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Abstract

Let k be a number field with algebraic closure k, and let S be a finite set of primes of k
containing all the infinite ones. Let E/k be an elliptic curve, Γ0 be a finitely generated
subgroup of E(k), and Γ ⊆ E(k) the division group attached to Γ0. Fix an effective
divisor D of E with support containing either: (i) at least two points whose difference
is not torsion; or (ii) at least one point not in Γ . We prove that the set of ‘integral
division points on E(k)’, i.e., the set of points of Γ which are S-integral on E relative
to D, is finite. We also prove the Gm-analogue of this theorem, thereby establishing
the 1-dimensional case of a general conjecture we pose on integral division points on
semi-abelian varieties.

1. Introduction

We will state a general conjecture about integral points on semi-abelian varieties, explain its
genesis, and then describe what part of the conjecture we can prove. First we need some
preliminaries.

Let k be a number field with algebraic closure k, and ring of integers Ok. Let S be a finite set
of primes of k including all the infinite ones, Ok,S be the ring of S-integers of k, and Ok,S be the
integral closure of Ok,S in k. When we refer to a variety defined over k we mean a separated and
geometrically integral scheme of finite type over k. We follow [Voj87] for the following definitions.

Let X be a complete variety defined over k, and X an Ok-integral model of X/k (so coming
equipped with a k-isomorphism of its generic fibre with X). Let T be any closed subset of X,
and cl(T ) be its Zariski closure in X .

Take P ∈X(k), and suppose cl({P}) does not meet cl(T ) on X outside the fibers over the
elements of S. Then we say P is S-integral relative to T , or for short, that P is (T, S)-integral
(on X). This notion depends of course on the choice of X , but since the only property of (T, S)-
integral points we will be considering in Conjecture 1.1 below (when they are Zariski non-dense
for all sufficiently large S) is independent of the choice of X , we will employ a standard abuse
of notation that suppresses this choice and write

XT (Ok,S) := {all (T, S)-integral points of X(k)}.

More generally, if X is any variety defined over k, we embed it into a completion X, and
identify X as a dense open subset of X. Let ∂X :=X −X. Let T be any subset of X (in
particular, T can be any subset of X), and let T be its Zariski closure in X. For any P ∈X(k),
we say it is S-integral relative to T , or (T, S)-integral, on X, if it is (T ∪ ∂X, S)-integral on X.
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As above, the veracity of our results in this paper is independent of the choice of X, so by a
similar abuse of notation, we write

XT (Ok,S) := {all (T, S)-integral points of X(k)}
= X T∪∂X(Ok,S).

We will usually be interested in S-integral points in the case that T = SuppD for some
effective divisor D of X, in which case we write XD(Ok,S) :=XSuppD(Ok,S), and say its
elements are S-integral relative to D, or are (D, S)-integral points of X. In general, we define
XT (Ok,S) :=XT (Ok,S) ∩X(k).

Let A be a semi-abelian variety defined over k. Let Γ 0 be a finitely generated subgroup of
A(k), and let Γ ⊆A(k) be the division group of Γ0, i.e.,

Γ := {P ∈A(k) : nP ∈ Γ0 for some integer n> 1}.

The elements of Γ are called the division points of Γ0, or simply division points, if the choice of
Γ0 is clear from context. We will call an arbitrary subgroup of A(k) a division group if it is the
division group of some finitely generated Γ0.

Definition. Let A/k be a semi-abelian variety.

(i) For any point P of A(k), the translate of a divisor D of A by P is the divisor obtained
from D by translating each irreducible component of D by P (without changing multiplicities).

(ii) A torsion divisor of A is a divisor of A each of whose irreducible components is a torsion
subvariety, i.e., is the translate of a semi-abelian subvariety by a torsion point.

We now propose the following conjecture.

Conjecture 1.1. Keep k and S as above. Let A/k be a semi-abelian variety, and let Γ be
a division group in A(k). Suppose that D is a non-zero effective divisor on A which is not the
translate of any torsion divisor by any point of Γ . Then the set

AD(Ok,S)Γ := {P ∈ Γ : P is S -integral relative to D}

is not Zariski dense in A.

Remarks. (i) Note that to establish the conjecture, it suffices to do so after enlarging S or
extending k. In particular, as noted above, the veracity of the conjecture is independent of the
choice of completion A of A or the choice of integral model for A.

(ii) Enlarging S if necessary, we can assume that A extends to a group scheme over Ok,S .
Then since Γ0 is finitely generated, we can further enlarge S if necessary to guarantee that every
point of Γ is S-integral relative to ∂A. Hence the veracity of the conjecture will be unaffected
if we replace AD(Ok,S)Γ =ASuppD∪∂A(Ok,S) ∩ Γ by ASuppD(Ok,S) ∩ Γ in the statement of the
conjecture.

When Γ0 is the trivial subgroup of A(k), Γ is equal to A(k)tor, the torsion subgroup of A,
and hence in this special case the conjecture reduces to [BIR08, Conjecture 3.2] on S-integrality
of torsion points. Conjecture 1.1 grew out of an attempt to understand what the analogue
for integral points should be for a conjecture of Lang for division points on abelian varieties.
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Integral division points on curves

This is best explained in a chart, in which Conjecture 1.1 could naturally be expected to fit into
the lower right corner.

Variety type Type of rationality k k

Compact k, k-rationality Faltings’s theorem McQuillan’s theorem
Mordell–Lang Conj. Lang’s Div. Point Conj.

Noncompact Ok,S , Ok,S-integrality Faltings’s theorem
Lang’s Int. Point Conj. Conjecture 1.1

For the moment, let A/k be an abelian variety, let Γ be as above, and let X/k be a closed
subvariety of A.

The Mordell–Lang conjecture, proved by Faltings, says thatX(k) is a finite union of translates
by points in A(k) of the k-rational points of abelian subvarieties of A. In other words, X(k) is
not Zariski dense in X if X is not a translate of an abelian subvariety of A by a point in A(k)
(see [Fal91, Theorem 1] and also [Fal94, Theorem 4.2]). Lang’s division point conjecture, proved
by McQuillan, says that X(k) ∩ Γ is a finite union of translates by points in Γ of the points in
Γ on abelian subvarieties of A. In other words, X(k) ∩ Γ is not Zariski dense in X if X is not
a translate of an abelian subvariety of A by a point of Γ . (McQuillan actually proved this for
semi-abelian varieties, see [Mcq95].) For a general survey, see [HS00].

The integral point conjecture of Lang, also proved by Faltings, says that if D is an effective
ample divisor on A, then the set AD(Ok,S) of Ok,S-integral points of A relative to D is
finite [Fal91, Corollary 6.2]. We also note that Vojta proved a generalization of this result for
Ok,S-integral points on semi-abelian varieties, see [Voj99].

The goal in this paper is to prove Conjecture 1.1 for 1-dimensional semi-abelian varieties,
which is to say, for elliptic curves and 1-dimensional tori. Taking a finite extension of k, we
can assume such a torus is actually the multiplicative group Gm. Let us now unravel the above
definitions to see what the conjecture says in these cases.

Example 1.2. (i) In the case that A= Gm, every irreducible divisor is of the form (α) for some
α ∈ k×, so is the translate of the torsion divisor (1) by α. Likewise, for any α1, α2 ∈ k

×, the
divisor (α1) + (α2) is the translate of a torsion divisor ⇔ α1/α2 is a root of unity. So to say that
a non-zero effective divisor D is not the translate of a torsion divisor by a point of Γ is to say
that Supp(D) contains either a point not in Γ or at least two points whose quotient is not a root
of unity.

Note that Γ0 will always be a subgroup of O×k,S , the unit group of Ok,S , for some k and S.
Conversely, for any k and S, since O×k,S is finitely generated by Dirchlet’s unit theorem, we can
take Γ0 to be any subgroup of any O×k,S .

(ii) In the case that A is an elliptic curve E with identity O, every irreducible divisor is of
the form (Q) for some Q ∈ E(k), so is the translate of the torsion divisor (O) by Q. Likewise,
for any Q1, Q2 ∈ E(k), (Q1) + (Q2) is a translate of a torsion divisor ⇔ Q1 −Q2 is torsion. So
to say that a non-zero effective divisor D is not the translate of a torsion divisor by a point of
Γ is to say that Supp(D) either contains a point not in Γ or contains at least two points whose
difference is not a torsion point.

Note that Γ0 will always be a subgroup of E(k) for some k, and conversely, since for any k,
E(k) is finitely generated by the Mordell–Weil theorem, we can take Γ0 to be any subgroup of
any E(k).
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The main result of the paper is the following theorem.

