theory and RANS
nearer the sources compared with higher up, as might be expected. Both stagnation points
predicted by the theoretical model form closer to the lower plume, but the absolute error
between predicted values is small: 0.012 and 0.067 for heights z∗ = 0.5 and z∗ = 1.5,
respectively.

The plume boundaries predicted by the radius similarity solution of Morton et al. (1956),
plotted as black circles in (c,d), are of a similar size to those predicted by the w∗ contour
plots generated by numerical simulation. The plumes exhibit a circular cross-section for
z∗ = 0.5 with the lower plume having a larger radius. As the height above the plume
source increases, the plume boundary deviates from a circular shape. This effect is also
evident in the predictions of the theoretical model, as shown by the velocity-potential
contour plots in figures 16(e) and 16( f ). The circular radius predicted by the similarity
solution of Morton et al. (1956) is shaded in grey over contours of equal velocity potential.
At height z∗ = 0.5, the circular radius aligns well with the plume radius predicted by
velocity-potential contours. However, as the height increases, the plumes become more
distorted and their boundaries less circular.

To obtain a quantitative comparison of theoretical and numerical results, we can
compare the stagnation point position predicted between the two plumes. For the
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Figure 16. Results for two plumes with vertical source offset ζ ∗ = 0.75 are taken from cross-sections of the
xy plane at heights z∗ = 0.5 (a,c,e) and z∗ = 1.5 (b,d, f ). The first row shows a greyscale contour plot of w∗
overlayed on the streamlines predicted by the RANS solution, and the second shows the equivalent results
predicted by the theoretical model. Stagnation points are marked with red crosses on the streamline plots in
(a–d). Figures (e, f ) show the velocity-potential contours produced by the theoretical model, where the grey
shaded region represents the circular radii predicted by the similarity solution of Morton et al. (1956).

theoretical model, this is calculated by taking the positive square root in (3.28). To obtain
the equivalent measurement from the numerical simulations, we find the position outside
of the radii of the plumes along the x axis at which the velocity changes sign. Table 2
contains the locations of stagnation points predicted by each method for vertical offset
ζ ∗ = 0.25. The numerical stagnation point is positioned closer to the upper plume than
the theoretical stagnation point. Additionally, as the height above the upper plume is
increased, the stagnation point moves towards the lower plume as the ratio of sink strengths
M increases. Similar observations were made for larger vertical offsets, and the average
absolute error increased with an increase in the vertical offset.

Figure 17(a) shows example plots of the u∗ velocity profiles along the line y∗ = 0 for
a vertical offset ζ ∗ = 0.75. The stagnation point x∗

s moves towards the lower plume with
increasing height; it is positioned at 0.643, 0.595 and 0.570 for z∗ = 0.5, 1.0, and 1.5,
respectively. We also see a domain-wide convergence and the presence of residual flow
inside the plume, similar to the case of no vertical offset (figure 13). As in that case,
these results are compared with the corresponding values of u∗ predicted by the theoretical
model in figures 17(b)–17(d). These panels also show the prediction for equal-height plume
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z∗ M Theoretical x∗
s Numerical x∗

s Absolute error

0.5 0.780 0.561 0.563 0.001
0.75 0.835 0.544 0.553 0.008
1 0.868 0.535 0.543 0.008
1.25 0.890 0.529 0.533 0.004
1.5 0.905 0.524 0.528 0.003
1.75 0.917 0.521 0.523 0.002
2 0.926 0.519 0.524 0.006

Table 2. Comparison of the stagnation points predicted at different heights z∗ above the numerical upper
plume for vertical offset ζ ∗ = 0.25. The theoretical values are calculated by (3.28) and the ratio of sink
strengths M is given for each height.
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Figure 17. (a) Dimensionless horizontal velocity u∗ from RANS simulation along y∗ = 0 for vertical offset
ζ ∗ = 0.75 is given at different heights z∗. Comparison to the velocity predicted by our theoretical model (red)
is shown for each of the heights z∗ = 0.5, 1.0 and 1.5 in (b–d), respectively. This shows better agreement with
RANS, particularly in the near field, in comparison with the model of Rooney (2016) (blue).

sources from Rooney (2016). That model assumes the same strength in all plumes, which
is here taken as equal to that of the upper plume.

Overall, the results exhibit good agreement and, although the comparison becomes
worse as the height above the upper plume source is increased, the current theory shows a
considerable improvement in the prediction of the near-field horizontal velocity between
plumes when compared with the equal-height theory of Rooney (2016). In particular, the
equal-height theory becomes increasingly inaccurate as the vertical offset becomes larger,
whilst the discrepancy of the proposed model remains small.
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6. Conclusions

The results presented in previous sections show good correspondence between the
analytical model and the results of RANS simulations. These two approaches represent
different approximations to the real system. Their agreement provides encouragement for
the use of these methods, while bearing in mind their possible limitations. In particular, we
do not necessarily expect these methods to extend into the region of full merger without
further development.

The model of Rooney (2015, 2016) predicts that the cross-sections of merging plumes
from point sources should distort out of circularity during merging. Figures 10 and 14 show
evidence of this for plumes without vertical offset, in the asymmetry of plume profiles and
in a touching height lower than that predicted by a non-interacting model, respectively. For
offset plumes, the greyscale w∗ contours in figure 16(a,b) shows that plume distortion is
minimal at z∗ = 0.5 but more evident at z∗ = 1.5. This appears to be in broad agreement
with that shown by the velocity-potential contours in figure 16(e, f ), although the effect is
less pronounced in the RANS results than in the analytical model. One possible reason for
the difference may be that some internal plume circulation (discussed at the end of § 5.2)
reduces deformation of the plume boundary. This is not yet allowed for in the analytical
model, but could be an area for further development.

For the analytical model, the use of the axisymmetric similarity solution appears
sufficient when the plumes are still approximately circular. However, at greater heights,
it may be necessary to calculate the area etc. of the distorted plumes and solve the plume
equations after the manner of Rooney (2016) and Li & Flynn (2021) for example. This
would also allow consideration of the effects of ambient stratification. Reynolds-averaged
Navier–Stokes simulations may be challenged by the turbulent structures in the merging
region, which is perhaps indicated here by the small variation of the estimated touching
height compared with previous studies. Turbulence-resolving models could be used in
future to obtain more detailed results. Time averaging such data over a long period
would be required to examine entrainment flow, and this may present its own challenges
(Devenish et al. 2010).

While there remains the potential for further work, the results and techniques herein
have identified features of interest in the merger of offset plumes, as well as indicating that
plume detrainment may occur in certain circumstances. As discussed above, the adapted
circle theorem may also prove useful in the simulation of various other two-dimensional
flows.
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