Theorem 1.3. Let k be a number field with algebraic closure k, and let S be a finite set of
primes of k containing all the infinite ones. Let G be Gm/k (respectively an elliptic curve E/k),
and let Γ be a division group in G(k). Let D be an effective divisor on G. Suppose that either
of the following two conditions holds:

(i) Supp(D) contains at least two points whose quotient (respectively difference) is not an
element of G(k)tor, i.e., is not a torsion point of G(k);

(ii) Supp(D) contains at least one point not in Γ .

Then the set

GD(Ok,S)Γ := {ξ ∈ Γ : ξ is S -integral relative to D}

is finite, i.e., there are only finitely many points in Γ which are S-integral on G relative to D.

Remark. Note that if Γ0 is the trivial subgroup of G, we have Γ =G(k)tor, and the second case of
the theorem implies the main theorems (Theorem 0.1/0.2) of [BIR08]. Our proof is independent
of this previous result, so should be considered as a new and more general (and to our minds
simpler) proof of the earlier result. In addition, we can see the necessity of the hypotheses in our
theorem, since they are needed in the case Γ0 is the trivial group, as shown by example in (A)
on p. 219 and (A) on p. 230 of [BIR08].

The proof for Gm is given in the next section. The proof for elliptic curves, given in § 3, very
much depends on whether the curves have complex multiplication (CM) or not.

In the proofs, we first use Kummer theory for Gm and its elliptic curve analogue due to
Bashmakov. We then exploit theorems on the Galois groups generated by roots of unity and
their elliptic analogues due to CM theory and to Serre. We then apply the theory of primitive
divisors (based on linear forms in logarithms) due to Schinzel, Silverman, and Stewart, and the
elliptic curve analogues due to Cheon–Hahn, Silverman, and Streng. These steps reduce the
theorem to Siegel’s fundamental theorems on the finiteness of S-integral points over a number
field on P1 relative to three distinct points and on an elliptic curve relative to one point. In
contrast to Siegel’s theorem, which is about integral points over a number field, we emphasize
that Theorem 1.3 is about integral points over k.

Because it fits in well with the overall theme of this paper, we include in § 4 an additional
conjecture on a dynamical system analogue to Conjecture 1.1. It generalizes a previous related
one, [BIR08, Conjecture 3.1].

2. The case of Gm

We first gather some preliminary results and establish some notation. For any integer n> 1, let
µn be the set of all the nth-roots of unity, and let µ∞ :=

⋃
n>1 µn be the set of all roots of unity.

We let φ(n) denote the Euler totient function.

Let k be a number field, k an algebraic closure of k, and Gal(k/k) the Galois group of k
over k. If S is a set upon which Gal(k/k) acts, we will say s1 and s2 in S are k-Galois conjugate
if there is a σ ∈Gal(k/k) such that s2 = σ(s1).

For a divisor D =
∑

i mi(xi) on Gm/k, xi ∈Gm(k), we let [n]∗D =
∑

i mi(xni ).
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2.1 Galois action on Gm

Let k be a number field with algebraic closure k, and let S be a finite set of primes of k containing
all the infinite ones. We call a point P ∈ O×k,S indivisible (in O×k,S) if it is not an nth-power of
any point in O×k,S for any integer n> 2. Note that indivisible points cannot be roots of unity.

Remark. Note this definition is more restrictive than another definition of indivisibility found
in the literature, i.e. that P is indivisible if for any Q ∈ O×k,S , if P =Qm for some m ∈ Z, then
Q= Pn for some n ∈ Z. We take our definition so that indivisible points cannot be torsion.

The following is stated in [Lan78].

Proposition 2.1. Keep notation as above. There is a bound C, depending only on k and S,
such that if P ∈ O×k,S is an indivisible point, then for any positive integers ` and m, the Galois

group of k(µm`, P 1/m)/k(µm`) can be identified with a subgroup of Z/mZ of index bounded
by C.

The following is a restatement of the fact that an open subgroup of (Ẑ)× = lim←−(Z/nZ)× =
Gal(Q(µ∞)/Q) contains a basic open subgroup.

Lemma 2.2. Let k be a number field. The Galois group of k(µ∞)/k is an open subgroup of Ẑ×,
so contains a subgroup J of finite index of the form

J =
∏
p6∈T

Z×p ×
∏
p∈T

(1 + pcpZp),

where T is a finite set of prime numbers and the cp (p ∈ T ) are positive integers.

We will once and for all make a choice of J for each number field k so that J will be a function
of k.

2.2 Primitive divisors on Gm

We state a fundamental theorem of Schinzel, which has been subsequently strengthened by
Stewart and then by Silverman, and which will be used later in this section.

Proposition 2.3 (Schinzel [Sch74]). Let k be a number field, and let S be a finite set of
primes of k including the infinite ones. Then there is an effectively computable constant integer
n0 = n0(k, S), such that for all n> n0 and all S-units u in k − µ∞, Φn(1, u) is not an S-unit,
where Φn is the nth-homogeneous cyclotomic polynomial.

Proof. Every S-unit u in k defines a principal fractional ideal (u), which has well-defined integral
ideal numerator n and denominator m which are coprime. Note that n and m are in the same
ideal class. By assumption, the support of n and m consists only of primes in S, so if h is the
class number of k, there is an ideal a of the form

∏
p∈Sfin

php (0 6 hp < h), where Sfin is the set
of finite primes in S, such that na and ma are principal integral ideals.

So we can write u=B0/A0, where A0 and B0 are algebraic integers in k which are also
S-units, and the greatest common divisor ideal of A0 and B0 has norm bounded in terms of k
and S. Now let C be an integer that generates the principle ideal

∏
p∈Sfin

ph, and set A=A0C
and B =B0C. Then A and B are divisible by every prime in Sfin, the greatest common divisor
ideal of A and B has norm bounded in terms of k and S, and

u=B/A.

We now note that Schinzel’s theorem [Sch74, Corollary 1] says that there is a bound
n0 = n0([Q(u) : Q], S) = n0(k, S) such that for all n> n0, An −Bn has a primitive divisor, i.e., is
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divisible by a (non-zero) prime ideal P in Ok which does not divide Am −Bm for any 1 6m< n.
Since we have taken A and B divisible by every finite prime in S, it follows that for any
n> n0, An −Bn is divisible by a primitive divisor P not in S. So P divides Φd(A, B) for
some positive d|n. If d < n, then P divides Ad −Bd, violating that P is a primitive divisor. So
in fact P divides Φn(A, B), so Φn(A, B) is not an S-unit. Since A is an S-unit, this means that
Φn(1, u) = Φn(1, B/A) =A−φ(n)Φn(A, B) is not an S-unit, giving the bound on n. 2

2.3 Integrality of division points under power maps
We will need a simple lemma based on the use of the S-unit equation (see [EGST88] and [ESS02]).

Lemma 2.4. Let k be a number field with algebraic closure k, and let S be a finite set of primes
of k containing all the infinite ones. Let Γ be a division group in Gm(k).

(i) Suppose α, β ∈ O×k,S and α/β is not a root of unity. Then the set

U1 = {(γ, t) ∈ (Γ ∩ O×k,S)× Z : γ ∈Gm,(αt)+(βt)(Ok,S)}

is finite.

(ii) For any α ∈ O×k,S − Γ , the set

U2 = {(γ, t) ∈ (Γ ∩ O×k,S)× Z : γ ∈Gm,(αt)(Ok,S)}

is finite.

Proof. The k-rational points on Gm integral with respect to (1) can be identified with the (finite)
set U of k-rational points in P1 which are S-integral relative to (0) + (1) + (∞). Indeed for any
x ∈ U , both x and 1− x are S-units in k, and the theory of the famed S-unit equation says there
are only finitely many such x.

(i) It suffices to show that the (well-defined) map f1 : U1→ U × U , defined by

f1(γ, t) = (γ/αt, γ/βt),

is injective. Suppose f1(γ1, t1) = f1(γ2, t2). Eliminating γ1 and γ2 from the resulting equations
gives (α/β)t1−t2 = 1, and since α/β is not a root of unity, we then have t1 = t2. It follows that
γ1 = γ2 and that f1 is injective.

(ii) It suffices to show that the (well-defined) map f2 : U2→ U , defined by

f2(γ, t) = γ/αt,

is injective. Suppose f2(γ1, t1) = f2(γ2, t2). Then γ1/α
t1 = γ2/α

t2 , and so αt1−t2 = γ1/γ2 ∈ Γ . If
t1 6= t2, we would have α ∈ Γ , so t1 = t2 and γ1 = γ2, so f2 is injective. 2

2.4 Proof of the main theorem for Gm

Now we are ready to prove Theorem 1.3 for Gm. For convenience, we restate the main theorem
adapted to this case.

Theorem 2.5 (Rephrasing of Theorem 1.3 for Gm). Let k be a number field with algebraic
closure k, S a finite set of primes of k containing all the infinite ones, Γ a division group in
Gm(k), and D an effective divisor on Gm. Suppose that either of the following two conditions
holds.

(i) (The ‘two-point case’.) Supp(D) contains at least two points whose quotient is not a root
of unity.

(ii) (The ‘one-point case’.) Supp(D) contains at least one point not in Γ .
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Then the set

Gm,D(Ok,S)Γ := {ξ ∈ Γ : ξ is S -integral relative to D}
is finite, i.e., there are only finitely many points in Γ which are S-integral on Gm relative to D.

Proof. Since removing points from the support of D only makes the problem harder, we can
enlarge k and S if necessary, so that without loss of generality we may assume the following is
satisfied:

(I) in the two-point case, that D=(α) + (β), where α, β ∈ O×k,S , and α/β is not a root of unity;

(II) in the one-point case, that D=(α) with α ∈ O×k,S and α /∈ Γ ;

(III) Γ0 ⊆O×k,S .

Note that with this expansion of S, all the elements of Γ0 and Γ are S-integral on P1 relative to
the divisor (0) + (∞).

Now take x ∈ Γ , and assume that x is S-integral on Gm relative to a divisor D as in (I) for
the two-point case, and as in (II) for the one-point case. Or equivalently, that x is S-integral on
P1 relative to the divisor (0) + (∞) +D.

We will principally make use of two facts. The first is that all the Galois conjugates of x under
the action of Gal(k/k) are also S-integral on Gm relative to D, and the second is as follows.

(∗) If n> 1 is an integer, and xν is S-integral on Gm relative to D for all ν ∈ µn, then xn is
S-integral on Gm relative to [n]∗D.

Let m be the minimal positive integer such that (ζx)m ∈ O×k,S for some root of unity ζ, and
set

y = ζx.

Then if Γ ′ is the division group of O×k,S , it follows that y ∈ Γ ′ and that m is the order of x as an
element in Γ ′/(µ∞O×k,S). Note that ζ ∈ Γ , so y is actually an element of Γ .

We want to look at the action on y of Gal(k(ζ, µm, y)/k(ζ, µm)), the Galois group of
k(ζ, µm, y) over k(ζ, µm). Proposition 2.1 will give us the required information. Indeed, write

ym = Pn0

for some integer n> 0 and some P0 ∈ O×k,S which is indivisible in O×k,S . (If x is a root of unity,
then we can take y = 1 and m= 1. In this case, n= 0 and we choose P0 to be any (necessarily
non-root-of-unity) indivisible point in O×k,S . Note that the assumptions (I) and (II) above enable

us to find such a point P0.) Then clearly k(µm, y) ⊆ k(µm, P
1/m
0 ), where P

1/m
0 denotes any

choice of an mth root of P0, but in fact the reverse inclusion holds as well. For if d > 1
divides m and n, then ym/d/P

n/d
0 ∈ µd. If we choose ν1 ∈ µ∞ with ν

m/d
1 = ym/d/P

n/d
0 and

write ν2 = ζ/ν1, then (xν2)m/d = (xζ/ν1)m/d = (y/ν1)m/d = P
n/d
0 ∈ O×k,S , i.e., the order of xν2

(and hence also of x) in Γ ′/(µ∞O×k,S) is 6m/d <m, violating the minimality of m. Hence
m and n are relatively prime, and there are integers a and b such that am+ bn= 1. So
P0 = (P a0 )m(Pn0 )b = (P a0 )m(ym)b = (P a0 y

b)m. Since P0 ∈ O×k,S ⊂ k, this gives the reverse inclusion
and

k(µm, y) = k(µm, P
1/m
0 ).

Let ` be the order of ζ. The number of k(ζ, µm)-Galois conjugates of y is at least as big as
the number of k(µm`)-Galois conjugates of y, which is the number of k(µm`)-Galois conjugates
of P 1/m

0 . By Proposition 2.1 this is bounded below by m/C for some bound C depending only
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on k and S, so independent of the choice of x. Hence there is a positive divisor r of m, with

r >m/C,

such that the set of the k(ζ, µm)-Galois conjugates of y includes yµ for all µ ∈ µr. Hence the
set of the k-Galois conjugates of x includes xµ for all µ ∈ µr, and each of these conjugates is
S-integral on Gm relative to D. Hence by (∗), we have that xr is S-integral on Gm relative to
the divisor [r]∗D. Now let

L= k

( ⋃
16c6C

(O×k,S)1/c

)
,

a finite extension of k, where (O×k,S)1/c denotes all the cth roots of the elements of O×k,S . Thus
we have

xr = ζ ′z,

where ζ ′ = ζ−r is a root of unity and z = yr is an S-unit in L.
We now want to look at the action of Gal(L(ζ ′, z)/L(z)) on ζ ′. We apply Lemma 2.2 with

k = L, and let J , T , and the cp be as given in the lemma. Now let M be the fixed subfield of
L(µ∞) under J , which is a finite extension of L depending only on our choice of J , so independent
of our choice of x.

We can decompose ζ ′ =
∏
p up (p running over the set of all prime numbers), where up is a

primitive (pdp)th-root of unity for some dp > 0. It follows that for every p ∈ T , up has Galois
conjugates under the action of the elements of J fixing all the uq (for a prime q different from
p) and z, which are equal to itself times any (pmax(dp−cp,0))th-root of unity. Hence xr has Galois
conjugates under J that are equal to itself times any element of µs, where

s :=
∏
p∈T

pmax(dp−cp,0).

Let
t= rs.

Thus again by (∗), xt = xrs is S-integral on Gm relative to the divisor [t]∗D, and

xt = uv

for u := zs
∏
p∈T u

s
p an S-unit in M and v :=

∏
p/∈T u

s
p a primitive nth-root of unity, where n is

some positive divisor of
∏
p/∈T p

dp , and v has φ(n) distinct M -Galois conjugates. In addition,
note that u ∈ Γ since x ∈ Γ and v ∈ µ∞ ⊂ Γ .

Our next goal is to bound n. Suppose first we are in the two-point case. Then xt is an S-unit
which is S-integral relative to (αt) and (βt). Since α/β is not a root of unity, either u/αt or u/βt

is not a root of unity. Reversing the role of α and β if necessary, say u/αt is not a root of unity.
Suppose now we are in the one-point case. Then u/αt is again not a root of unity (or else α would
be in Γ , a contradiction). In either case, we have that the product of the M -Galois conjugates
of 1− xt/αt, each one of which is an S-unit, is Φn(1, u/αt) where Φn is the nth-homogeneous
cyclotomic polynomial, and n is the order of v. Since u/αt ∈M − µ∞, applying Proposition 2.3
with k =M shows that n is bounded by some constant integer n0 depending only on M and S,
so is independent of the choice of x.

So we get a finite extension Y of M ,

Y :=M

( ⋃
16n<n0

µn

)
,
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such that xt is an S-unit in Y which is S-integral on Gm relative to [t]∗D. Applying Lemma 2.4
(part (i) in the two-point case and part (ii) in the one-point case) for k = Y , and considering
(xt, t), we get that t> 1 is bounded by some positive constant B that depends only on Y , S,
and D, so is independent of the choice of x. Since xt ∈ Y , x is in the finite extension

W := Y

( ⋃
16b6B

(O×Y,S)1/b

)
of Y . Applying Siegel’s theorem on P1 over W , since x is S-integral on P1 relative to the divisor
(0) + (∞) +D, there are only finitely many such x. 2

3. The case of elliptic curves

The proof will involve a series of results that are analogues to those used in the previous section,
but whose derivations generally require deeper results.

For any positive integer n, we let φ2(n) = n2
∏
p|n(1− 1/p2), where p runs over the set of

prime numbers dividing n. For any non-zero ideal a in the ring of integers R of a number field,
we let φ(a) denote the order of the unit group of the ring R/a.

If E is an elliptic curve, then for any m ∈ Z⊂ End(E) and any P ∈ E(k), we let mP denote
the image of P under the multiplication-by-m map. To avoid confusion, if m ∈ End(E) and it is
not specified that m is in Z, we let m(P ) denote the image of P under m. In addition, for any f
and g in R= End(E), we write fg for their product when emphasizing the ring structure of R
and f ◦ g when emphasizing their role as maps.

For a k-isogeny ρ mapping an elliptic curve E/k to an elliptic curve E′/k and for a divisor
D =

∑
i mi(Pi) on E, Pi ∈ E(k), we set [ρ]∗D =

∑
i mi(ρ(Pi)). We let E[ρ] denote the points of

E(k) in the kernel of ρ.

3.1 Galois action on an elliptic curve
Proposition 3.1. Let E be an elliptic curve defined over a number field k. Let

r =
{

1 if E has complex multiplication over k,
2 otherwise.

Suppose that End(E) is the ring of integers OF in its fraction field F . Then there is a finite
set of non-zero primes T ⊂ Spec(OF ), a positive integer cp for every p ∈ T , and a finite extension
M of k, such that the Galois group of M(E(k)tor)/M is of the form

J =
∏

p∈Spec(OF )−T∪{(0)}

GLr(OFp
)×

∏
p∈T

(1 + NormF/Q(p)cpMr(OFp
)),

where OFp
is the ring of integers in the completion of F at p, Mr(OFp

) denotes the ring of r × r
matrices with entries from the ring OFp

, and ‘1’ is the r × r identity matrix.

The case r = 1 (F a quadratic imaginary number field) follows from the theory of complex
multiplication (see Theorem 2.8 on p. 101 and the discussion on [Lan83, p. 148]), and the case
r = 2 (F = Q) is a theorem of Serre (see [Ser72, p. 260, (3)]).

We will once and for all make a choice of J for every number field k and elliptic curve E
defined over k, so that J is a function of E and k.

Let E be an elliptic curve defined over a number field k. We call a point P ∈ E(k) indivisible
(in E(k)) if it is not of the form r(Q) for any point Q in E(k) with r a non-unit in the ring
Endk(E).
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Remark. Note that this definition is more restrictive than another definition of indivisibility
found in the literature, e.g., [Hin88, p. 584], where P being indivisible means that if P = r(Q)
for some r and Q as above, then there is some s ∈ Endk(E) with Q= s(P ). We take our definition
so that indivisible points cannot be torsion.

Proposition 3.2. Let E be an elliptic curve defined over a number field k, all of whose
endomorphisms are defined over k. Then there is a bound C, depending only on E and k,
such that if P ∈ E(k) is an indivisible point, then for any positive integers ` and m, the Galois
group of k(E[`m], (1/m)P )/k(E[`m]), where (1/m)P denotes any point of E(k) in the inverse
image of P under multiplication-by-m map, can be identified with a subgroup of E[m] of index
bounded by C.

This follows from the discussion in [Lan78], where Lang expounds on the original results of
Bashmakov. We have the following corollary.

Corollary 3.3. Let E be an elliptic curve defined over a number field k, with complex
multiplication by the ring of integers OF of an imaginary quadratic field F , all of whose
endomorphisms are also defined over k. Then there is a bound C depending only on E and
k such that if P ∈ E(k) is an indivisible point, then for any non-zero endomorphisms α and β of
E, the Galois group of k(E[αβ], (1/α)P )/k(E[αβ]) can be identified with a subgroup of E[α] of
index bounded by C.

Proof. Set
a= NormF/Q(α) and b= NormF/Q(β).

The Galois group of k(E[αβ], (1/α)P )/k(E[αβ]) can be identified with a subgroup of E[α], and
contains as a subgroup the Galois group Gα of k(E[ab], (1/α)P )/k(E[ab]). Likewise, the Galois
group Ga of k(E[ab], (1/a)P )/k(E[ab]) can be identified with a subgroup of E[a], and after doing
so, αGa ⊆Gα, where α denotes the conjugate of α. By the previous proposition, Ga is a subgroup
of index at most C in E[a], so the same is true of Gα as a subgroup of E[α]. 2

3.2 Primitive divisors on an elliptic curve
The following is a modified statement of the elliptic version of Schinzel’s theorem given in the last
section, due over the rationals to Silverman [Sil88] and due in general to Cheon and Hahn [CH99].

Proposition 3.4. Let E be an elliptic curve defined over a number field k, and let S be a finite
set of primes of k including the infinite ones and the primes of bad reduction for E. Then there
exists a constant integer n0 = n0(E, k, S) such that for any integer n> n0 and non-torsion point
P ∈ E(k):

(i) there is a prime p of k not in S such that P reduces to a primitive n-torsion point modulo
p; and

(ii) P is not S-integral relative to all primitive n-torsion points of E.

Proof. (i) The theorem stated by Cheon and Hahn is that given any non-torsion P ∈ E(k), there
exists an integer `0 (depending on P ) such that for any integer `> `0, there is a prime p of good
reduction such that P reduces to a primitive `-torsion point modulo p, and that for all but finitely
many P , one can take `0 = 1. It follows immediately that if one takes m0 to be the maximum
of the `0 for each of these finitely many exceptional P , then for any integer m>m0 and any
non-torsion point P ∈ E(k), there exists a prime p of good reduction such that P reduces to a
primitive m-torsion point modulo p. To get the statement we give, i.e., that we can guarantee
that p is not in any given set S, we need only take n0 bigger than m0 and bigger than the order
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of the group of Ok/q-rational points on the reduction of E modulo q for every finite prime q in
S of good reduction.

(ii) To get this statement from (i), it suffices to show that for any prime p of good reduction
for E, the reduction-mod-p-map from the primitive n-torsion points E[n]∗ on E to the primitive
n-torsion points Ep[n]∗ on the reduced curve Ep (= E mod p) is surjective. This follows from the
well-known fact that the reduction map ρ from E[n] to Ep[n] is surjective, once one notes that
ρ maps E[n]− E[n]∗ into Ep[n]− Ep[n]∗. 2

This was recently generalized to the case that the elliptic curve has complex multiplication,
by Streng in [Str08].

Let E be an elliptic curve defined by a generalized Weierstrass equation

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6,

with all ai in the ring of integers Ok of a number field k. For any P ∈ E(k) of infinite order and
any α ∈ Endk(E)− {0}, let (Bα)2 be the denominator ideal in Ok of x(α(P )). Set B0 = (0). For
any non-zero ideal a⊆ Endk(E), let Ba =

∑
α∈a Bα. We say a (finite) prime q of Ok is a primitive

divisor of Ba if q divides Ba and q does not divide Bb for any ideal b with a - b.

Proposition 3.5. Keep notation as above. Suppose E is an elliptic curve defined over a number
field k, which has complex multiplication by the ring of integers OF of a quadratic imaginary
field F , and all of whose endomorphisms are defined over k.

(i) Given a point P ∈ E(k) of infinite order, define Ba as above. For all non-zero ideals a of
OF , with only finitely many exceptions, Ba has a primitive divisor. Moreover, for all but
finitely many P ∈ E(k), Ba has a primitive divisor for all a.

(ii) Furthermore, if S is a finite set of primes of k including the infinite ones and the primes
of bad reduction for E, then there is a constant integer n0 = n0(E, k, S) with the property
that for any non-zero ideal a of OF whose norm is greater than or equal to n0, and any
non-torsion point P ∈ E(k), there is a prime p of k not in S such that P reduces to a
primitive a-torsion point modulo p.

(iii) We conclude that for a as in (ii) above, P is not S-integral relative to all primitive a-torsion
points.

Proof. (i) The first claim is the main theorem in [Str08]. The second claim follows from [Str08,
Proposition 1.3], where Streng shows that if the canonical height of P is sufficiently large, then
Ba has a primitive divisor for all a. Since there are only finitely many points of E(k) of bounded
height, the result follows.

(ii) First of all, we take n0 large enough to make sure by (i) that Ba has a primitive divisor
for every non-torsion point P ∈ E(k).

Next we note that if a prime q is a divisor of Bα, then α(P ) is a point (over the completion
Okq

= (Ok)q of Ok at q) in the formal group E0 at the kernel of reduction of a minimal Weierstrass
model E for E at q (whether or not our defining Weierstrass equation is minimal at q). Let Eq

be the reduction of E at q. Therefore if q is a primitive divisor of Ba, then for all α ∈ a, α(P )
is in E0(Okq

). Hence so long as n0 is sufficiently large so that the norm of a is greater than the
order of the group of non-singular points on Eq(Ok/q) for all q ∈ Sfin, no primitive divisor of Ba

will be in S.
(iii) This comes as in the previous proposition from the fact that the primitive a-torsion points

of E surject modulo any prime of good reduction for E onto the primitive a-torsion points on
the reduced curve. 2
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3.3 Integrality of division points under isogenies
We will need a lemma based on Siegel’s theorem, that for an elliptic curve E defined over a
number field k and a point P0 ∈ E(k), there are only finitely many points in E(k) which are
S-integral relative to P0, where S is a finite set of primes of k containing all the infinite ones.

Let k be a number field with algebraic closure k, and let E be an elliptic curve defined
over k. Let Γ0 be a finitely generated subgroup of E(k), and let Γ be the division group
attached to Γ0. Let R= End(E). We write RΓ0 (respectively, RΓ ) for the R-submodule of
E(k) generated by the set {ψ(γ) ∈ E(k) : ψ ∈R and γ ∈ Γ0} (respectively, {ψ(γ) ∈ E(k) : ψ ∈
R and γ ∈ Γ}). Then we note

RΓ = {P ∈ E(k) : ψ(P ) ∈RΓ for some non-zero ψ ∈R}
= {P ∈ E(k) : ψ(P ) ∈RΓ0 for some non-zero ψ ∈R}.

Lemma 3.6. Let E and E′ be elliptic curves defined over a number field k. Assume that all the
endomorphisms of E and E′ are defined over k. Let S be a finite set of primes of k containing
all the infinite ones and the ones of bad reduction for E. Let Γ0 ⊆ E(k) be a finitely generated
subgroup, and Γ its division group. Then the following are true.

(i) Suppose α, β ∈ E(k) and α− β is not a torsion point. Then the set

U1 = {(φ(γ), φ) : γ ∈ Γ , φ ∈Homk(E, E′), and φ(γ) ∈ E′(φ(α))+(φ(β))(Ok,S)}

is finite.

(ii) For any α ∈ E(k)−RΓ , the set

U2 = {(φ(γ), φ) : γ ∈ Γ , φ ∈Homk(E, E′), and φ(γ) ∈ E′(φ(α))(Ok,S)}

is finite.

(iii) For any α ∈ E(k)− Γ , the set

U3 = {(φ(γ), φ) : γ ∈ Γ , φ ∈Homk(E, E′), and φ(γ) ∈ E′(φ(α))(Ok,S)}

is finite.

Proof. The lemma is trivial if E and E′ are not k-isogenous, so we suppose that they are. Let
U = E′(O′)(Ok,S) (a finite set by Siegel’s theorem), where O′ is the identity element of E′.

(i) It suffices to show that the (well-defined) map f1 : U1→ U × U , defined by

f1(φ(γ), φ) = (φ(γ)− φ(α), φ(γ)− φ(β)),

is injective. Suppose f1(φ1(γ1), φ1) = f1(φ2(γ2), φ2). Eliminating φ1(γ1) and φ2(γ2) from the
resulting equations gives (φ1 − φ2)(α− β) =O, and since α− β is not torsion, φ1 = φ2. It follows
that φ1(γ1) = φ2(γ2) and that f1 is injective.

(ii) It suffices to show that the (well-defined) map f2 : U2→ U , defined by

f2(φ(γ), φ) = φ(γ)− φ(α),

is injective. Suppose f2(φ1(γ1), φ1) = f2(φ2(γ2), φ2). Then (φ1 − φ2)(α) = φ1(γ1)− φ2(γ2). Let ψ
be any non-zero k-isogeny E′→ E. Then ψ ◦ φi = ri ∈R for some ri, i= 1, 2, so (r1 − r2)(α) =
r1(γ1)− r2(γ2) ∈RΓ . Since α is not in RΓ , we must have r1 − r2 = 0. Since ψ 6= 0, we then have
φ1 = φ2. Hence φ1(γ1) = φ2(γ2), and f2 is injective.

(iii) It suffices to show that the (well-defined) map f3 : U3→ U , defined by

f3(φ(γ), φ) = φ(γ)− φ(α),

is finite-to-one. This is already proved in (ii) if Γ0 is an R-module (since in that case RΓ = Γ ),
so assume it is not, hence in particular that E has complex multiplication. The division group
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of Γ0 depends only on a free subgroup which is a complement to the torsion subgroup of Γ0, so
we can assume Γ0 is torsion free as well as not being an R-module. Let R= Z + ωZ (an order in
an imaginary quadratic field). So ω is a root of a Z-coefficient equation of the form x2 + ex+ f ,
with discriminant e2 − 4f < 0.

Then Γ0 ∩ ω(Γ0) is a finitely generated free abelian subgroup M0 of Γ0 which is an R-
module. By the structure theorem of finitely generated abelian groups, there is a decomposition
Γ0 = C0 ⊕B0 as the direct sum of free abelian subgroups, where M0 ⊆ C0, and C0/M0 is torsion.
Note that by construction, B0 ∩ ω(B0) = {O}.

Note that C0 is in the division group of M0, so we can replace Γ0 by M0 ⊕B0 without
changing Γ , and M0 is an R-module. Again we can assume that Γ0 is not an R-module, which
implies B0 6= {O}.

We will consider the R-module

D0 = (M0 ⊕B0)⊗R=M0 ⊕ (B0 ⊗R) =M0 ⊕B0 ⊕ ω(B0).

Note that the decomposition of

Γ0 =M0 ⊕B0

gives a corresponding (non-direct) sum of Γ as M +B, the sum of the division groups of M0

and B0. The intersection of M and B consists of all the torsion points. Likewise, the division
group D of D0 is

M +B + ω(B),

where the intersection of any two summands consists of all the torsion points.
Note (iii) is proved in (ii) if α is not in RΓ , which equals D, so we might as well assume

that α ∈RΓ but not in Γ . This means for some integer m, mα ∈D0, but not in Γ0. In other
words, mα has a non-trivial ω(B0)-component. Moreover, the truth of the result is invariant
under shifting α by a point in Γ (we just shift each γ as well), so we might as well assume
mα ∈ ω(B0), so α ∈ ω(B).

Suppose, for a contradiction, that we have an infinite sequence of pairs (φi(γi), φi), i> 0,
which all map under f3 to the same element in E′(k). Let ψ be any non-zero k-isogeny E′→ E.
Then ψ ◦ φi = ti ∈R for some ti in R. Then for any i > 0,

(ti − t0)(α) = ti(γi)− t0(γ0).

Write ti = ai + biω, ai, bi ∈ Z, and γi = γi,M + γi,B, where γi,M ∈M and γi,B ∈B (which are only
defined up to torsion, but we make fixed choices of γi,M and γi,B for each γi).

Then from the equation above, equating ω(B)- and B-components, we have the following,
which are equalities up to torsion, i.e.,

((ai − a0)− e(bi − b0))α≡ biω(γi,B)− b0ω(γ0,B) mod E(k)tor

and

−f(bi − b0)α′ ≡ aiγi,B − a0γ0,B mod E(k)tor,

writing α= ω(α′) for some α′ ∈B. Eliminating γi,B, we have the following equality up to torsion

(ai(ai − a0) + (fbi − eai)(bi − b0))α≡ (bia0 − b0ai)ω(γ0,B) mod E(k)tor.

Let

g(ai, bi) = ai(ai − a0) + (fbi − eai)(bi − b0).
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There is a positive integer n such that nα ∈ ω(B0) and nγ0,B ∈B0. Then there is a torsion point
P ∈ E(k) such that

g(ai, bi)nα= (bia0 − b0ai)ω(nγ0,B) + P,

and by our construction of B0, P = 0. Since B0 6= {O} and is free, it is easy to check that ω(B0)
is non-zero and free, so there is a basis for ω(B0) containing some point of infinite order Q such
that nα and nω(γ0,B) have with respect to this basis non-zero coordinates r and s at Q. So
equating Q-coordinates we have

rg(ai, bi) = s(bia0 − b0ai).

Note that r, s, a0, b0, e, and f are all fixed, so this equation is a quadratic equation in ai and
bi. Dividing by r, we can write it as

a2
i − eaibi + fb2i + δai + εbi = 0

for some fixed rational numbers δ and ε, hence as

(ai − ebi/2)2 + (f − e2/4)b2i + κ(ai − ebi/2) + (f − e2/4)λbi = 0

for some fixed rational numbers κ and λ. Completing squares, this equation can be written as

(ai − ebi/2 + κ/2)2 + (f − e2/4)(bi + λ/2)2 = κ2/4 + (f − e2/4)λ2/4.

Since e2 − 4f < 0, the left-hand side is a positive-definite quadratic form, and there are only
finitely many solutions for integers ai and bi. Hence there are only finitely many ti, hence only
finitely many φi and φi(γi), a contradiction, and therefore f3 is finite-to-one as claimed. 2

3.4 Proof of the main theorem for elliptic curves
We are now ready to prove Theorem 1.3 for elliptic curves. For convenience, we restate the main
theorem adapted to this case.

Theorem 3.7 (Rephrasing of Theorem 1.3 for elliptic curves). Let k be a number field with
algebraic closure k, and let S be a finite set of primes of k containing all the infinite ones. Let E
be an elliptic curve defined over k, and let Γ be a division group in E(k). Let D be an effective
divisor on E. Suppose that either of the following two conditions holds.

(i) (The ‘two-point case’.) Supp(D) contains at least two points whose difference is not a torsion
point.

(ii) (The ‘one-point case’.) Supp(D) contains at least one point not in Γ .

Then the set

ED(Ok,S)Γ := {ξ ∈ Γ : ξ is S -integral relative to D}
is finite, i.e., there are only finitely many points in Γ which are S-integral on E relative to D.

The proof of this theorem for all elliptic curves is very similar in structure to the proof for
Gm, though the details are very different depending on whether E does not or does have complex
multiplication. At some point in the proof we will consider these cases separately.

Proof. Since removing points from the support of D only makes the problem harder, we can
enlarge k if necessary, so that without loss of generality we may assume the following is satisfied.

(I) In the two-point case, that D = (α) + (β), where α, β ∈ E(k), and α− β is not a torsion
point of E.

(II) In the one-point case, that D = (α) with α ∈ E(k) and α /∈ Γ .
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We fix a Weierstrass equation with coefficients in Ok for E/k, and then likewise, without
loss of generality, we can expand S so that it contains all the primes of bad reduction for this
equation for E.

Now take x ∈ Γ , and assume that x is S-integral on E relative to a divisor D as in (I) for
the two-point case, and as in (II) for the one-point case.

Case 1. When E does not have complex multiplication.
We will principally make use of two facts. The first is that all the Galois conjugates of x

under the action of Gal(k/k) are also S-integral on E relative to D, and the second is that since
S contains all the primes of bad reduction for E,

(∗∗) if n> 1 is an integer and x+ u is S-integral on E relative to D for all u ∈ E[n], then nx
is S-integral on E relative to [n]∗D.

We let Γ ′ denote the division group of E(k). Let m be the order of x in the group
Γ ′/(E(k) + E(k)tor). Thus m is the minimal positive integer such that we can write

x= y + ν,

with ν a torsion point, and y ∈ Γ ′ such that my ∈ E(k). Hence y as an element of Γ ′/E(k) has
order m. Note y = x− ν actually lies in Γ .

We want to look at the action of Gal(k(ν, E[m], y)/k(ν, E[m])) on y. Write

my = nP0

for some integer n> 0 and some P0 ∈ E(k) which is indivisible. (If x is torsion, then we can
take y =O and m= 1. In this case, n= 0 and we choose P0 to be any (necessarily non-torsion)
indivisible point in E(k). Note that the assumptions (I) and (II) above enable us to find such
a point P0.) Then clearly, k(E[m], y) ⊆ k(E[m], (1/m)P0), but in fact the reverse inclusion
holds as well. Indeed, if d > 1 divides m and n, then (m/d)y − (n/d)P0 ∈ E[d]⊆ E(k)tor. If
we choose ν1 ∈ E(k)tor with (m/d)ν1 = (m/d)y − (n/d)P0 and write ν2 := ν + ν1 ∈ E(k)tor, then
(m/d)(x− ν2) = (n/d)P0 ∈ E(k), i.e., the order of x− ν2 in Γ ′/E(k) is 6m/d, so the order of
x in Γ ′/(E(k) + E(k)tor) is 6m/d <m, violating the minimality of m. Hence m and n are
relatively prime, and there are integers a, b such that am+ bn= 1. So P0 =m(aP0) + b(nP0) =
m(aP0) + b(my) =m(aP0 + by). Since P0 ∈ E(k), this gives the reverse inclusion and

k(E[m], y) = k

(
E[m],

1
m
P0

)
.

Let ` be the order of ν. Then the number of k(ν, E[m])-Galois conjugates of y is bounded
below by the number of k(E[`m])-Galois conjugates of y, which by the equality above, is the
same as the number of k(E[`m])-Galois conjugates of (1/m)P0. Applying Proposition 3.2 gives
that the number of k(E[`m])-Galois conjugates of (1/m)P0 is bounded below by m2/C for some
bound C depending only on E and k. Since all subgroups of E[m]∼= (Z/mZ)2 are products of
two cyclic groups of order dividing m, the above bound implies that there is a positive divisor r
of m such that

r >m/C

and such that the set of the k(ν, E[m])-Galois conjugates of y includes y + µ for all µ ∈ E[r].
Hence the set of the k-Galois conjugates of x includes x+ µ for all µ ∈ E[r], and each of these
Galois conjugates is S-integral on E relative to D. Hence by (∗∗), rx is S-integral on E relative
to [r]∗D.
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Now let

L= k

( ⋃
16a6C

1
a
E(k)

)
,

which is a finite extension of k depending only on E and k, so is independent of the choice of x.
Then, noting that the order of y in Γ ′/E(k) is m6 rC, we have

rx= z + ν ′,

where z := ry ∈ E(L), and ν ′ := rν ∈ E(k)tor. We now want to look at the action of
Gal(k(ν ′, z)/k(z)) on ν ′. To do so, we apply Proposition 3.1 with k = L. (Since in this case
F = Q, we will write p instead of p to denote a non-zero prime of OF .) We let J , T, and cp be
as in the proposition, and let M be the finite extension of L which is the fixed field of J , i.e.,

M := L

(⋃
p∈T

E[pcp ]
)
,

which depends only on E, L, and the choice of J , so is independent of the choice of x. We
decompose ν ′ into its p-primary parts up for all primes p. Let pdp (dp > 0) be the order of up,
and let

s=
∏
p∈T

pmax(dp−cp,0).

Then there are Galois elements of J which fix the points of E(L), and hence z and all up for
p /∈ T , but which map

u :=
∑
p∈T

up

to u plus every element in E[s]. Hence these Galois elements map rx to rx plus every element
in E[s], and all these Galois conjugates are S-integral on E relative to [r]∗D. So by (∗∗), if

t := rs,

then tx is S-integral on E relative to [t]∗D. Since su ∈ E(M), tx is the sum of a point

P := sz + su

in E(M) and a torsion point

Q := s(ν ′ − u) = s ·
∑
p6∈T

up.

If n is the order of Q, then by the choice of J , Q has φ2(n)-many Galois conjugates over M
constituting exactly the primitive n-torsion points, so tx has φ2(n)-many Galois conjugates over
M , too, each being a shift of P by a primitive n-torsion point.

In the two-point case, by assumption, either t(x− α) or t(x− β) is not torsion, and renaming
if necessary, we can assume t(x− α) is not torsion. In the one-point case, t(x− α) is not torsion,
or else x− α would be torsion, putting α ∈ Γ , a contradiction, since Γ contains all the torsion
points of E. In either case, we have that t(x− α) is of infinite order, and we have just shown that
t(x− α) and all its conjugates are S-integral on E relative to (O). Since t(x− α) = (P − tα) +Q,
it follows that −(P − tα) ∈ E(M) is non-torsion and S-integral on E relative to every primitive
n-torsion point of E. Hence Proposition 3.4, applied with k :=M , and P :=−(P − tα) gives that
n (the order of Q) is less than some fixed positive integer n0, depending only on E, M , and S,
and is hence independent of the choice of x.
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So adjoining to M all the torsion on E of order at most n0, we get a finite extension Y of M ,
i.e.,

Y :=M

( ⋃
16n<n0

E[n]
)
,

over which tx is rational. We now want to bound t. Applying Lemma 3.6 (part (i) in the two-
point case, and part (ii) in the one-point case) for k = Y, and considering (tx, t), we get that t is
less than some bound B that depends only on E, Y , S, and D, so is independent of the choice
of x. Since tx ∈ E(Y ), x ∈ E(W ), where W is the finite extension

W := Y

( ⋃
16b6B

1
b
E(Y )

)
.

Applying Siegel’s theorem on E over W , since x is S-integral on E relative to the divisor D,
there are only finitely many such x.

Case 2. When E has complex multiplication.
We start with a lemma.

Lemma 3.8. (i) If Theorem 3.7 is true for an elliptic curve E defined over k, it is true for any
elliptic curve E′ defined over k which is isogenous to E over k.

(ii) Every elliptic curve E defined over k with complex multiplication is isogenous over k to an
elliptic curve defined over k whose endomorphism ring R over k is the ring of integers OF
of some imaginary quadratic number field F .

Proof. (i) Let φ : E→ E′ be a non-zero isogeny over k, Γ ′ a division group in E′(k), and D′ an
effective divisor on E′ containing at least two points in its support whose difference is not torsion,
or one point not in Γ ′. Then we have φ−1(E′D′(Ok,S)Γ ′)⊆ ED(Ok,S)Γ , where D := φ∗(D′) and
Γ := φ−1(Γ ′). Since φ has finite kernel, Γ is a division group in E(k). It is clear that D is an
effective divisor which must contain at least two points in its support which do not differ by
a torsion point, or one point which is not in Γ . Thus Theorem 3.7 for E implies Theorem 3.7
for E′.

(ii) This is stated in [Sil94, #2.12, p. 180]. 2

So in proving the theorem we can assume that

End(E) =R=OF ,

which is to say, a Dedekind Domain.
Without loss of generality, we can assume by extending k if necessary that all the

endomorphisms in R are defined over k. We let Γ ′ denote the division group of E(k).
Let x be as in the first part of the proof. Again we will principally make use of two facts, the

first that all the Galois conjugates of x under the action of Gal(k/k) are also S-integral relative
to D, and the second that since S contains all the primes of bad reduction for E,

(∗∗∗) if V is an ideal in R and x+ u is S-integral on E relative to D for all u ∈ E[V ], then
ρ(x) is S-integral on EV relative to ρ∗(D), where ρ is the natural isogeny from E to
EV := E/V .
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There are several things we should note.
(a) The elliptic curve EV has the same endomorphism ring as E, which is to say, OF .
(b) If we let E and EV denote the Néron models over Ok,S of E and EV , respectively, then since

S contains all the primes of bad reduction for E (and hence for EV ), E and EV are abelian
schemes over Ok,S , and ρ extends to an Ok,S-isogeny between them. (Note that since we are
concerned with Ok,S-integral points on E and EV , we can work with Ok,S-integral models
rather than Ok-integral ones.)

(c) Via these isogenies, we can identify (EU )V and EUV , and likewise (EU )V and EUV , for any
two non-zero ideals U, V in OF .

(d) If V and V ′ are in the same ideal class, there are α, α′ ∈ OF − {0} such that αV = α′V ′ that
induce k-isomorphisms EV ∼= EαV = Eα′V ′ ∼= EV ′ , which extend to an Ok,S-isomorphism
between EV and EV ′ .

(e) We will fix once and for all a set of representatives ai, 1 6 i6 h, for the h distinct ideal
classes of OF , and will set Ei = Eai

, and Ei = Eai
. For each non-zero ideal U of OF , there is

a unique i such that ai is in the same ideal class as U , and we will denote this by i= λ(U).
Let ηU be a fixed k-isomorphism from EU to Ei as described in (d).

We let Ix denote the (necessarily non-zero) annihilator ideal of x in Γ ′/(E (k) + E (k)tor). Let

m ∈ Ix − {0}

be an element of minimal norm (so NormF/Q(m)/NormF/Q(Ix) is bounded by the Minkowski
bound B for F , equal to (2/π)

√
|disc(OF )|.) Then

m(x) = z + µ

for some z ∈ E(k) and µ ∈ E(k)tor, so picking any y ∈ E(k) with

m(y) = z,

we have
ν := x− y ∈ E(k)tor,

so y = x− ν ∈ Γ . Let Jy be the annihilator ideal of y in Γ ′/E (k). Then we have (m)⊆ Jy ⊆ Ix.
Moreover, for any y′ ∈ Γ ′ with x− y′ being torsion, and for any m′ ∈R− {0} with m′(y′) ∈ E(k),
we also have (m′)⊆ Jy′ ⊆ Ix, so

NormF/Q(m′) > NormF/Q(m)

by the minimality of the choice of m.
We want to look at the action of Gal(k(ν, E[Jy], y)/k(ν, E[Jy])) on y. Note

z = σ(z0)

for some non-torsion indivisible z0 ∈ E(k) and some σ ∈R. (If x is torsion, we can take y = z =O
and m= 1. In this case, σ = 0 and we choose z0 to be any (necessarily non-torsion) indivisible
point in E(k). Note that the assumptions (I) and (II) above obtained by enlarging k enable us
to find such a point z0.) We have information on Galois conjugates of (1/m)z0 coming from
Corollary 3.3 which we want to exploit to understand the k(ν, E[Jy])-Galois conjugates of y.

For this we consider the ideal I = (σ, m) 6= (0), which we claim has bounded norm, so in this
sense σ and m can be regarded as being ‘almost relatively prime’. Let I ′ be an ideal of minimal
norm in the ideal class of I, hence of norm bounded by B. Then

I ′/I = (β)
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for some β ∈ F×. By assumption, σβ = σ′ and mβ =m′ for some σ′ ∈R and some m′ ∈R− {0}.
One checks that m′(y)− σ′(z0) is annihilated by any element of I, so is torsion in E[I]. So
there is a torsion point ν ′ such that m′(y − ν ′) ∈ E(k). By the minimality of the norm of m,
NormF/Q(m) 6 NormF/Q(m′), so NormF/Q(β) > 1. Then, by the choice of I ′, we must have
NormF/Q(I) = NormF/Q(I ′), so

NormF/Q(I) 6B,

establishing our claim.
Let ` ∈R− {0} annihilate ν. From m(y) = σ(z0) we have,

k(E[`m], y)⊆ k
(
E[`m],

1
m

(z0)
)
,

and the reverse is ‘almost true’ in the following sense: let δ ∈ I − {0} have norm bounded by
B ·NormF/Q(I) 6B2. Then δ = am+ bσ for some a, b ∈R. It follows that δ(z0) = am(z0) +
bσ(z0) =m(a(z0) + b(y)), and so

k

(
E[`m],

1
m
δ(z0)

)
⊆ k(E[`m], y)⊆ k

(
E[`m],

1
m

(z0)
)
.

Hence if Z is the Galois group of k(E[`m], (1/m)(z0)) over k(E[`m]) identified as a subgroup
of E[m], the Galois group H of k(E[`m], y) over k(E[`m]) contains δZ. By Corollary 3.3, there
is a constant C0 independent of ` and m (and hence x) such that |Z|> C0 ·NormF/Q(m). It
follows that H is a subgroup of E[m] of index bounded by the constant C1 = C0B

2, depending
only on E and k.

Write R= Z⊕ ωZ. Then ωH is also of index in E[m] bounded by some constant C2 depending
only on E and k (because ωH ⊆ ωE[m] is of index bounded by C1, and the index of ωE[m] in
E[m] is bounded by NormF/Q(ω)). Therefore (H + ωH)/ωH is a finite group of order bounded
by C2, so the same is true of the isomorphic group H/(H ∩ ωH). So H ∩ ωH is of index in E[m]
bounded by C3 = C1C2, and is an R-module. Hence there is an ideal U of R, with m ∈ U and

NormF/Q(m)/NormF/Q(U) 6 C3, (1)

such that

E[U ]⊆Gal(k(E[`m], y)/k(E[`m])).

Now let ρ : E→ EU be the natural projection, which is an isogeny of degree NormF/Q(U).
Then since U divides (m), ρ is a factor of m : E→ E, i.e., m= ψ ◦ ρ for some other non-zero
isogeny ψ : EU → E, of degree bounded by C3 by (1). If ψ̂ is the dual isogeny of ψ, then
ψ ◦ ψ̂ = [deg(ψ)], an endomorphism of E. Therefore if y′ = ρ(y) ∈ EU (k), then y′ is actually
defined over k((1/deg(ψ))E(k)).

Recalling that ` ∈R− {0} annihilates ν, by Corollary 3.3, the k(E[`m])-Galois conjugates
of y include those of the form y plus every element of E[U ], hence the k-Galois conjugates of x
include those of the form x plus every element of E[U ].

Now let

L= k

( ⋃
16a6C3

1
a
E(k)

)
,

which is a finite extension of k, depending only on E and k, so independent of the choice of x.
Then recalling that x= y + ν, we know from (∗∗∗) that

ρ(x) = y′ + ν ′
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is S-integral on EU relative to (ρ(α)) + (ρ(β)), where y′ ∈ EU (L) and ν ′ := ρ(ν) ∈ EU (k)tor. Let
i= λ(U).

We now apply Proposition 3.1 with k = L and E = Ei. Let J , T and cp for p ∈ T be as
in Proposition 3.1, where we can take Mi (denoted by M in Proposition 3.1) to be the finite
extension of L generated by the Ei[pcp] for all p in T , i.e.,

Mi = L

(⋃
p∈T

Ei[pcp]
)
.

Decompose ν ′ into its p-primary parts up for all non-zero prime ideals p⊂R. Let pdp be the order
(ideal) of up (dp > 0), and let

s =
∏
p∈T

pmax(dp−cp,0).

Then there are Galois elements of J which fix the points of Ei(L), and hence via η−1
U they fix y′

and all up for p /∈ T , but which map

u :=
∑
p∈T

up

to u plus every element in EU [s]. Hence these Galois elements map ρ(x) to ρ(x) plus every element
in EU [s], and all these Galois conjugates are S-integral on EU relative to (ρ(α)) + (ρ(β)). Let
j = λ(Us), so Ej is isomorphic to EUs via ηUs. So by (∗∗∗) with E := EU and V := s, if

ψ : EU → (EU )s

is the natural projection, then ψ(ρ(x)) is S-integral on EUs relative to (ψ(ρ(α))) + (ψ(ρ(β))).
Then ψ(u) ∈ EUs(Mi), so ψ(ρ(x)) is the sum of a point

P := ψ(y′) + ψ(u)

in EUs(Mi), and a torsion point

Q := ψ(ν ′ − u) = ψ

(∑
p6∈T

up

)
.

Note that
∑

p6∈T up has some order (ideal) n which has φ(n)-many Galois conjugates over Mi,
constituting exactly the primitive n-torsion points of EU . Since n is prime to s, Q also has φ(n)-
many Galois conjugates over Mi, constituting exactly the primitive n-torsion points of EUs. So
ψ(ρ(x)) has φ(n)-many Galois conjugates over Mi, too, consisting of P shifted by the primitive
n-torsion points of EUs.

Now in the two-point case, either ψ(ρ(x− α)) or ψ(ρ(x− β)) is not torsion in EUs(k),
hence renaming α and β if necessary, we can assume that ψ(ρ(x− α)) is not torsion. In the
one-point case, ψ(ρ(x− α)) cannot be torsion, or else x− α would be torsion, putting α ∈ Γ ,
a contradiction. In any case, we can apply Proposition 3.5(iii) with k =Mi to EUs. Note
ψ(ρ(x− α)) = (P − ψ(ρ(α))) +Q. Thus, since ψ(ρ(x− α)) and all its Galois conjugates are
S-integral on EUs relative to the origin on EUs and S contains all the primes of bad reduction
for EUs, it follows that −(P − ψ(ρ(α))) is a point of infinite order in EUs(Mi) which is S-integral
relative to all the primitive n-torsion points on EUs. So via ηUs we get (n0)ij , a bound on the
norm of n (the order ideal of Q) by the proposition. Since there are only h choices for i and j,
we can set n0 to be the maximum of (n0)ij over all i and j.

2030

https://doi.org/10.1112/S0010437X13007318 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X13007318


Integral division points on curves

Let M be the compositum of all the Mi over 1 6 i6 h. Hence we get a finite extension Y
of M ,

Y :=M

( ⋃
n6=(0), an ideal of R

NormF/Q(n)6n0,16j6h

Ej [n]
)
,

over which ψ(ρ(x)) is rational. Note that Y depends only on E and M so is independent of the
choice of x. We now want to bound the degree of

τ := ηUs ◦ ψ ◦ ρ.

We have τ ∈Homk(E, Ej) for some 1 6 j 6 h, so we can apply Lemma 3.6 for each 1 6 j 6 h
and E′ = Ej (part (i) in the two-point case, and part (iii) in the one-point case), and considering
(τ(x), τ), bound the degree of τ by some positive integer C that depends only on E, Y , D, and
Γ0, so is independent of the choice of x.

Since τ(x) ∈ Ej(Y ), x ∈ E(W ), where W is the finite extension

W := Y

( ⋃
τ∈Homk(E,Ej)
deg τ6C, 16j6h

τ−1(Ej(Y ))
)

of Y . Applying Siegel’s theorem on E over W , since x is S-integral on E relative to the divisor D,
there are only finitely many such x. 2

When Γ0 is an R-module, its division group Γ is an R-module, and is the ‘R-division group
of Γ0’. Therefore we have the following theorem.

Theorem 3.9. Let k be a number field with algebraic closure k, and let S be a finite set of
primes of k containing all the infinite ones. Let E be an elliptic curve defined over k. Let Γ0 be
a finitely generated End(E)-submodule of E(k), and let

Γ = {ξ ∈ E(k) : λ(ξ) ∈ Γ0 for some non-zero λ ∈ End(E)}.

Let D be an effective divisor on E. Suppose that either of the following two conditions holds:

(i) Supp(D) contains at least two points whose difference is not an element of E(k)tor, i.e.,
is not a torsion point of E(k);

(ii) Supp(D) contains at least one point not in Γ .

Then the set

ED(Ok,S)Γ := {ξ ∈ Γ : ξ is S -integral relative to D}
is finite, i.e., there are only finitely many points in Γ which are S-integral on E relative to D.

4. The case of dynamical systems

4.1 The formulation of a dynamical system analogue conjecture
We start by recalling case (ii) of Theorem 1.3: for any α ∈Gm(k)− Γ ,

#(Gm,(α)(Ok,S) ∩ Γ )<∞,

i.e., there are only finitely many points in Γ which are S-integral on Gm relative to α ∈ k× − Γ .
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In order to consider a dynamical system analogue of this result for P1, we fix throughout
choices of

ϕ: a k-morphism P1→ P1, of finite degree >2, and

Q0: a point in P1(k).

Definition. We define the following:

[ϕ] = {φ : P1→ P1 : φ is a k-morphism of finite degree > 2 such that φ ◦ ϕ= ϕ ◦ φ};

Γ0 =
⋃
φ∈[ϕ]

φ+(Q0);

and

Γ =
( ⋃
φ∈[ϕ]

φ−(Γ0)
)
∪ P1(k)ϕ-preper,

where for φ ∈ [ϕ] and any subset Y of P1(k), φ+(Y ) and φ−(Y ) denote respectively the forward
and backward orbits under φ, that is:

φ0 := identity;

φn := φ ◦ · · · ◦ φ (n> 1 times);

φ−n(Y ) := (φn)−1(Y );

φ+(Y ) :=
⋃
n>0

φn(Y );

and

φ−(Y ) :=
⋃
n>0

φ−n(Y ).

Here also P1(k)ϕ-preper denotes the ϕ-preperiodic points on P1(k), that is, those points whose
forward orbits are finite sets. For background materials on arithmetical dynamical systems,
see [Sil07].

We now propose a dynamical system analogue to Theorem 1.3.

Conjecture 4.1. Keep the notation as above. If Q ∈ P1(k)− Γ , then

#(P1
(Q)(Ok,S) ∩ Γ )<∞,

i.e., there are only finitely many points in Γ which are S-integral on P1 relative to Q.

Some related results can be found in [BIR08, Ih11a, Ih11b, IT10, Pet08], and [Soo10].

4.2 Some comments on the case of dynamical systems
(i) Conjecture 4.1 can be modified by changing the definition of [ϕ]. In other words, according to
one’s taste, [ϕ] can be enlarged or shrunk in various ways (and consequently, Γ0 and Γ would be,
too). For example, it would be interesting to define [ϕ] to be any interesting nonempty subset of
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the following first set, especially its three subsequent subsets below:{
φ : P1→ P1 : φ is a k-morphism of finite degree >2 such that 〈ϕ, φ〉= 0

}

⊃

φ : P1→ P1 :

φ is a k-morphism of finite degree >2 such that for some n> 1,
some k-morphisms φ1, . . . , φn : P1→ P1 of finite degree>2,
and some l, l1, . . . , ln, m, m1, . . . , mn > 1,
φl ◦ φl11 = φl11 ◦ φl, φ

m1
1 ◦ φl22 = φl22 ◦ φ

m1
1 ,

φm2
2 ◦ φl33 = φl33 ◦ φ

m2
2 , . . . , φ

mn−1

n−1 ◦ φlnn = φlnn ◦ φ
mn−1

n−1 , φmn
n ◦ ϕm = ϕm ◦ φmn

n


⊃

{
φ : P1→ P1 :

φ is a k-morphism of finite degree >2 such that
φl ◦ ϕm = ϕm ◦ φl for some l, m> 1

}
⊃ {ϕ},

where 〈ϕ, φ〉 is the so-called Petsche–Szpiro–Tucker or Arakelov–Zhang pairing of the two
morphisms ϕ and φ. See [PST12] for the details of its definition, which we omit here. See
also [KS07].

(ii) In Conjecture 4.1 it would also be interesting to enlarge Γ0 and Γ along the lines of
Silverman’s idea in [Sil93]. For example, we could take:

Γ0 :=
⋃

φ1,...,φn∈[ϕ], n>1

φ+
n (· · · (φ+

1 (Q0)) · · · ); and

Γ :=
( ⋃
φ1,...,φn∈[ϕ], n>1

φ−n (· · · (φ−1 (Γ0)) · · · )
)
∪ P1(k)ϕ-preper.

These are the forward and backward orbits under the maps in the monoid generated by the
elements of [ϕ] under the composition of maps. There are reasonable ways to consider even
larger sets Γ0 and Γ by taking unions over larger classes of morphisms, but their consideration
would lead to more complicated formulations of the conjecture, so we content ourselves with the
above.

(iii) It is interesting to compare Conjecture 4.1 with other current work. Indeed, V. Sookdeo
and T. Tucker also recently had a conjecture along the lines of Conjecture 4.1. For example, keep
the above notation, and let

Γ ′ =
( ⋃
φ∈[ϕ]

φ−(Q0)
)
∪ P1(k)ϕ-preper,

and

Γ ′′ =
( ⋃
n>1, φ1,...,φn∈[ϕ]

φ−n (· · · (φ−1 (Q0)) · · · )
)
∪ P1(k)ϕ-preper.

Then their conjecture in [Soo10] may be reformulated in our terms above as follows:
if Q ∈ P1(k)− P1(k)ϕ-preper, then #(P1

(Q)(Ok,S) ∩ Γ ′′)<∞.

In particular, their conjecture would imply that #(P1
(Q)(Ok,S) ∩ Γ ′)<∞.
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